1
|
Chen PJ, Zhang YT. Protein Tyrosine Phosphatase 1B (PTP1B): Insights into Its New Implications in Tumorigenesis. Curr Cancer Drug Targets 2022; 22:181-194. [PMID: 35088671 DOI: 10.2174/1568009622666220128113400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/03/2021] [Accepted: 11/30/2021] [Indexed: 12/24/2022]
Abstract
In vivo, tyrosine phosphorylation is a reversible and dynamic process governed by the opposing activities of protein tyrosine kinases and phosphatases. Defective or inappropriate operation of these proteins leads to aberrant tyrosine phosphorylation, which contributes to the development of many human diseases, including cancers. PTP1B, a non-transmembrane phosphatase, is generally considered a negative regulator of the metabolic signaling pathways and a promising drug target for type Ⅱ diabetes and obesity. Recently, PTP1B is also attracting considerable interest due to its important function and therapeutic potential in other diseases. An increasing number of studies have indicated that PTP1B plays a vital role in the initiation and progression of cancers and could be a target for new cancer therapies. Following recent advances in the aspects mentioned above, this review is focused on the major functions of PTP1B in different types of cancer and the underlying mechanisms behind these functions, as well as the potential pharmacological effects of PTP1B inhibitors in cancer therapy.
Collapse
Affiliation(s)
- Pei-Jie Chen
- The Fourth Affiliated Hospital, Anhui Medical University, Hefei 230012, China
| | - Yun-Tian Zhang
- Hefei Visionnox Technology Co., Lid, Hefei 230012, China
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
2
|
Zahn M, Kaluszniak B, Möller P, Marienfeld R. The PTP1B mutant PTP1B∆2-4 is a positive regulator of the JAK/STAT signalling pathway in Hodgkin lymphoma. Carcinogenesis 2021; 42:517-527. [PMID: 33382412 PMCID: PMC8086765 DOI: 10.1093/carcin/bgaa144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/14/2020] [Accepted: 12/30/2020] [Indexed: 01/17/2023] Open
Abstract
The neoplastic Hodgkin/Reed-Sternberg (HRS) cells of classical Hodgkin lymphoma (cHL) depend on chronic activation of the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signalling pathways to maintain survival and proliferation. Accumulating reports highlight the importance of the inactivation or reduced expression of negative JAK/STAT regulators such as the protein-tyrosine phosphatase 1B (PTP1B/PTPN1) in this process. Various PTPN1 mRNA variants as well as truncated PTP1B proteins were identified in cHL cell lines and primary cHL tumour samples. These PTPN1 mRNA variants lack either one or several exon sequences and therefore render these PTP1B variants catalytically inactive. Here, we show that one of these mutants, PTP1B∆2-4, is not only a catalytically inactive variant, but also augmented the IL-4-induced JAK/STAT activity similar to the recently reported PTP1B∆6 splice variant. Moreover, while PTP1B∆6 diminished the activity and protein levels of PTP1BWT, PTP1BWT remained unaffected by PTP1B∆2-4, arguing for different molecular mechanisms of JAK/STAT modulation by PTP1B∆6 and PTP1B∆2-4. Collectively, these data indicate that PTPN1 variants missing one or more exon sequences originated either from alternative splicing or from gene mutation, create PTP1B gain-of-function variants with oncogenic potential by augmenting JAK/STAT signalling in cHL.
Collapse
Affiliation(s)
- Malena Zahn
- Institute of Pathology, Ulm University, Albert-Einstein-Allee, Ulm, Germany
| | - Bianca Kaluszniak
- Institute of Pathology, Ulm University, Albert-Einstein-Allee, Ulm, Germany
| | - Peter Möller
- Institute of Pathology, Ulm University, Albert-Einstein-Allee, Ulm, Germany
| | - Ralf Marienfeld
- Institute of Pathology, Ulm University, Albert-Einstein-Allee, Ulm, Germany
| |
Collapse
|
3
|
Yang R, Dong Q, Xu H, Gao X, Zhao Z, Qin J, Chen C, Luo D. Identification of Phomoxanthone A and B as Protein Tyrosine Phosphatase Inhibitors. ACS OMEGA 2020; 5:25927-25935. [PMID: 33073119 PMCID: PMC7557999 DOI: 10.1021/acsomega.0c03315] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 08/04/2020] [Indexed: 05/08/2023]
Abstract
Phomoxanthone A and B (PXA and PXB) are xanthone dimers and isolated from the endophytic fungus Phomopsis sp. By254. The results demonstrated that PXB and PXA are noncompetitive inhibitors of SHP2 and PTP1B and competitive inhibitors of SHP1. Molecular docking studies showed that PXB and PXA interact with conserved domains of protein tyrosine phosphatases such as the β5-β6 loop, WPD loop, P loop, and Q loop. PXA and PXB could significantly inhibit the cell proliferation in MCF7 cells. Our results indicated that these two compounds do not efficiently inhibit PTP1B and SHP2 activity. RNA sequencing showed that PXA and PXB may inhibit SHP1 activity in MCF7 cells leading to the upregulation of inflammatory factors. In addition to PTP inhibition, PXA and PXB are multitarget compounds to inhibit the proliferation of tumor cells. In conclusion, both compounds show inhibition of cancer cells and a certain degree of inflammatory stimulation, which make them promising for tumor immunotherapy.
Collapse
Affiliation(s)
- Runlei Yang
- College
of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, China
| | - Qian Dong
- College
of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, China
| | - Huibin Xu
- College
of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, China
| | - XueHui Gao
- College
of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, China
| | - Ziyue Zhao
- College
of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, China
| | - Jianchun Qin
- College
of Plant Science, Jilin University, Changchun, Jilin 130062, China
| | - Chuan Chen
- College
of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, China
| | - Duqiang Luo
- College
of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, China
| |
Collapse
|
4
|
Yuan C, Wang W, Wang J, Li X, Wu YB, Li S, Lu L, Zhu M, Xing S, Fu X. Potent and selective PTP1B inhibition by a platinum(ii) complex: possible implications for a new antitumor strategy. Chem Commun (Camb) 2019; 56:102-105. [PMID: 31793564 DOI: 10.1039/c9cc06972k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Showing anti-proliferation activity against MCF7 cells better than cisplatin, a platinum(ii) complex, [PtL(DMSO)Cl], was found to potently and selectively inhibit protein tyrosine phosphatase 1B (PTP1B), a putative target for anticancer agents, suggesting a new possible anticancer strategy based on platinum drugs.
Collapse
Affiliation(s)
- Caixia Yuan
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Shanxi University, Taiyuan, Shanxi 030006, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Przychodzen P, Kuban-Jankowska A, Wyszkowska R, Barone G, Bosco GL, Celso FL, Kamm A, Daca A, Kostrzewa T, Gorska-Ponikowska M. PTP1B phosphatase as a novel target of oleuropein activity in MCF-7 breast cancer model. Toxicol In Vitro 2019; 61:104624. [PMID: 31419504 DOI: 10.1016/j.tiv.2019.104624] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/30/2019] [Accepted: 08/12/2019] [Indexed: 02/06/2023]
Abstract
Phosphatase PTP1B has become a therapeutic target for the treatment of type 2-diabetes, whereas recent studies have revealed that PTP1B plays a pivotal role in pathophysiology and development of breast cancer. Oleuropein is a natural, phenolic compound with anticancer activity. The aim of this study was to address the question whether PTP1B constitutes a target for oleuropein in breast cancer MCF-7 cells. The cellular MCF-7 breast cancer model was used in the study. The experiments were performed using cellular viability tests, Elisa assays, immunoprecipitation, flow cytometry analyses and computer modelling. Herein, we evidenced that the reduced activity of phosphatase PTP1B after treatment with oleuropein is strictly correlated with decreased MCF-7 cellular viability and cell cycle arrest. These results provide new insight into further research on oleuropein and possible role of the compound in adjuvant treatment of breast cancer.
Collapse
Affiliation(s)
- Paulina Przychodzen
- Department of Medical Chemistry, Medical University of Gdansk, Gdansk, Poland
| | | | - Roksana Wyszkowska
- Department of Medical Chemistry, Medical University of Gdansk, Gdansk, Poland
| | - Giampaolo Barone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Giosuè Lo Bosco
- Department of Mathematics and Computer Science, University of Palermo, Palermo, Italy; The Euro-Mediterranean Institute of Science and Technology, Palermo, Italy
| | - Fabrizio Lo Celso
- Department of Physics and Chemistry 'Emilio Segrè', University of Palermo, Palermo, Italy
| | - Anna Kamm
- Department of Medical Chemistry, Medical University of Gdansk, Gdansk, Poland
| | - Agnieszka Daca
- Department of Pathology and Experimental Rheumatology, Medical University of Gdansk, Gdansk, Poland
| | - Tomasz Kostrzewa
- Department of Medical Chemistry, Medical University of Gdansk, Gdansk, Poland
| | - Magdalena Gorska-Ponikowska
- Department of Medical Chemistry, Medical University of Gdansk, Gdansk, Poland; Institute of Biomaterials and Biomolecular Systems, Department of Biophysics, University of Stuttgart, Stuttgart, Germany; The Euro-Mediterranean Institute of Science and Technology, Palermo, Italy.
| |
Collapse
|
6
|
Hussein UK, Park HS, Bae JS, Kim KM, Chong YJ, Kim CY, Kwon KS, Chung MJ, Lee H, Kang MJ, Moon WS, Jang KY. Expression of oxidized protein tyrosine phosphatase and γH2AX predicts poor survival of gastric carcinoma patients. BMC Cancer 2018; 18:836. [PMID: 30126387 PMCID: PMC6102926 DOI: 10.1186/s12885-018-4752-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 08/14/2018] [Indexed: 11/25/2022] Open
Abstract
Background Oxidative stress induces various intracellular damage, which might be correlated with tumorigenesis. Accumulated oxidative stresses might inactivate protein tyrosine phosphatase (PTP) by oxidizing it, and inducing the phosphorylation of H2AX (γH2AX) in response to DNA damage. Methods We evaluated the clinical significance of the expression of oxidized-PTP and γH2AX in 169 gastric carcinomas. Results Immunohistochemical expression of nuclear oxidized-PTP, cytoplasmic oxidized-PTP, and γH2AX expression were significantly associated with each other, and their expressions predicted shorter survival of gastric carcinoma patients. In multivariate analysis, nuclear oxidized-PTP (overall survival; p < 0.001, relapse-free survival; P < 0.001) was an independent indicator of poor prognosis of gastric carcinoma patients. In addition, co-expression patterns of nuclear oxidized-PTP and γH2AX were independent indicators of poor prognosis of gastric carcinoma patients (overall survival; P < 0.001, relapse-free survival; P < 0.001). Conclusions This study suggests that oxidative stress-mediated oxidation of PTP might be involved in the progression of gastric carcinomas. In addition, this study suggests that individual and co-expression pattern of nuclear oxidized-PTP and γH2AX might be used as a prognostic marker of gastric carcinomas.
Collapse
Affiliation(s)
- Usama Khamis Hussein
- Department of Pathology, Chonbuk National University Medical School, Research Institute of Clinical Medicine of Chonbuk, National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Republic of Korea.,Research Institute for Endocrine Sciences, Chonbuk National University Medical School, Jeonju, Republic of Korea.,Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Ho Sung Park
- Department of Pathology, Chonbuk National University Medical School, Research Institute of Clinical Medicine of Chonbuk, National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Republic of Korea.,Research Institute for Endocrine Sciences, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Jun Sang Bae
- Department of Pathology, Chonbuk National University Medical School, Research Institute of Clinical Medicine of Chonbuk, National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Republic of Korea.,Research Institute for Endocrine Sciences, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Kyoung Min Kim
- Department of Pathology, Chonbuk National University Medical School, Research Institute of Clinical Medicine of Chonbuk, National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Republic of Korea.,Research Institute for Endocrine Sciences, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Yun Jo Chong
- Center for University-wide Research Facilities, Chonbuk National University, Jeonju, Republic of Korea
| | - Chan Young Kim
- Department of Surgery, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Keun Sang Kwon
- Department of Preventive Medicine, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Myoung Ja Chung
- Department of Pathology, Chonbuk National University Medical School, Research Institute of Clinical Medicine of Chonbuk, National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Republic of Korea.,Research Institute for Endocrine Sciences, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Ho Lee
- Department of Forensic Medicine, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Myoung Jae Kang
- Department of Pathology, Chonbuk National University Medical School, Research Institute of Clinical Medicine of Chonbuk, National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Republic of Korea.,Research Institute for Endocrine Sciences, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Woo Sung Moon
- Department of Pathology, Chonbuk National University Medical School, Research Institute of Clinical Medicine of Chonbuk, National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Republic of Korea.,Research Institute for Endocrine Sciences, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Kyu Yun Jang
- Department of Pathology, Chonbuk National University Medical School, Research Institute of Clinical Medicine of Chonbuk, National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Republic of Korea. .,Research Institute for Endocrine Sciences, Chonbuk National University Medical School, Jeonju, Republic of Korea.
| |
Collapse
|
7
|
Tchankouo-Nguetcheu S, Udinotti M, Durand M, Meng TC, Taouis M, Rabinow L. Negative regulation of MAP kinase signaling in Drosophila by Ptp61F/PTP1B. Mol Genet Genomics 2014; 289:795-806. [DOI: 10.1007/s00438-014-0852-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 04/01/2014] [Indexed: 01/19/2023]
|
8
|
Kuo MS, Auriau J, Pierre-Eugène C, Issad T. Development of a human breast-cancer derived cell line stably expressing a bioluminescence resonance energy transfer (BRET)-based phosphatidyl inositol-3 phosphate (PIP3) biosensor. PLoS One 2014; 9:e92737. [PMID: 24647478 PMCID: PMC3960261 DOI: 10.1371/journal.pone.0092737] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 02/25/2014] [Indexed: 12/15/2022] Open
Abstract
Stimulation of tyrosine kinase receptors initiates a signaling cascade that activates PI3K. Activated PI3K uses PIP2 to generate PIP3, which recruit Akt to the plasma membrane through its pleckstrin homology (PH) domain, permitting its activation by PDKs. Activated Akt controls important biological functions, including cell metabolism, proliferation and survival. The PI3K pathway is therefore an attractive target for drug discovery. However, current assays for measurement of PIP3 production are technically demanding and not amenable to high-throughput screening. We have established a MCF-7-derived breast cancer cell line, that stably co-expresses the PH domain of Akt fused to Renilla luciferase and YFP fused to a membrane localization signal. This BRET biosensor pair permits to monitor, in real time, in living cells, PIP3 production at the plasma membrane upon stimulation by different ligands, including insulin, the insulin analogue glargine, IGF1, IGF2 and EGF. Moreover, several known inhibitors that target different steps of the PI3K/Akt pathway caused inhibition of ligand-induced BRET. Cetuximab, a humanized anti-EGF receptor monoclonal antibody used for the treatment of cancer, completely inhibited EGF-induced BRET, and the tyrosine kinase inhibitor tyrphostine AG1024 inhibited insulin effect on PIP3 production. Moreover, the effects of insulin and IGF1 were inhibited by molecules that inhibit PI3K catalytic activity or the interaction between PIP3 and the PH domain of Akt. Finally, we showed that human serum induced a dose-dependent increase in BRET signal, suggesting that this stable clone may be used as a prognostic tool to evaluate the PI3K stimulatory activity present in serum of human patients. We have thus established a cell line, suitable for the screening and/or the study of molecules with stimulatory or inhibitory activities on the PI3K/Akt pathway that will constitute a new tool for translational research in diabetes and cancer.
Collapse
Affiliation(s)
- Mei-Shiue Kuo
- Institut Cochin, Université Paris Descartes, CNRS (UMR8104), Paris, France
- INSERM, U1016, Paris, France
| | - Johanna Auriau
- Institut Cochin, Université Paris Descartes, CNRS (UMR8104), Paris, France
- INSERM, U1016, Paris, France
| | - Cécile Pierre-Eugène
- Institut Cochin, Université Paris Descartes, CNRS (UMR8104), Paris, France
- INSERM, U1016, Paris, France
| | - Tarik Issad
- Institut Cochin, Université Paris Descartes, CNRS (UMR8104), Paris, France
- INSERM, U1016, Paris, France
- * E-mail:
| |
Collapse
|
9
|
Kanwal S, Fardini Y, Pagesy P, N’Tumba-Byn T, Pierre-Eugène C, Masson E, Hampe C, Issad T. O-GlcNAcylation-inducing treatments inhibit estrogen receptor α expression and confer resistance to 4-OH-tamoxifen in human breast cancer-derived MCF-7 cells. PLoS One 2013; 8:e69150. [PMID: 23935944 PMCID: PMC3730543 DOI: 10.1371/journal.pone.0069150] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Accepted: 06/05/2013] [Indexed: 01/08/2023] Open
Abstract
O-GlcNAcylation (addition of N-acetyl-glucosamine on serine or threonine
residues) is a post-translational modification that regulates stability,
activity or localization of cytosolic and nuclear proteins. O-linked
N-acetylgluocosmaine transferase (OGT) uses UDP-GlcNAc, produced in the
hexosamine biosynthetic pathway to O-GlcNacylate proteins. Removal of O-GlcNAc
from proteins is catalyzed by the β-N-Acetylglucosaminidase (OGA). Recent
evidences suggest that O-GlcNAcylation may affect the growth of cancer cells.
However, the consequences of O-GlcNAcylation on anti-cancer therapy have not
been evaluated. In this work, we studied the effects of O-GlcNAcylation on
tamoxifen-induced cell death in the breast cancer-derived MCF-7 cells.
Treatments that increase O-GlcNAcylation (PUGNAc and/or glucosoamine) protected
MCF-7 cells from death induced by tamoxifen. In contrast, inhibition of OGT
expression by siRNA potentiated the effect of tamoxifen on cell death. Since the
PI-3 kinase/Akt pathway is a major regulator of cell survival, we used BRET to
evaluate the effect of PUGNAc+glucosamine on PIP3 production. We
observed that these treatments stimulated PIP3 production in MCF-7
cells. This effect was associated with an increase in Akt phosphorylation.
However, the PI-3 kinase inhibitor LY294002, which abolished the effect of
PUGNAc+glucosamine on Akt phosphorylation, did not impair the protective effects
of PUGNAc+glucosamine against tamoxifen-induced cell death. These results
suggest that the protective effects of O-GlcNAcylation are independent of the
PI-3 kinase/Akt pathway. As tamoxifen sensitivity depends on the estrogen
receptor (ERα) expression level, we evaluated the effect of PUGNAc+glucosamine
on the expression of this receptor. We observed that O-GlcNAcylation-inducing
treatment significantly reduced the expression of ERα mRNA and protein,
suggesting a potential mechanism for the decreased tamoxifen sensitivity induced
by these treatments. Therefore, our results suggest that inhibition of
O-GlcNAcylation may constitute an interesting approach to improve the
sensitivity of breast cancer to anti-estrogen therapy.
Collapse
Affiliation(s)
- Shahzina Kanwal
- Institut Cochin, Université Paris Descartes, CNRS (UMR8104), Paris,
France
- INSERM, U1016, Paris, France
| | - Yann Fardini
- Institut Cochin, Université Paris Descartes, CNRS (UMR8104), Paris,
France
- INSERM, U1016, Paris, France
| | - Patrick Pagesy
- Institut Cochin, Université Paris Descartes, CNRS (UMR8104), Paris,
France
- INSERM, U1016, Paris, France
| | - Thierry N’Tumba-Byn
- Institut Cochin, Université Paris Descartes, CNRS (UMR8104), Paris,
France
- INSERM, U1016, Paris, France
| | - Cécile Pierre-Eugène
- Institut Cochin, Université Paris Descartes, CNRS (UMR8104), Paris,
France
- INSERM, U1016, Paris, France
| | - Elodie Masson
- Institut Cochin, Université Paris Descartes, CNRS (UMR8104), Paris,
France
- INSERM, U1016, Paris, France
| | - Cornelia Hampe
- Institut Cochin, Université Paris Descartes, CNRS (UMR8104), Paris,
France
- INSERM, U1016, Paris, France
| | - Tarik Issad
- Institut Cochin, Université Paris Descartes, CNRS (UMR8104), Paris,
France
- INSERM, U1016, Paris, France
- * E-mail:
| |
Collapse
|
10
|
Nunes-Xavier CE, Martín-Pérez J, Elson A, Pulido R. Protein tyrosine phosphatases as novel targets in breast cancer therapy. Biochim Biophys Acta Rev Cancer 2013; 1836:211-26. [PMID: 23756181 DOI: 10.1016/j.bbcan.2013.06.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Accepted: 06/01/2013] [Indexed: 02/07/2023]
Abstract
Breast cancer is linked to hyperactivation of protein tyrosine kinases (PTKs), and recent studies have unveiled that selective tyrosine dephosphorylation by protein tyrosine phosphatases (PTPs) of specific substrates, including PTKs, may activate or inactivate oncogenic pathways in human breast cancer cell growth-related processes. Here, we review the current knowledge on the involvement of PTPs in breast cancer, as major regulators of breast cancer therapy-targeted PTKs, such as HER1/EGFR, HER2/Neu, and Src. The functional interplay between PTKs and PTK-activating or -inactivating PTPs, and its implications in novel breast cancer therapies based on targeting of specific PTPs, are discussed.
Collapse
Affiliation(s)
- Caroline E Nunes-Xavier
- BioCruces Health Research Institute, Hospital de Cruces, Plaza Cruces s/n, 48903 Barakaldo, Spain
| | | | | | | |
Collapse
|
11
|
Yi EH, Lee CS, Lee JK, Lee YJ, Shin MK, Cho CH, Kang KW, Lee JW, Han W, Noh DY, Kim YN, Cho IH, Ye SK. STAT3-RANTES Autocrine Signaling Is Essential for Tamoxifen Resistance in Human Breast Cancer Cells. Mol Cancer Res 2012; 11:31-42. [DOI: 10.1158/1541-7786.mcr-12-0217] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Pierre-Eugene C, Pagesy P, Nguyen TT, Neuillé M, Tschank G, Tennagels N, Hampe C, Issad T. Effect of insulin analogues on insulin/IGF1 hybrid receptors: increased activation by glargine but not by its metabolites M1 and M2. PLoS One 2012; 7:e41992. [PMID: 22848683 PMCID: PMC3406060 DOI: 10.1371/journal.pone.0041992] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 06/28/2012] [Indexed: 12/28/2022] Open
Abstract
Background In diabetic patients, the pharmacokinetics of injected human insulin does not permit optimal control of glycemia. Fast and slow acting insulin analogues have been developed, but they may have adverse properties, such as increased mitogenic or anti-apoptotic signaling. Insulin/IGF1 hybrid receptors (IR/IGF1R), present in most tissues, have been proposed to transmit biological effects close to those of IGF1R. However, the study of hybrid receptors is difficult because of the presence of IR and IGF1R homodimers. Our objective was to perform the first study on the pharmacological properties of the five marketed insulin analogues towards IR/IGF1R hybrids. Methodology To study the effect of insulin analogues on IR/IGF1R hybrids, we used our previously developed Bioluminescence Resonance Energy Transfer (BRET) assay that permits specific analysis of the pharmacological properties of hybrid receptors. Moreover, we have developed a new, highly sensitive BRET-based assay to monitor phophatidylinositol-3 phosphate (PIP3) production in living cells. Using this assay, we performed a detailed pharmacological analysis of PIP3 production induced by IGF1, insulin and insulin analogues in living breast cancer-derived MCF-7 and MDA-MB231 cells. Results Among the five insulin analogues tested, only glargine stimulated IR/IGF1R hybrids with an EC50 that was significantly lower than insulin and close to that of IGF1. Glargine more efficiently stimulated PIP3 production in MCF-7 cells but not in MDA-MB231 cells as compared to insulin. In contrast, glargine metabolites M1 and M2 showed lower potency for hybrid receptors stimulation, PIP3 production, Akt and Erk1/2 phosphorylation and DNA synthesis in MCF-7 cells, compared to insulin. Conclusion Glargine, possibly acting through IR/IGF1R hybrids, displays higher potency, whereas its metabolites M1 and M2 display lower potency than insulin for the stimulation of proliferative/anti-apoptotic pathways in MCF-7 cells.
Collapse
Affiliation(s)
- Cécile Pierre-Eugene
- Institut Cochin, Université Paris Descartes, CNRS (UMR8104), Paris, France
- INSERM, U1016, Paris, France
| | - Patrick Pagesy
- Institut Cochin, Université Paris Descartes, CNRS (UMR8104), Paris, France
- INSERM, U1016, Paris, France
| | - Tuyet Thu Nguyen
- Institut Cochin, Université Paris Descartes, CNRS (UMR8104), Paris, France
- INSERM, U1016, Paris, France
| | - Marion Neuillé
- Institut Cochin, Université Paris Descartes, CNRS (UMR8104), Paris, France
- INSERM, U1016, Paris, France
| | | | | | - Cornelia Hampe
- Institut Cochin, Université Paris Descartes, CNRS (UMR8104), Paris, France
- INSERM, U1016, Paris, France
| | - Tarik Issad
- Institut Cochin, Université Paris Descartes, CNRS (UMR8104), Paris, France
- INSERM, U1016, Paris, France
- * E-mail:
| |
Collapse
|
13
|
Labbé DP, Hardy S, Tremblay ML. Protein tyrosine phosphatases in cancer: friends and foes! PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 106:253-306. [PMID: 22340721 DOI: 10.1016/b978-0-12-396456-4.00009-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Tyrosine phosphorylation of proteins serves as an exquisite switch in controlling several key oncogenic signaling pathways involved in cell proliferation, apoptosis, migration, and invasion. Since protein tyrosine phosphatases (PTPs) counteract protein kinases by removing phosphate moieties on target proteins, one may intuitively think that PTPs would act as tumor suppressors. Indeed, one of the most described PTPs, namely, the phosphatase and tensin homolog (PTEN), is a tumor suppressor. However, a growing body of evidence suggests that PTPs can also function as potent oncoproteins. In this chapter, we provide a broad historical overview of the PTPs, their mechanism of action, and posttranslational modifications. Then, we focus on the dual properties of classical PTPs (receptor and nonreceptor) and dual-specificity phosphatases in cancer and summarize the current knowledge of the signaling pathways regulated by key PTPs in human cancer. In conclusion, we present our perspective on the potential of these PTPs to serve as therapeutic targets in cancer.
Collapse
Affiliation(s)
- David P Labbé
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada
| | | | | |
Collapse
|
14
|
Chen L, Xuan J, Riggins RB, Clarke R, Wang Y. Identifying cancer biomarkers by network-constrained support vector machines. BMC SYSTEMS BIOLOGY 2011; 5:161. [PMID: 21992556 PMCID: PMC3214162 DOI: 10.1186/1752-0509-5-161] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 10/12/2011] [Indexed: 04/30/2023]
Abstract
BACKGROUND One of the major goals in gene and protein expression profiling of cancer is to identify biomarkers and build classification models for prediction of disease prognosis or treatment response. Many traditional statistical methods, based on microarray gene expression data alone and individual genes' discriminatory power, often fail to identify biologically meaningful biomarkers thus resulting in poor prediction performance across data sets. Nonetheless, the variables in multivariable classifiers should synergistically interact to produce more effective classifiers than individual biomarkers. RESULTS We developed an integrated approach, namely network-constrained support vector machine (netSVM), for cancer biomarker identification with an improved prediction performance. The netSVM approach is specifically designed for network biomarker identification by integrating gene expression data and protein-protein interaction data. We first evaluated the effectiveness of netSVM using simulation studies, demonstrating its improved performance over state-of-the-art network-based methods and gene-based methods for network biomarker identification. We then applied the netSVM approach to two breast cancer data sets to identify prognostic signatures for prediction of breast cancer metastasis. The experimental results show that: (1) network biomarkers identified by netSVM are highly enriched in biological pathways associated with cancer progression; (2) prediction performance is much improved when tested across different data sets. Specifically, many genes related to apoptosis, cell cycle, and cell proliferation, which are hallmark signatures of breast cancer metastasis, were identified by the netSVM approach. More importantly, several novel hub genes, biologically important with many interactions in PPI network but often showing little change in expression as compared with their downstream genes, were also identified as network biomarkers; the genes were enriched in signaling pathways such as TGF-beta signaling pathway, MAPK signaling pathway, and JAK-STAT signaling pathway. These signaling pathways may provide new insight to the underlying mechanism of breast cancer metastasis. CONCLUSIONS We have developed a network-based approach for cancer biomarker identification, netSVM, resulting in an improved prediction performance with network biomarkers. We have applied the netSVM approach to breast cancer gene expression data to predict metastasis in patients. Network biomarkers identified by netSVM reveal potential signaling pathways associated with breast cancer metastasis, and help improve the prediction performance across independent data sets.
Collapse
Affiliation(s)
- Li Chen
- Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA, USA
| | | | | | | | | |
Collapse
|
15
|
Boubekeur S, Boute N, Pagesy P, Zilberfarb V, Christeff N, Issad T. A new highly efficient substrate-trapping mutant of protein tyrosine phosphatase 1B (PTP1B) reveals full autoactivation of the insulin receptor precursor. J Biol Chem 2011; 286:19373-80. [PMID: 21487008 DOI: 10.1074/jbc.m111.222984] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
PTP1B is a protein tyrosine-phosphatase located on the cytosolic side of the endoplasmic reticulum that plays an important role in the regulation of the insulin receptor (IR). Replacement of the conserved Asp-181 by alanine is known to convert PTP1B into a substrate-trapping protein that binds to but cannot dephosphorylate its substrates. In this work, we have studied the effect of an additional mutation (Y46F) on the substrate-trapping efficiency of PTP1B-D181A. We observed that this mutation converts PTP1B-D181A into a highly efficient substrate-trapping mutant, resulting in much higher recovery of tyrosine-phosphorylated proteins coimmunoprecipitated with PTP1B. Bioluminescence resonance energy transfer (BRET) experiments were also performed to compare the dynamics of interaction of the IR with these mutants. Basal BRET, which mainly reflects the interaction of PTP1B with the IR precursor during its biosynthesis in the endoplasmic reticulum, was markedly increased with the PTP1B-D181A-Y46F mutant. In contrast, insulin-induced BRET was markedly reduced with PTP1B-D181A-Y46F. I(125) insulin binding experiments indicated that PTP1B-D181-Y46F reduced the expression of IR at the plasma membrane. Reduced expression at the cell surface was associated with higher amounts of the uncleaved IR precursor in the cell. Moreover, we observed that substantial amounts of the uncleaved IR precursor reached the Tris-phosphorylated, fully activated form in an insulin independent fashion. These results support the notion that PTP1B plays a crucial role in the control of the activity of the IR precursor during its biosynthesis. In addition, this new substrate-trapping mutant may be a valuable tool for the identification of new PTP1B substrates.
Collapse
|
16
|
Li JM, Li YC, Kong LD, Hu QH. Curcumin inhibits hepatic protein-tyrosine phosphatase 1B and prevents hypertriglyceridemia and hepatic steatosis in fructose-fed rats. Hepatology 2010; 51:1555-66. [PMID: 20222050 DOI: 10.1002/hep.23524] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
UNLABELLED High consumption of dietary fructose is an important contributory factor in the development of hepatic steatosis in insulin or leptin resistance. We investigated the effects of curcumin on fructose-induced hypertriglyceridemia and liver steatosis and explored its preventive mechanisms in rats. Curcumin reduced serum insulin and leptin levels in fructose-fed rats. This compound could increase phosphorylation of insulin receptor and insulin receptor substrate 1 to enhance Akt and extracellular signal-regulated kinase1/2 (ERK1/2) activation in the liver of fructose-fed rats. Moreover, curcumin increased phosphorylation of hepatic janus-activated kinase-signal transducer 2 and subsequently also stimulated Akt and ERK1/2 activation in this model. Suppression of curcumin on leptin signaling overstimulation in tyrosine1138 phosphorylation of the long form of leptin receptor and signal transducer and activator of transcription 3 resulted in down-regulation of suppressor of cytokine signaling 3 in the liver of fructose-fed rats. Thus, improvement of insulin and leptin signaling transduction and subsequently elevation of peroxisome proliferator-activated receptor alpha expression by curcumin led to reduction of very-low-density lipoprotein overproduction and triglyceride hypersynthesis. Furthermore, overexpression and hyperactivity of hepatic protein tyrosine phosphatase 1B (PTP1B) associated with defective insulin and leptin signaling were observed in fructose-fed rats. Additionally, curcumin was found to significantly reduce hepatic PTP1B expression and activity in this model. CONCLUSION Our data indicate that the mechanisms by which curcumin protects against fructose-induced hypertriglyceridemia and hepatic steatosis are its inhibition on PTP1B and subsequently improvement of insulin and leptin sensitivity in the liver of rats. This PTP1B inhibitory property may be a promising therapeutic strategy for curcumin to treat fructose-induced hepatic steatosis driven by hepatic insulin and leptin resistance.
Collapse
Affiliation(s)
- Jian-Mei Li
- From the State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | | | | | | |
Collapse
|
17
|
Blanquart C, Karouri SE, Issad T. Protein tyrosine phosphatase-1B and T-cell protein tyrosine phosphatase regulate IGF-2-induced MCF-7 cell migration. Biochem Biophys Res Commun 2010; 392:83-8. [DOI: 10.1016/j.bbrc.2009.12.176] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Accepted: 12/26/2009] [Indexed: 12/18/2022]
|
18
|
Lessard L, Stuible M, Tremblay ML. The two faces of PTP1B in cancer. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1804:613-9. [PMID: 19782770 DOI: 10.1016/j.bbapap.2009.09.018] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 09/11/2009] [Accepted: 09/18/2009] [Indexed: 10/25/2022]
Abstract
PTP1B is a classical non-transmembrane protein tyrosine phosphatase that plays a key role in metabolic signaling and is a promising drug target for type 2 diabetes and obesity. Accumulating evidence also indicates that PTP1B is involved in cancer, but contrasting findings suggest that it can exert both tumor suppressing and tumor promoting effects depending on the substrate involved and the cellular context. In this review, we will discuss the diverse mechanisms by which PTP1B may influence tumorigenesis as well as recent in vivo data on the impact of PTP1B deficiency in murine cancer models. Together, these results highlight not only the great potential of PTP1B inhibitors in cancer therapy but also the need for a better understanding of PTP1B function prior to use of these compounds in human patients.
Collapse
Affiliation(s)
- Laurent Lessard
- Goodman Cancer Centre and Department of Biochemistry, McGill University, 1160 Pine Avenue, Montréal, Québec, Canada H3G 0B1
| | | | | |
Collapse
|