1
|
Varied functions of immune checkpoints during cancer metastasis. Cancer Immunol Immunother 2020; 70:569-588. [PMID: 32902664 PMCID: PMC7907026 DOI: 10.1007/s00262-020-02717-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 08/31/2020] [Indexed: 12/14/2022]
Abstract
Immune checkpoints comprise diverse receptors and ligands including costimulatory and inhibitory molecules, which play monumental roles in regulating the immune system. Immune checkpoints retain key potentials in maintaining the immune system homeostasis and hindering the malignancy development and autoimmunity. The expression of inhibitory immune checkpoints delineates an increase in a plethora of metastatic tumors and the inhibition of these immune checkpoints can be followed by promising results. On the other hand, the stimulation of costimulatory immune checkpoints can restrain the metastasis originating from diverse tumors. From the review above, key findings emerged regarding potential functions of inhibitory and costimulatory immune checkpoints targeting the metastatic cascade and point towards novel potential Achilles’ heels of cancer that might be exploited therapeutically in the future.
Collapse
|
2
|
Role of the CXCR4-LASP1 Axis in the Stabilization of Snail1 in Triple-Negative Breast Cancer. Cancers (Basel) 2020; 12:cancers12092372. [PMID: 32825729 PMCID: PMC7563118 DOI: 10.3390/cancers12092372] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/08/2020] [Accepted: 08/14/2020] [Indexed: 12/13/2022] Open
Abstract
The CXCL12-CXCR4 axis plays a vital role in many steps of breast cancer metastasis, but the molecular mechanisms have not been fully elucidated. We previously reported that activation of CXCR4 by CXCL12 promotes the nuclear localization of LASP1 (LIM and SH3 protein 1). The nuclear LASP1 then interacts with Snail1 in triple-negative breast cancer (TNBC) cell lines. In this study, we report that the nuclear accumulation and retention of Snail1 was dependent on an increase in nuclear LASP1 levels driven by active CXCR4. The CXCR4-LASP1 axis may directly regulate the stabilization of nuclear Snail1, by upregulating nuclear levels of pS473-Akt, pS9-GSK-3β, A20, and LSD1. Furthermore, the activation of CXCR4 induced association of LASP1 with Snail1, A20, GSK-3β, and LSD1 endogenously. Thus, nuclear LASP1 may also regulate protein-protein interactions that facilitate the stability of Snail1. Genetic ablation of LASP1 resulted in the mislocalization of nuclear Snail1, loss of the ability of TNBC cells to invade Matrigel and a dysregulated expression of both epithelial and mesenchymal markers, including an increased expression of ALDH1A1, a marker for epithelial breast cancer stem-like cells. Our findings reveal a novel role for the CXCR4-LASP1 axis in facilitating the stability of nuclear localized Snail1.
Collapse
|
3
|
Luo N, Chen DD, Liu L, Li L, Cheng ZP. CXCL12 promotes human ovarian cancer cell invasion through suppressing ARHGAP10 expression. Biochem Biophys Res Commun 2019; 518:416-422. [DOI: 10.1016/j.bbrc.2019.07.098] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 07/25/2019] [Indexed: 10/26/2022]
|
4
|
Marcial-Medina C, Ordoñez-Moreno A, Gonzalez-Reyes C, Cortes-Reynosa P, Perez Salazar E. Oleic acid induces migration through a FFAR1/4, EGFR and AKT-dependent pathway in breast cancer cells. Endocr Connect 2019; 8:252-265. [PMID: 30721135 PMCID: PMC6410766 DOI: 10.1530/ec-18-0543] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 02/04/2019] [Indexed: 12/25/2022]
Abstract
Free fatty acids (FFAs) are an energy source, and induce activation of signal transduction pathways that mediate several biological processes. In breast cancer cells, oleic acid (OA) induces proliferation, matrix metalloproteinase-9 (MMP-9) secretion, migration and invasion. However, the signal transduction pathways that mediate migration and invasion induced by OA in breast cancer cells have not been studied in detail. We demonstrate here that FFAR1 and FFAR4 mediate migration induced by OA in MDA-MB-231 and MCF-7 breast cancer cells. Moreover, OA induces migration, invasion, AKT1 and AKT2 activation, 12-LOX secretion and an increase of NFκB-DNA binding activity in breast cancer cells. Cell migration requires FFAR1, FFAR4, EGFR, AKT and PI3K activity, whereas invasion is mediated though a PI3K/Akt-dependent pathway. Furthermore, OA promotes relocalization of paxillin to focal contacts and it requires PI3K and EGFR activity, whereas NFκB-DNA binding activity requires PI3K and AKT activity.
Collapse
Affiliation(s)
| | | | | | | | - Eduardo Perez Salazar
- Departamento de Biologia Celular, Cinvestav-IPN, Mexico City, Mexico
- Correspondence should be addressed to E Perez Salazar:
| |
Collapse
|
5
|
Zhao HF, Wang J, Shao W, Wu CP, Chen ZP, To SST, Li WP. Recent advances in the use of PI3K inhibitors for glioblastoma multiforme: current preclinical and clinical development. Mol Cancer 2017; 16:100. [PMID: 28592260 PMCID: PMC5463420 DOI: 10.1186/s12943-017-0670-3] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 05/26/2017] [Indexed: 02/08/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive malignant primary tumor in the central nervous system. One of the most widely used chemotherapeutic drugs for GBM is temozolomide, which is a DNA-alkylating agent and its efficacy is dependent on MGMT methylation status. Little progress in improving the prognosis of GBM patients has been made in the past ten years, urging the development of more effective molecular targeted therapies. Hyper-activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway is frequently found in a variety of cancers including GBM, and it plays a central role in the regulation of tumor cell survival, growth, motility, angiogenesis and metabolism. Numerous PI3K inhibitors including pan-PI3K, isoform-selective and dual PI3K/mammalian target of rapamycin (mTOR) inhibitors have exhibited favorable preclinical results and entered clinical trials in a range of hematologic malignancies and solid tumors. Furthermore, combination of inhibitors targeting PI3K and other related pathways may exert synergism on suppressing tumor growth and improving patients' prognosis. Currently, only a handful of PI3K inhibitors are in phase I/II clinical trials for GBM treatment. In this review, we focus on the importance of PI3K/Akt pathway in GBM, and summarize the current development of PI3K inhibitors alone or in combination with other inhibitors for GBM treatment from preclinical to clinical studies.
Collapse
Affiliation(s)
- Hua-fu Zhao
- Department of Neurosurgery & Shenzhen Key Laboratory of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, 518035 China
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 China
| | - Jing Wang
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 China
| | - Wei Shao
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Chang-peng Wu
- Department of Neurosurgery & Shenzhen Key Laboratory of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, 518035 China
- College of Clinical Medicine, Anhui Medical University, Hefei, 230032 China
| | - Zhong-ping Chen
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 China
| | - Shing-shun Tony To
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Wei-ping Li
- Department of Neurosurgery & Shenzhen Key Laboratory of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, 518035 China
| |
Collapse
|
6
|
Ziegler ME, Hatch MMS, Wu N, Muawad SA, Hughes CCW. mTORC2 mediates CXCL12-induced angiogenesis. Angiogenesis 2016; 19:359-71. [PMID: 27106789 DOI: 10.1007/s10456-016-9509-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 04/03/2016] [Indexed: 01/26/2023]
Abstract
The chemokine CXCL12, through its receptor CXCR4, positively regulates angiogenesis by promoting endothelial cell (EC) migration and tube formation. However, the relevant downstream signaling pathways in EC have not been defined. Similarly, the upstream activators of mTORC2 signaling in EC are also poorly defined. Here, we demonstrate for the first time that CXCL12 regulation of angiogenesis requires mTORC2 but not mTORC1. We find that CXCR4 signaling activates mTORC2 as indicated by phosphorylation of serine 473 on Akt and does so through a G-protein- and PI3K-dependent pathway. Significantly, independent disruption of the mTOR complexes by drugs or multiple independent siRNAs reveals that mTORC2, but not mTORC1, is required for microvascular sprouting in a 3D in vitro angiogenesis model. Importantly, in a mouse model, both tumor angiogenesis and tumor volume are significantly reduced only when mTORC2 is inhibited. Finally, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), which is a key regulator of glycolytic flux, is required for microvascular sprouting in vitro, and its expression is reduced in vivo when mTORC2 is targeted. Taken together, these findings identify mTORC2 as a critical signaling nexus downstream of CXCL12/CXCR4 that represents a potential link between mTORC2, metabolic regulation, and angiogenesis.
Collapse
Affiliation(s)
- Mary E Ziegler
- The Department of Molecular Biology and Biochemistry, University of California Irvine, 3219 McGaugh Hall, Mail Code: 3900, Irvine, CA, 92697, USA
| | - Michaela M S Hatch
- The Department of Molecular Biology and Biochemistry, University of California Irvine, 3219 McGaugh Hall, Mail Code: 3900, Irvine, CA, 92697, USA
| | - Nan Wu
- The Department of Molecular Biology and Biochemistry, University of California Irvine, 3219 McGaugh Hall, Mail Code: 3900, Irvine, CA, 92697, USA
| | - Steven A Muawad
- The Department of Molecular Biology and Biochemistry, University of California Irvine, 3219 McGaugh Hall, Mail Code: 3900, Irvine, CA, 92697, USA
| | - Christopher C W Hughes
- The Department of Molecular Biology and Biochemistry, University of California Irvine, 3219 McGaugh Hall, Mail Code: 3900, Irvine, CA, 92697, USA. .,The Department of Biomedical Engineering, University of California Irvine, Irvine, CA, 92697, USA. .,The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
7
|
Guo F, Wang Y, Liu J, Mok SC, Xue F, Zhang W. CXCL12/CXCR4: a symbiotic bridge linking cancer cells and their stromal neighbors in oncogenic communication networks. Oncogene 2015; 35:816-26. [DOI: 10.1038/onc.2015.139] [Citation(s) in RCA: 254] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 03/28/2015] [Accepted: 03/30/2015] [Indexed: 02/07/2023]
|
8
|
Panneerselvam J, Jin J, Shanker M, Lauderdale J, Bates J, Wang Q, Zhao YD, Archibald SJ, Hubin TJ, Ramesh R. IL-24 inhibits lung cancer cell migration and invasion by disrupting the SDF-1/CXCR4 signaling axis. PLoS One 2015; 10:e0122439. [PMID: 25775124 PMCID: PMC4361489 DOI: 10.1371/journal.pone.0122439] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 02/11/2015] [Indexed: 01/17/2023] Open
Abstract
Background The stromal cell derived factor (SDF)-1/chemokine receptor (CXCR)-4 signaling pathway plays a key role in lung cancer metastasis and is molecular target for therapy. In the present study we investigated whether interleukin (IL)-24 can inhibit the SDF-1/CXCR4 axis and suppress lung cancer cell migration and invasion in vitro. Further, the efficacy of IL-24 in combination with CXCR4 antagonists was investigated. Methods Human H1299, A549, H460 and HCC827 lung cancer cell lines were used in the present study. The H1299 lung cancer cell line was stably transfected with doxycycline-inducible plasmid expression vector carrying the human IL-24 cDNA and used in the present study to determine the inhibitory effects of IL-24 on SDF-1/CXCR4 axis. H1299 and A549 cell lines were used in transient transfection studies. The inhibitory effects of IL-24 on SDF1/CXCR4 and its downstream targets were analyzed by quantitative RT-PCR, western blot, luciferase reporter assay, flow cytometry and immunocytochemistry. Functional studies included cell migration and invasion assays. Principal Findings Endogenous CXCR4 protein expression levels varied among the four human lung cancer cell lines. Doxycycline-induced IL-24 expression in the H1299-IL24 cell line resulted in reduced CXCR4 mRNA and protein expression. IL-24 post-transcriptionally regulated CXCR4 mRNA expression by decreasing the half-life of CXCR4 mRNA (>40%). Functional studies showed IL-24 inhibited tumor cell migration and invasion concomitant with reduction in CXCR4 and its downstream targets (pAKTS473, pmTORS2448, pPRAS40T246 and HIF-1α). Additionally, IL-24 inhibited tumor cell migration both in the presence and absence of the CXCR4 agonist, SDF-1. Finally, IL-24 when combined with CXCR4 inhibitors (AMD3100, SJA5) or with CXCR4 siRNA demonstrated enhanced inhibitory activity on tumor cell migration. Conclusions IL-24 disrupts the SDF-1/CXCR4 signaling pathway and inhibits lung tumor cell migration and invasion. Additionally, IL-24, when combined with CXCR4 inhibitors exhibited enhanced anti-metastatic activity and is an attractive therapeutic strategy for lung metastasis.
Collapse
Affiliation(s)
- Janani Panneerselvam
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Jiankang Jin
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Manish Shanker
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Jason Lauderdale
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Jonathan Bates
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Qi Wang
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Yan D. Zhao
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | | | - Timothy J. Hubin
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- Department of Chemistry, Southwestern Oklahoma State University, Weatherford, Oklahoma, United States of America
| | - Rajagopal Ramesh
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- Graduate Program in Biomedical Sciences, Oklahoma City, Oklahoma, United States of America
- * E-mail: (RR)
| |
Collapse
|
9
|
Lecointre C, Desrues L, Joubert JE, Perzo N, Guichet PO, Le Joncour V, Brulé C, Chabbert M, Leduc R, Prézeau L, Laquerrière A, Proust F, Gandolfo P, Morin F, Castel H. Signaling switch of the urotensin II vasosactive peptide GPCR: prototypic chemotaxic mechanism in glioma. Oncogene 2015; 34:5080-94. [PMID: 25597409 DOI: 10.1038/onc.2014.433] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 11/25/2014] [Accepted: 11/25/2014] [Indexed: 12/12/2022]
Abstract
Multiform glioblastomas (GBM) are the most frequent and aggressive primary brain tumors in adults. The poor prognosis is due to neo-angiogenesis and cellular invasion, processes that require complex chemotaxic mechanisms involving motility, migration and adhesion. Understanding these different cellular events implies identifying receptors and transduction pathways that lead to and promote either migration or adhesion. Here we establish that glioma express the vasoactive peptide urotensin II (UII) and its receptor UT and that UT-mediated signaling cascades are involved in glioma cell migration and adhesion. Components of the urotensinergic systems, UII and UT, are widely expressed in patient-derived GBM tissue sections, glioma cell lines and fresh biopsy explants. Interestingly, gradient concentrations of UII produced chemoattracting migratory/motility effects in glioma as well as HEK293 cells expressing human UT. These effects mainly involved the G13/Rho/rho kinase pathway while partially requiring Gi/o/PI3K components. In contrast, we observed that homogeneous concentrations of UII drastically blocked cell motility and stimulated cell-matrix adhesions through a UT/Gi/o signaling cascade, partially involving phosphatidylinositol-3 kinase. Finally, we provide evidence that, in glioma cells, homogeneous concentration of UII allowed translocation of Gα13 to the UT receptor at the plasma membrane and increased actin stress fibers, lamellipodia formation and vinculin-stained focal adhesions. UII also provoked a re-localization of UT precoupled to Gαi in filipodia and initiated integrin-stained focal points. Altogether, these findings suggest that UT behaves as a chemotaxic receptor, relaying a signaling switch between directional migration and cell adhesion under gradient or homogeneous concentrations, thereby redefining sequential mechanisms affecting tumor cells during glioma invasion. Taken together, our results allow us to propose a model in order to improve the design of compounds that demonstrate signaling bias for therapies that target specifically the Gi/o signaling pathway.
Collapse
Affiliation(s)
- C Lecointre
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, DC2N, Astrocyte and Vascular Niche, Biomedical Research Institute (IRIB), TC2N network, University of Rouen, Mont-Saint-Aignan, France
| | - L Desrues
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, DC2N, Astrocyte and Vascular Niche, Biomedical Research Institute (IRIB), TC2N network, University of Rouen, Mont-Saint-Aignan, France
| | - J E Joubert
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, DC2N, Astrocyte and Vascular Niche, Biomedical Research Institute (IRIB), TC2N network, University of Rouen, Mont-Saint-Aignan, France
| | - N Perzo
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, DC2N, Astrocyte and Vascular Niche, Biomedical Research Institute (IRIB), TC2N network, University of Rouen, Mont-Saint-Aignan, France.,Department of Pharmacology, Institut of Pharmacology, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - P-O Guichet
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, DC2N, Astrocyte and Vascular Niche, Biomedical Research Institute (IRIB), TC2N network, University of Rouen, Mont-Saint-Aignan, France
| | - V Le Joncour
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, DC2N, Astrocyte and Vascular Niche, Biomedical Research Institute (IRIB), TC2N network, University of Rouen, Mont-Saint-Aignan, France
| | - C Brulé
- Department of Pharmacology, Institut of Pharmacology, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada.,IGF, Institut of Functional Genomic, CNRS UMR 5203, Inserm U661, University of Montpellier 1 and 2, Montpellier, France
| | - M Chabbert
- UMR CNRS 6214, Inserm 1083, Faculté de Médecine 3, Angers, France
| | - R Leduc
- Department of Pharmacology, Institut of Pharmacology, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - L Prézeau
- IGF, Institut of Functional Genomic, CNRS UMR 5203, Inserm U661, University of Montpellier 1 and 2, Montpellier, France
| | - A Laquerrière
- Service of Anatomocytopathology, CHU of Rouen, ERI28 Inserm, IRIB, Rouen, France
| | - F Proust
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, DC2N, Astrocyte and Vascular Niche, Biomedical Research Institute (IRIB), TC2N network, University of Rouen, Mont-Saint-Aignan, France.,Service of Neurosurgery, CHU of Rouen, Rouen, France
| | - P Gandolfo
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, DC2N, Astrocyte and Vascular Niche, Biomedical Research Institute (IRIB), TC2N network, University of Rouen, Mont-Saint-Aignan, France
| | - F Morin
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, DC2N, Astrocyte and Vascular Niche, Biomedical Research Institute (IRIB), TC2N network, University of Rouen, Mont-Saint-Aignan, France
| | - H Castel
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, DC2N, Astrocyte and Vascular Niche, Biomedical Research Institute (IRIB), TC2N network, University of Rouen, Mont-Saint-Aignan, France
| |
Collapse
|
10
|
Falasca M, Maffucci T. Targeting p110gamma in gastrointestinal cancers: attack on multiple fronts. Front Physiol 2014; 5:391. [PMID: 25360116 PMCID: PMC4197894 DOI: 10.3389/fphys.2014.00391] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 09/21/2014] [Indexed: 12/12/2022] Open
Abstract
Phosphoinositide 3-kinases (PI3Ks) regulate several cellular functions that are critical for cancer progression and development, including cell survival, proliferation and migration. Three classes of PI3Ks exist with the class I PI3K encompassing four isoforms of the catalytic subunit known as p110α, p110β, p110γ, and p110δ. Although for many years attention has been mainly focused on p110α recent evidence supports the conclusion that p110β, p110γ, and p110δ can also have a role in cancer. Amongst these, accumulating evidence now indicates that p110γ is involved in several cellular processes associated with cancer and indeed this specific isoform has emerged as a novel important player in cancer progression. Studies from our laboratory have identified a specific overexpression of p110γ in human pancreatic ductal adenocarcinoma (PDAC) and in hepatocellular carcinoma (HCC) tissues compared to their normal counterparts. Our data have further established that selective inhibition of p110γ is able to block PDAC and HCC cell proliferation, strongly suggesting that pharmacological inhibition of this enzyme can directly affect growth of these tumors. Furthermore, increasing evidence suggests that p110γ plays also a key role in the interactions between cancer cells and tumor microenvironment and in particular in tumor-associated immune response. It has also been reported that p110γ can regulate invasion of myeloid cells into tumors and tumor angiogenesis. Finally p110γ has also been directly involved in regulation of cancer cell migration. Taken together these data indicate that p110γ plays multiple roles in regulation of several processes that are critical for tumor progression and metastasis. This review will discuss the role of p110γ in gastrointestinal tumor development and progression and how targeting this enzyme might represent a way to target very aggressive tumors such as pancreatic and liver cancer on multiple fronts.
Collapse
Affiliation(s)
- Marco Falasca
- Inositide Signalling Group, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London London, UK
| | - Tania Maffucci
- Inositide Signalling Group, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London London, UK
| |
Collapse
|
11
|
Yang HL, Fang F, Zhao CP, Li DD, Li JR, Sun J, Du QR, Zhu HL. Design and synthesis of a novel series of N,4-diphenylpyrimidin-2-amine derivatives as potent and selective PI3Kγ inhibitors. MEDCHEMCOMM 2014. [DOI: 10.1039/c3md00301a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Twenty-one novelN,4-diphenylpyrimidin-2-amine derivatives have been synthesized as PI3Kγ selective inhibitors and compoundC8demonstrated the most potent inhibitory activity against PI3Kγ kinase.
Collapse
Affiliation(s)
- Hua-Lin Yang
- State Key Laboratory of Pharmaceutical Biotechnology
- Nanjing University
- Nanjing, P. R. China
| | - Fei Fang
- State Key Laboratory of Pharmaceutical Biotechnology
- Nanjing University
- Nanjing, P. R. China
| | - Chang-Po Zhao
- State Key Laboratory of Pharmaceutical Biotechnology
- Nanjing University
- Nanjing, P. R. China
| | - Dong-Dong Li
- State Key Laboratory of Pharmaceutical Biotechnology
- Nanjing University
- Nanjing, P. R. China
| | - Jing-Ran Li
- State Key Laboratory of Pharmaceutical Biotechnology
- Nanjing University
- Nanjing, P. R. China
| | - Jian Sun
- State Key Laboratory of Pharmaceutical Biotechnology
- Nanjing University
- Nanjing, P. R. China
| | - Qian-Ru Du
- State Key Laboratory of Pharmaceutical Biotechnology
- Nanjing University
- Nanjing, P. R. China
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology
- Nanjing University
- Nanjing, P. R. China
| |
Collapse
|
12
|
Mao S, Huang S. The signaling pathway of stromal cell-derived factor-1 and its role in kidney diseases. J Recept Signal Transduct Res 2013; 34:85-91. [PMID: 24303939 DOI: 10.3109/10799893.2013.865746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The chemokine stromal cell-derived factor-1 (SDF-1) regulates the trafficking of progenitor cell (PGC) during embryonic development, cell chemotaxis, and postnatal homing into injury sites. SDF-1 also regulates cell growth, survival, adhesion and angiogenesis. However, in different tissues/cells, the role of SDF-1 is different, such as that it is increased in most of the tumors and associated with cancer metastasis, whereas it is essential for the development of vasculature. For kidney diseases, its role remains controversial. Signaling pathways might be very important in the pathogenesis of kidney diseases. We performed this review to provide a relatively complete signaling pathway flowchart for SDF-1 to the investigators who were interested in the role of SDF-1 in the pathogenesis of kidney diseases. Here, we reviewed the signal transduction pathway of SDF-1 and its role in the pathogenesis of kidney diseases.
Collapse
Affiliation(s)
- Song Mao
- Department of Nephrology, Nanjing Children's Hospital, Affiliated to Nanjing Medical University , Nanjing , China
| | | |
Collapse
|
13
|
Huang AF, Chen MW, Huang SM, Kao CL, Lai HC, Chan JYH. CD164 regulates the tumorigenesis of ovarian surface epithelial cells through the SDF-1α/CXCR4 axis. Mol Cancer 2013; 12:115. [PMID: 24094005 PMCID: PMC4015273 DOI: 10.1186/1476-4598-12-115] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 10/02/2013] [Indexed: 02/08/2023] Open
Abstract
Background CD164 (endolyn), a sialomucin, has been reported to play a role in the proliferation, adhesion, and differentiation of hematopoietic stem cells. The potential association of CD164 with tumorigenicity remains unclear. Methods The clinicopathological correlation of ovarian cancer with CD164 was assessed in a 97-patient tumor tissue microarray. Overexpression or silence CD164 was to analyze the effect of CD164 on the proliferation, colony formation and apoptosis via a mouse xenograft and western blotting analysis. The subcellular localization of CD164 was collected in the immunohistochemical and confocal analysis. Results Our data demonstrated that higher expression levels of CD164 were identified in malignant ovarian cancer cell lines, such as SKOV3 and HeyA8. The clinicopathological correlation analysis showed that the upregulation of CD164 protein was significantly associated with tumor grade and metastasis. The overexpression of CD164 in human ovarian epithelial surface cells promoted cellular proliferation and colony formation and suppressed apoptosis. These tumorigenicity effects of CD164 were reconfirmed in a mouse xenograft model. We also found that the overexpression of CD164 proteins increased the amounts of CXCR4 and SDF-1α and activated the SDF-1α/CXCR4 axis, inducing colony and sphere formation. Finally, we identified the subcellular localization of CD164 in the nucleus and cytosol and found that nuclear CD164 might be involved in the regulation of the activity of the CXCR4 promoter. Conclusions Our findings suggest that the increased expression of CD164 is involved in ovarian cancer progression via the SDF-1α/CXCR4 axis, which promotes tumorigenicity. Thus, targeting CD164 may serve as a potential ovarian cancer biomarker, and targeting CD164 may serve as a therapeutic modality in the management of high-grade ovarian tumors.
Collapse
Affiliation(s)
- Ai-Fang Huang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan, Republic of China.
| | | | | | | | | | | |
Collapse
|
14
|
Xie Y, Abel PW, Kirui JK, Deng C, Sharma P, Wolff DW, Toews ML, Tu Y. Identification of upregulated phosphoinositide 3-kinase γ as a target to suppress breast cancer cell migration and invasion. Biochem Pharmacol 2013; 85:1454-62. [PMID: 23500535 PMCID: PMC3637857 DOI: 10.1016/j.bcp.2013.03.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 02/28/2013] [Accepted: 03/01/2013] [Indexed: 12/31/2022]
Abstract
Metastasis is the major cause of breast cancer mortality. We recently reported that aberrant G-protein coupled receptor (GPCR) signaling promotes breast cancer metastasis by enhancing cancer cell migration and invasion. Phosphatidylinositol 3-kinase γ (PI3Kγ) is specifically activated by GPCRs. The goal of the present study was to determine the role of PI3Kγ in breast cancer cell migration and invasion. Immunohistochemical staining showed that the expression of PI3Kγ protein was significantly increased in invasive human breast carcinoma when compared to adjacent benign breast tissue or ductal carcinoma in situ. PI3Kγ was also detected in metastatic breast cancer cells, but not in normal breast epithelial cell line or in non-metastatic breast cancer cells. In contrast, PI3K isoforms α, β and δ were ubiquitously expressed in these cell lines. Overexpression of recombinant PI3Kγ enhanced the metastatic ability of non-metastatic breast cancer cells. Conversely, migration and invasion of metastatic breast cancer cells were inhibited by a PI3Kγ inhibitor or by siRNA knockdown of PI3Kγ but not by inhibitors or siRNAs of PI3Kα or PI3Kβ. Lamellipodia formation is a key step in cancer metastasis, and PI3Kγ blockade disrupted lamellipodia formation induced by the activation of GPCRs such as CXC chemokine receptor 4 and protease-activated receptor 1, but not by the epidermal growth factor tyrosine kinase receptor. Taken together, these results indicate that upregulated PI3Kγ conveys the metastatic signal initiated by GPCRs in breast cancer cells, and suggest that PI3Kγ may be a novel therapeutic target for development of chemotherapeutic agents to prevent breast cancer metastasis.
Collapse
MESH Headings
- Breast Neoplasms/enzymology
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Carcinoma, Ductal/enzymology
- Carcinoma, Ductal/genetics
- Carcinoma, Ductal/pathology
- Cell Line, Tumor
- Cell Movement/drug effects
- Cell Movement/genetics
- Class Ib Phosphatidylinositol 3-Kinase/genetics
- Class Ib Phosphatidylinositol 3-Kinase/metabolism
- Diffusion Chambers, Culture
- Epithelial Cells/cytology
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Neoplasm Invasiveness/genetics
- Neoplasm Invasiveness/pathology
- Phosphoinositide-3 Kinase Inhibitors
- Protein Kinase Inhibitors/pharmacology
- Pseudopodia/drug effects
- Pseudopodia/pathology
- RNA, Small Interfering/genetics
- Receptor, PAR-1/genetics
- Receptor, PAR-1/metabolism
- Receptors, CXCR4/genetics
- Receptors, CXCR4/metabolism
- Signal Transduction/drug effects
- Transfection
Collapse
Affiliation(s)
- Yan Xie
- Creighton University School of Medicine, Department of Pharmacology, Omaha, NE 68178
| | - Peter W. Abel
- Creighton University School of Medicine, Department of Pharmacology, Omaha, NE 68178
| | - Joseph K. Kirui
- Creighton University School of Medicine, Department of Pharmacology, Omaha, NE 68178
| | | | | | - Dennis W. Wolff
- Creighton University School of Medicine, Department of Pharmacology, Omaha, NE 68178
| | - Myron L. Toews
- University of Nebraska Medical Center, Department of Pharmacology and Experimental Neuroscience, Omaha, NE 68198
| | - Yaping Tu
- Creighton University School of Medicine, Department of Pharmacology, Omaha, NE 68178
| |
Collapse
|
15
|
Niu M, Klingler-Hoffmann M, Brazzatti JA, Forbes B, Akekawatchai C, Hoffmann P, McColl SR. Comparative proteomic analysis implicates eEF2 as a novel target of PI3Kγ in the MDA-MB-231 metastatic breast cancer cell line. Proteome Sci 2013; 11:4. [PMID: 23320409 PMCID: PMC3564858 DOI: 10.1186/1477-5956-11-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 12/23/2012] [Indexed: 11/30/2022] Open
Abstract
Background Cancer cell migration is fundamentally required for breast tumour invasion and metastasis. The insulin-like growth factor 1 tyrosine kinase receptor (IGF-1R) and the chemokine G-protein coupled receptor, CXCR4 have been shown to play an important role in breast cancer metastasis. Our previous study has shown that IGF-1R can transactivate CXCR4 via a physical association in the human MDA-MB-231 metastatic breast cancer cell line and that this plays a key role in IGF-I-induced migration of these cells. In the present study we used pharmacological inhibition and RNAi to identify PI3Kγ as an important migration signalling molecule downstream of receptor transactivation in MDA-MB-231 cells. To identify PI3Kγ-regulated proteins upon transactivation of CXCR4 by IGF-I, we undertook a comparative proteomics approach using 2-D- Fluorescence Difference Gel Electrophoresis (DIGE) and identified the proteins by mass spectrometry. Results These experiments identified eukaryotic elongation factor 2 (eEF2) as a novel downstream target of PI3Kγ after activation of the IGF-1R-CXCR4 heterodimer by IGF-I. Further analysis demonstrated that eEF2 is phosphorylated in MDA-MB-231 cells in response to IGF-I and that this is dependent on PI3Kγ activity. Conclusions Our data imply a novel role for PI3Kγ in facilitating cell migration by regulating phosphorylation of eEF2.
Collapse
Affiliation(s)
- Meizhi Niu
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia
| | | | - Julie A Brazzatti
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia.,Current address: Immunology Group, Paterson Institute for cancer research, The University of Manchester, Manchester, M20 4BX, England
| | - Briony Forbes
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia
| | - Chareeporn Akekawatchai
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia.,Current address: Department of Medical Technology, Thammasat University, Patumtani, 121212, Thailand
| | - Peter Hoffmann
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia
| | - Shaun R McColl
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
16
|
A phosphatidylinositol 3-kinase-Pax3 axis regulates Brn-2 expression in melanoma. Mol Cell Biol 2012; 32:4674-83. [PMID: 22988297 DOI: 10.1128/mcb.01067-12] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Deregulation of transcription arising from mutations in key signaling pathways is a hallmark of cancer. In melanoma, the most aggressive and lethal form of skin cancer, the Brn-2 transcription factor (POU3F2) regulates proliferation and invasiveness and lies downstream from mitogen-activated protein kinase (MAPK) and Wnt/β-catenin, two melanoma-associated signaling pathways. In vivo Brn-2 represses expression of the microphthalmia-associated transcription factor, MITF, to drive cells to a more stem cell-like and invasive phenotype. Given the key role of Brn-2 in regulating melanoma biology, understanding the signaling pathways that drive Brn-2 expression is an important issue. Here, we show that inhibition of phosphatidylinositol 3-kinase (PI3K) signaling reduces invasiveness of melanoma cells in culture and strongly inhibits Brn-2 expression. Pax3, a transcription factor regulating melanocyte lineage-specific genes, directly binds and regulates the Brn-2 promoter, and Pax3 expression is also decreased upon PI3K inhibition. Collectively, our results highlight a crucial role for PI3K in regulating Brn-2 and Pax3 expression, reveal a mechanism by which PI3K can regulate invasiveness, and imply that PI3K signaling is a key determinant of melanoma subpopulation diversity. Together with our previous work, the results presented here now place Brn-2 downstream of three melanoma-associated signaling pathways.
Collapse
|
17
|
Zhong W, Chen W, Zhang D, Sun J, Li Y, Zhang J, Gao Y, Zhou W, Li S. CXCL12/CXCR4 axis plays pivotal roles in the organ-specific metastasis of pancreatic adenocarcinoma: A clinical study. Exp Ther Med 2012. [PMID: 23181100 PMCID: PMC3503540 DOI: 10.3892/etm.2012.631] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Pancreatic cancer is one of the most lethal types of cancer, and curative resection is only applicable to potentially limited cases due to early metastasis and local invasion. This study reports the influence of CXCL12 and its receptor CXCR4 on the progression of pancreatic cancer and highlights the correlation between the CXCL12/CXCR4 axis and the organ-specific metastasis of pancreatic adenocarcinoma (PAC). A total of 34 patients with pancreatic cancer participated in the current study. The expression of CXCL12 and CXCR4 in cancerous tissues, paracancerous tissues, normal pancreas and lymph nodes surrounding the pancreas were investigated using immunohistochemistry and RT-PCR; furthermore, their relationship with clinicopathological factors was explored (PV9000 method). The positive rate of CXCL12 protein was 13.3% (4/30), the positive rate of CXCR4 protein was 80% (24/30) in tumor tissues. Additionally, a significant correlation between the expression pattern of the CXCL12/CXCR4 axis with lymph node metastasis was identified (P<0.05), excluding gender, age, tumor node metastasis (TNM) stage and differentiation (all P>0.05). Also, the positive rate of CXCL12 protein was 50% (15/30), the positive rate of CXCR4 protein was 73.3% (22/30) in the lymphocytes in lymph nodes surrounding the pancreas. Furthermore, we found that CXCL12 and CXCR4 expression in paratumorous vessels and neural tissue were significantly strongly positive. The paratumorous vessels and neural tissue with positive CXCL12 and CXCR4 expression were invaded by CXCL12-positive pancreatic cancer cells. The chemotactic interaction between CXCR4 and its ligand CXCL12 may be a critical event during the progression of pancreatic cancer. The CXCL12/CXCR4 axis plays an important role in the progression and organ-specific metastasis of pancreatic adenocarcinoma.
Collapse
|
18
|
Leahy JW, Buhr CA, Johnson HWB, Kim BG, Baik T, Cannoy J, Forsyth TP, Jeong JW, Lee MS, Ma S, Noson K, Wang L, Williams M, Nuss JM, Brooks E, Foster P, Goon L, Heald N, Holst C, Jaeger C, Lam S, Lougheed J, Nguyen L, Plonowski A, Song J, Stout T, Wu X, Yakes MF, Yu P, Zhang W, Lamb P, Raeber O. Discovery of a Novel Series of Potent and Orally Bioavailable Phosphoinositide 3-Kinase γ Inhibitors. J Med Chem 2012; 55:5467-82. [DOI: 10.1021/jm300403a] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- James W. Leahy
- Department of Drug Discovery, Exelixis, 169 Harbor Way, South San Francisco, California 94083, United States
| | - Chris A. Buhr
- Department of Drug Discovery, Exelixis, 169 Harbor Way, South San Francisco, California 94083, United States
| | - Henry W. B. Johnson
- Department of Drug Discovery, Exelixis, 169 Harbor Way, South San Francisco, California 94083, United States
| | - Byung Gyu Kim
- Department of Drug Discovery, Exelixis, 169 Harbor Way, South San Francisco, California 94083, United States
| | - TaeGon Baik
- Department of Drug Discovery, Exelixis, 169 Harbor Way, South San Francisco, California 94083, United States
| | - Jonah Cannoy
- Department of Drug Discovery, Exelixis, 169 Harbor Way, South San Francisco, California 94083, United States
| | - Timothy P. Forsyth
- Department of Drug Discovery, Exelixis, 169 Harbor Way, South San Francisco, California 94083, United States
| | - Joon Won Jeong
- Department of Drug Discovery, Exelixis, 169 Harbor Way, South San Francisco, California 94083, United States
| | - Matthew S. Lee
- Department of Drug Discovery, Exelixis, 169 Harbor Way, South San Francisco, California 94083, United States
| | - Sunghoon Ma
- Department of Drug Discovery, Exelixis, 169 Harbor Way, South San Francisco, California 94083, United States
| | - Kevin Noson
- Department of Drug Discovery, Exelixis, 169 Harbor Way, South San Francisco, California 94083, United States
| | - Longcheng Wang
- Department of Drug Discovery, Exelixis, 169 Harbor Way, South San Francisco, California 94083, United States
| | - Matthew Williams
- Department of Drug Discovery, Exelixis, 169 Harbor Way, South San Francisco, California 94083, United States
| | - John M. Nuss
- Department of Drug Discovery, Exelixis, 169 Harbor Way, South San Francisco, California 94083, United States
| | - Eric Brooks
- Department of Drug Discovery, Exelixis, 169 Harbor Way, South San Francisco, California 94083, United States
| | - Paul Foster
- Department of Drug Discovery, Exelixis, 169 Harbor Way, South San Francisco, California 94083, United States
| | - Leanne Goon
- Department of Drug Discovery, Exelixis, 169 Harbor Way, South San Francisco, California 94083, United States
| | - Nathan Heald
- Department of Drug Discovery, Exelixis, 169 Harbor Way, South San Francisco, California 94083, United States
| | - Charles Holst
- Department of Drug Discovery, Exelixis, 169 Harbor Way, South San Francisco, California 94083, United States
| | - Christopher Jaeger
- Department of Drug Discovery, Exelixis, 169 Harbor Way, South San Francisco, California 94083, United States
| | - Scott Lam
- Department of Drug Discovery, Exelixis, 169 Harbor Way, South San Francisco, California 94083, United States
| | - Julie Lougheed
- Department of Drug Discovery, Exelixis, 169 Harbor Way, South San Francisco, California 94083, United States
| | - Lam Nguyen
- Department of Drug Discovery, Exelixis, 169 Harbor Way, South San Francisco, California 94083, United States
| | - Arthur Plonowski
- Department of Drug Discovery, Exelixis, 169 Harbor Way, South San Francisco, California 94083, United States
| | - Joanne Song
- Department of Drug Discovery, Exelixis, 169 Harbor Way, South San Francisco, California 94083, United States
| | - Thomas Stout
- Department of Drug Discovery, Exelixis, 169 Harbor Way, South San Francisco, California 94083, United States
| | - Xiang Wu
- Department of Drug Discovery, Exelixis, 169 Harbor Way, South San Francisco, California 94083, United States
| | - Michael F. Yakes
- Department of Drug Discovery, Exelixis, 169 Harbor Way, South San Francisco, California 94083, United States
| | - Peiwen Yu
- Department of Drug Discovery, Exelixis, 169 Harbor Way, South San Francisco, California 94083, United States
| | - Wentao Zhang
- Department of Drug Discovery, Exelixis, 169 Harbor Way, South San Francisco, California 94083, United States
| | - Peter Lamb
- Department of Drug Discovery, Exelixis, 169 Harbor Way, South San Francisco, California 94083, United States
| | - Olivia Raeber
- Department of Drug Discovery, Exelixis, 169 Harbor Way, South San Francisco, California 94083, United States
| |
Collapse
|
19
|
Chen G, Chen SM, Wang X, Ding XF, Ding J, Meng LH. Inhibition of chemokine (CXC motif) ligand 12/chemokine (CXC motif) receptor 4 axis (CXCL12/CXCR4)-mediated cell migration by targeting mammalian target of rapamycin (mTOR) pathway in human gastric carcinoma cells. J Biol Chem 2012; 287:12132-41. [PMID: 22337890 DOI: 10.1074/jbc.m111.302299] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
CXCL12/CXCR4 plays an important role in metastasis of gastric carcinoma. Rapamycin has been reported to inhibit migration of gastric cancer cells. However, the role of mTOR pathway in CXCL12/CXCR4-mediated cell migration and the potential of drugs targeting PI3K/mTOR pathway remains unelucidated. We found that CXCL12 activated PI3K/Akt/mTOR pathway in MKN-45 cells. Stimulating CHO-K1 cells expressing pEGFP-C1-Grp1-PH fusion protein with CXCL12 resulted in generation of phosphatidylinositol (3,4,5)-triphosphate, which provided direct evidence of activating PI3K by CXCL12. Down-regulation of p110β by siRNA but not p110α blocked phosphorylation of Akt and S6K1 induced by CXCL12. Consistently, p110β-specific inhibitor blocked the CXCL12-activated PI3K/Akt/mTOR pathway. Moreover, CXCR4 immunoprecipitated by anti-p110β antibody increased after CXCL12 stimulation and G(i) protein inhibitor pertussis toxin abrogated CXCL12-induced activation of PI3K. Further studies demonstrated that inhibitors targeting the PI3K/mTOR pathway significantly blocked the chemotactic responses of MKN-45 cells triggered by CXCL12, which might be attributed primarily to inhibition of mTORC1 and related to prevention of F-actin reorganization as well as down-regulation of active RhoA, Rac1, and Cdc42. Furthermore, rapamycin inhibited the secretion of CXCL12 and the expression of CXCR4, which might form a positive feedback loop to further abolish upstream signaling leading to cell migration. Finally, we found cells expressing high levels of cxcl12 were sensitive to rapamycin in its activity inhibiting migration as well as proliferation. In summary, we found that the mTOR pathway played an important role in CXCL12/CXCR4-mediated cell migration and proposed that drugs targeting the mTOR pathway may be used for the therapy of metastatic gastric cancer expressing high levels of cxcl12.
Collapse
Affiliation(s)
- Guang Chen
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201203, China
| | | | | | | | | | | |
Collapse
|
20
|
Yopp AC, Shia J, Butte JM, Allen PJ, Fong Y, Jarnagin WR, DeMatteo RP, D'Angelica MI. CXCR4 expression predicts patient outcome and recurrence patterns after hepatic resection for colorectal liver metastases. Ann Surg Oncol 2011; 19 Suppl 3:S339-46. [PMID: 21584832 DOI: 10.1245/s10434-011-1774-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Indexed: 12/25/2022]
Abstract
BACKGROUND The purpose of this study was to determine if the expression of the chemokine receptors, CXCR4 and CCR7, and the chemokine ligand, CXCL12, in completely resected colorectal cancer hepatic metastases are predictive of disease-specific survival, recurrence-free survival and patterns of recurrence. METHODS Immunohistochemical analysis of CXCR4, CCR7 and CXCL12 expression within resected hepatic metastases was performed and correlated with clinicopathological variables, disease-specific survival, recurrence-free survival and patterns of recurrence. RESULTS Seventy-five patients who underwent partial hepatectomy with curative intent were studied. CXCR4 expression (hazard ratio [HR] 3.6, 95% confidence interval [95% CI] 1.4-9.1) and clinical risk score >2 (HR 2.3, 95% CI 1.1-4.7) were independently associated with disease-specific survival by multivariate analysis. The 5-year estimated disease-specific survival rates for positive and negative CXCR4 tumor expression were 44 and 77%, respectively (P = 0.005). CXCR4 expression (HR 2.2, 95% CI 1.2-4.2) and clinical risk score >2 (HR 1.9, 95% CI 1.1-3.4) were independently associated with recurrence-free survival by multivariate analysis. The five year estimated recurrence-free survival rates for positive and negative CXCR4 tumor expression were 20 and 50%, respectively (P = 0.004). Neither CXCL12 nor CCR7 expression in tumors predicted disease-specific survival or recurrence-free survival. Forty-nine patients (65%) developed recurrent disease after initial hepatectomy. Negative CXCR4 tumor expression was associated with favorable recurrence patterns amenable to salvage resection and/or ablation. CONCLUSIONS Negative CXCR4 expression in resected colorectal cancer hepatic metastases is independently associated with improved disease-specific and recurrence-free survival and favorable patterns of recurrence.
Collapse
Affiliation(s)
- Adam C Yopp
- Department of Surgery, Division of Surgical Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Wells A, Chao YL, Grahovac J, Wu Q, Lauffenburger DA. Epithelial and mesenchymal phenotypic switchings modulate cell motility in metastasis. Front Biosci (Landmark Ed) 2011; 16:815-37. [PMID: 21196205 DOI: 10.2741/3722] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The most ominous stage of cancer progression is metastasis, or the dissemination of carcinoma cells from the primary site into distant organs. Metastases are often resistant to current extirpative therapies and even the newest biological agents cure only a small subset of patients. Therefore a greater understanding of tumor biology that integrates properties intrinsic to carcinomas with tissue environmental modulators of behavior is needed. In no aspect of tumor progression is this more evident than the acquisition of cell motility that is critical for both escape from the primary tumor and colonization. In this overview, we discuss how this behavior is modified by carcinoma cell phenotypic plasticity that is evidenced by reversible switching between epithelial and mesenchymal phenotypes. The presence or absence of intercellular adhesions mediate these switches and dictate the receptivity towards signals from the extracellular milieu. These signals, which include soluble growth factors, cytokines, and extracellular matrix embedded with matrikines and matricryptines will be discussed in depth. Finally, we will describe a new mode of discerning the balance between epithelioid and mesenchymal movement.
Collapse
Affiliation(s)
- Alan Wells
- Department of Pathology, Pittsburgh VAMC and University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | | | | | | | | |
Collapse
|
22
|
Li S, Deng L, Gong L, Bian H, Dai Y, Wang Y. Upregulation of CXCR4 favoring neural-like cells migration via AKT activation. Neurosci Res 2010; 67:293-9. [DOI: 10.1016/j.neures.2010.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Revised: 03/18/2010] [Accepted: 04/12/2010] [Indexed: 01/04/2023]
|
23
|
Shen Q, Lee ES, Pitts RL, Wu MH, Yuan SY. Tissue inhibitor of metalloproteinase-2 regulates matrix metalloproteinase-2-mediated endothelial barrier dysfunction and breast cancer cell transmigration through lung microvascular endothelial cells. Mol Cancer Res 2010; 8:939-51. [PMID: 20571065 PMCID: PMC5584073 DOI: 10.1158/1541-7786.mcr-09-0523] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Matrix metalloproteinases (MMP) have been implicated in multiple stages of cancer metastasis. Tissue inhibitor of metalloproteinase-2 (TIMP-2) plays an important role in regulating MMP-2 activity. By forming a ternary complex with pro-MMP-2 and its activator MMP-14 on the cell surface, TIMP-2 can either initiate or restrain the cleavage and subsequent activation of MMP-2. Our recent work has shown that breast cancer cell adhesion to vascular endothelial cells activates endothelial MMP-2, promoting tumor cell transendothelial migration (TEM(E)). However, the mechanism of MMP-2 regulation during TEM(E) remains unclear. In the current study, we present evidence that MMP-14 is expressed in both invasive breast cancer cells (MDA-MB-231 and MDA-MB-436) and lung microvascular endothelial cells (HBMVEC-L), whereas TIMP-2 is exclusively expressed and released from the cancer cells. The tumor cell-derived TIMP-2 was further identified as a major determinant of endothelial MMP-2 activity during tumor cell transmigration in the presence of MMP-14. This response was associated with endothelial barrier dysfunction because coculture of MDA-MB-231 or MDA-MB-436 with HBMVEC-L caused a significant decrease in transendothelial electrical resistance concomitantly with endothelial cell-cell junction disruption and tumor cell transmigration. Knockdown of TIMP-2 or inhibition of TIMP-2/MMP-14 attenuated MMP-2-dependent transendothelial electrical resistance response and TEM(E). These findings suggest a novel interactive role of breast cancer cells and vascular endothelial cells in regulating the TIMP-2/MMP-14/MMP-2 pathway during tumor metastasis.
Collapse
Affiliation(s)
- Qiang Shen
- Division of Research, Department of Surgery, University of California at Davis School of Medicine, Sacramento, California 95817, USA
| | | | | | | | | |
Collapse
|
24
|
The CXCR4-CXCL12 pathway facilitates the progression of pancreatic cancer via induction of angiogenesis and lymphangiogenesis. J Surg Res 2010; 171:143-50. [PMID: 20462600 DOI: 10.1016/j.jss.2010.03.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 02/10/2010] [Accepted: 03/01/2010] [Indexed: 01/02/2023]
Abstract
BACKGROUND This study reports the influence of CXCL12 and its receptor CXCR4 on the progression of pancreatic cancer and illuminates the correlation between the CXCL12/CXCR4 axis and the angiogenesis and lymphangiogenesis of pancreatic adenocarcinoma (PAC). METHODS A total of 30 patients with pancreatic cancer participated in the current study. The expression of CXCL12 and CXCR4 in cancerous tissues, paracancerous tissues, normal pancreas, and lymph nodes surrounding the pancreas were investigated using real-time PCR and immunohistochemistry, respectively. In addition, we assessed microvessel density (MVD) and microlymphatic vessel density (MLVD) in tumor tissues using immunohistochemistry. RESULTS CXCL12 expression in tumor tissues was significantly lower than that of paracancerous tissues, normal pancreas, and lymph nodes. In contrast, CXCR4 expression in cancerous tissues was considerably higher than that of normal pancreas. Additionally, a significant correlation between the expression pattern of the CXCL12/CXCR4 axis and clinicopathologic features, such as lymph node metastasis, was identified. Furthermore, we found that CXCL12 expression was significantly associated with MVD but not significantly associated with MLVD, while CXCR4 expression was significantly associated with MLVD but not significantly associated with MVD. CONCLUSIONS The chemotactic interaction between CXCR4 and its ligand CXCL12 may be a critical event during the progression of pancreatic cancer. The underlying mechanism may be the induction of angiogenesis and lymphangiogenesis regulated by the interaction of CXCL12 and CXCR4.
Collapse
|