1
|
Ahmed AAQ, Besio R, Xiao L, Forlino A. Outer Membrane Vesicles (OMVs) as Biomedical Tools and Their Relevance as Immune-Modulating Agents against H. pylori Infections: Current Status and Future Prospects. Int J Mol Sci 2023; 24:ijms24108542. [PMID: 37239888 DOI: 10.3390/ijms24108542] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/26/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Outer membrane vesicles (OMVs) are lipid-membrane-bounded nanoparticles that are released from Gram-negative bacteria via vesiculation of the outer membrane. They have vital roles in different biological processes and recently, they have received increasing attention as possible candidates for a broad variety of biomedical applications. In particular, OMVs have several characteristics that enable them to be promising candidates for immune modulation against pathogens, such as their ability to induce the host immune responses given their resemblance to the parental bacterial cell. Helicobacter pylori (H. pylori) is a common Gram-negative bacterium that infects half of the world's population and causes several gastrointestinal diseases such as peptic ulcer, gastritis, gastric lymphoma, and gastric carcinoma. The current H. pylori treatment/prevention regimens are poorly effective and have limited success. This review explores the current status and future prospects of OMVs in biomedicine with a special focus on their use as a potential candidate in immune modulation against H. pylori and its associated diseases. The emerging strategies that can be used to design OMVs as viable immunogenic candidates are discussed.
Collapse
Affiliation(s)
- Abeer Ahmed Qaed Ahmed
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, 27100 Pavia, Italy
| | - Roberta Besio
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, 27100 Pavia, Italy
| | - Lin Xiao
- School of Biomedical Engineering, Shenzhen Campus, Sun Yat-sen University, Shenzhen 518107, China
| | - Antonella Forlino
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
2
|
Abdi E, Latifi-Navid S, Abedi Sarvestani F, Esmailnejad MH. Emerging therapeutic targets for gastric cancer from a host- Helicobacter pylori interaction perspective. Expert Opin Ther Targets 2021; 25:685-699. [PMID: 34410200 DOI: 10.1080/14728222.2021.1971195] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Gastric cancer (GC) has the higher genetic, cytologic, and architectural heterogeneity compared to other gastrointestinal cancers. By inducing gastric inflammation, Helicobacter pylori (HP) may lead to GC through combining bacterial factors with host factors. In this regard, identification of the major therapeutic targets against the host-HP interactions plays a critical role in GC prevention, diagnosis, and treatment. AREAS COVERED This study offers new insights into the promising therapeutic targets against the angiogenesis, invasion, or metastasis of GC from a host-HP interaction perspective. To this end, MEDLINE, EMBASE, LILACS, AIM, and IndMed databases were searched for relevant articles since 1992. EXPERT OPINION Wnt signaling and COX pathway have a well-documented history in the genesis of GC by HP and might be considered as the most promising targets for early GC treatment. Destroying HP may decrease the risk of GC, but it cannot fully hinder the GC development induced by HP infection. Therefore, targeting HP-activated pathways, especially COX-2/Wnt/beta-catenin/VEGF, TLR2/TLR9/COX-2, COX2-PGE2, and NF-κB/COX-2, as well as EPHA2, MMPs, and miR-543/SIRT1 axis, can be an effective measure in the early treatment of GC. However, different clinical trials and large, multi-center cohorts are required to validate these potentially effective targets for GC therapy.
Collapse
Affiliation(s)
- Esmat Abdi
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Saeid Latifi-Navid
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran
| | | | | |
Collapse
|
3
|
de Brito BB, Lemos FFB, Carneiro CDM, Viana AS, Barreto NMPV, Assis GADS, Braga BDC, Santos MLC, Silva FAFD, Marques HS, Silva NOE, de Melo FF. Immune response to Helicobacter pylori infection and gastric cancer development. World J Meta-Anal 2021; 9:257-276. [DOI: 10.13105/wjma.v9.i3.257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/24/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023] Open
Abstract
Gastric adenocarcinoma is a global health concern, and Helicobacter pylori (H. pylori) infection is the main risk factor for its occurrence. Of note, the immune response against the pathogen seems to be a determining factor for gastric oncogenesis, and increasing evidence have emphasized several host and bacterium factors that probably influence in this setting. The development of an inflammatory process against H. pylori involves a wide range of mechanisms such as the activation of pattern recognition receptors and intracellular pathways resulting in the production of proinflammatory cytokines by gastric epithelial cells. This process culminates in the establishment of distinct immune response profiles that result from the cytokine-induced differentiation of T naïve cells into specific T helper cells. Cytokines released from each type of T helper cell orchestrate the immune system and interfere in the development of gastric cancer in idiosyncratic ways. Moreover, variants in genes such as single nucleotide polymorphisms have been associated with variable predispositions for the occurrence of gastric malignancy because they influence both the intensity of gene expression and the affinity of the resultant molecule with its receptor. In addition, various repercussions related to some H. pylori virulence factors seem to substantially influence the host immune response against the infection, and many of them have been associated with gastric tumorigenesis.
Collapse
Affiliation(s)
- Breno Bittencourt de Brito
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabian Fellipe Bueno Lemos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Caroline da Mota Carneiro
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Andressa Santos Viana
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | | | | | - Barbara Dicarlo Costa Braga
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Maria Luísa Cordeiro Santos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | | | - Hanna Santos Marques
- Campus Vitória da Conquista, Universidade Estadual do Sudoeste da Bahia, Vitória da Conquista 45031900, Bahia, Brazil
| | - Natália Oliveira e Silva
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| |
Collapse
|
4
|
Zhao H, Wu Y, Xu Z, Ma R, Ding Y, Bai X, Rong Q, Zhang Y, Li B, Ji X. Mechanistic Insight Into the Interaction Between Helicobacter pylori Urease Subunit α and Its Molecular Chaperone Hsp60. Front Microbiol 2019; 10:153. [PMID: 30804917 PMCID: PMC6370633 DOI: 10.3389/fmicb.2019.00153] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/22/2019] [Indexed: 12/11/2022] Open
Abstract
Helicobacter pylori is the etiologic agent in a variety of gastroduodenal diseases. As its key pathogenic factors, both urease and Hsp60 play important roles in the pathogenesis of H. pylori. Previous studies have suggested that there is close relationship between urease and Hsp60, which implied that Hsp60 may act as a chaperone in urease stabilization and assembly. However, how these two proteins interact remains unclear. In this study, the impact of Hsp60 on urease activity of H. pylori lysate was first detected to confirm the interaction between urease and Hsp60. Pull-down assays further indicated that Hsp60 could bind to UreA subunit but not UreB. Then, the 3D structure of Hsp60 was modeled using I-TASSER to simulate the binding complex with UreA by molecular docking. The results showed that UreA is a perfect fit for the cavity of Hsp60. Analysis of the resulting model demonstrated that at least seven residues of UreA, located on two interfaces, participate in the interaction. Site-directed mutagenesis of these potential residues showed reduced affinity with Hsp60 than the wild type UreA through surface plasmon resonance (SPR) experiments, and D68 appears to have an important role in the affinity. Further analysis also showed that mutation of E25 and K26 caused a more rapid association and dissociation than with wild UreA, implying that they have roles in stabilizing the interaction complex. These affinity comparisons suggested that the interfaces predicted by molecular docking are credible. Our study indicated a direct interaction between Hsp60 and urease and revealed the binding interfaces and key residues involved in the interaction. These results provide further evidence for the chaperone activity of Hsp60 toward urease and lay a foundation to better understand the maturation mechanism of urease in H. pylori.
Collapse
Affiliation(s)
- Huilin Zhao
- Department of Pathogenic Biology, School of Basic Medical Sciences, Binzhou Medical University, Yantai, China
| | - Yulong Wu
- Department of Pathogenic Biology, School of Basic Medical Sciences, Binzhou Medical University, Yantai, China
| | - Zheng Xu
- Department of Pathogenic Biology, School of Basic Medical Sciences, Binzhou Medical University, Yantai, China
| | - Ran Ma
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Yunfei Ding
- Department of Pathogenic Biology, School of Basic Medical Sciences, Binzhou Medical University, Yantai, China
| | - Xuelian Bai
- Clinical Medicine Laboratory, Binzhou Medical University Hospital, Binzhou, China
| | - Qianyu Rong
- Department of Pathogenic Biology, School of Basic Medical Sciences, Binzhou Medical University, Yantai, China
| | - Ying Zhang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Binzhou Medical University, Yantai, China
| | - Boqing Li
- Department of Pathogenic Biology, School of Basic Medical Sciences, Binzhou Medical University, Yantai, China
| | - Xiaofei Ji
- Department of Pathogenic Biology, School of Basic Medical Sciences, Binzhou Medical University, Yantai, China
| |
Collapse
|
5
|
Ghazaei C, Line El Helou M. Beyond proteostasis: Roles of type I chaperonins in bacterial pathogenesis. J Med Microbiol 2018; 67:1203-1211. [PMID: 30074472 DOI: 10.1099/jmm.0.000811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nearly all bacterial species express two or more chaperonin genes. Recent data indicate that type I chaperonins may be key players in bacterial infections. This is partly due to the well-known contribution of chaperonins in cellular proteostasis, the latter being compromised during bacterial host infection. In addition to their protein-folding activity, it has been revealed that certain chaperonins also exhibit moonlighting functions that can contribute in different ways to bacterial pathogenicity. Examples range from inducing adhesion molecules in Chlamydophila pneumoniae to supporting intracellular survival in Mycobacterium tuberculosis and Leishmania donovani, to inducing cytokines in Helicobacter pylori to promoting antimicrobial resistance in Escherichia coli, amongst others. This article provides a thorough reviews of our current understanding of the different mechanisms involving type I chaperonins during bacteria-host interactions, and suggests new areas to be explored and the potential of finding new targets for fighting bacterial infections.
Collapse
Affiliation(s)
- Ciamak Ghazaei
- 1Department of Microbiology, University of Mohaghegh Ardabili, Ardabil, Iran
| | | |
Collapse
|
6
|
Hsu WT, Ho SY, Jian TY, Huang HN, Lin YL, Chen CH, Lin TH, Wu MS, Wu CJ, Chan YL, Liao KW. Helicobacter pylori-derived heat shock protein 60 increases the induction of regulatory T-cells associated with persistent infection. Microb Pathog 2018; 119:152-161. [PMID: 29660522 DOI: 10.1016/j.micpath.2018.04.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/26/2018] [Accepted: 04/10/2018] [Indexed: 02/06/2023]
Abstract
Local Treg responses are involved in Helicobacter pylori-related inflammation and clinical outcomes after infection, and H. pylori-derived HSP60 (HpHSP60) is an important virulence factor associated with gastric carcinogenesis. This study to investigate the role of HpHSP60 in immunosuppression, particularly with regard to whether it could induce the production of Treg cells. For this purpose, human peripheral blood mononuclear cells (PBMCs) were treated with or without HpHSP60 in the presence of an anti-CD3 mAb to determine the effect of HpHSP60 on cell proliferation. In this report, HpHSP60 decreased the expression of CDK4 to significantly arrest the proliferation of mitogen-stimulated T-cells, which correlated with the induction of Treg cells. Moreover, monocytic cells were essential for the induction of HpHSP60-induced Treg cells via the secretion of IL-10 and TGF-β after treatment with HpHSP60. Blockage of HpHSP60 with specific monoclonal antibodies significantly reduced the colonization of H. pylori and the expression of Treg cells in vivo. Overall, our results suggest that HpHSP60 could act on macrophages to trigger the expression of IL-10 and TGF-β, thereby leading to an increase in Treg cells and inhibition of T-cell proliferation.
Collapse
Affiliation(s)
- Wei-Tung Hsu
- Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu, Taiwan, ROC
| | - Shu-Yi Ho
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan, ROC
| | - Ting-Yan Jian
- Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu, Taiwan, ROC
| | - Han-Ning Huang
- Department of Food Science and Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan, ROC
| | - Yu-Ling Lin
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan, ROC; Center for Bioinformatics Research, National Chiao Tung University, Hsinchu, Taiwan, ROC
| | - Chia-Hung Chen
- Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu, Taiwan, ROC
| | - Tsung-Han Lin
- Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu, Taiwan, ROC
| | - Ming-Shiang Wu
- Department of Internal Medicine, College of Medicine, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Chang-Jer Wu
- Department of Food Science and Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan, ROC; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan, ROC; Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan, ROC; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
| | - Yi-Lin Chan
- Department of Life Science, Chinese Culture University, Taipei, Taiwan, ROC
| | - Kuang-Wen Liao
- Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu, Taiwan, ROC; Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan, ROC; College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan, ROC; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC.
| |
Collapse
|
7
|
Edwards SW, Spofford EM, Price C, Wright HL, Salao K, Suttiprapa S, Sripa B. Opisthorchiasis-Induced Cholangiocarcinoma: How Innate Immunity May Cause Cancer. ADVANCES IN PARASITOLOGY 2018; 101:149-176. [PMID: 29907253 DOI: 10.1016/bs.apar.2018.05.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Innate, inflammatory responses towards persistent Opisthorchis viverrini (OV) infection are likely to contribute to the development of cholangiocarcinoma (CCA), a liver cancer that is rare in the West but prevalent in Greater Mekong Subregion countries in Southeast Asia. Infection results in the infiltration of innate immune cells into the bile ducts and subsequent activation of inflammatory immune responses that fail to clear OV but instead may damage local tissues within the bile ducts. Not all patients infected with OV develop CCA, and so tumourigenesis may be dependent on multiple factors including the magnitude of the inflammatory response that is activated in infected individuals. The purpose of this review is to summarize how innate immune responses may promote tumourigenesis following OV infection and if such responses can be used to predict CCA onset in OV-infected individuals. It also hypothesizes on the role that Helicobacterspp., which are associated with liver fluke infections, may play in activation of the innate the immune system to promote tissue damage and persistent inflammation leading to CCA.
Collapse
Affiliation(s)
- Steven W Edwards
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Edward M Spofford
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Charlotte Price
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Helen L Wright
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Kanin Salao
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Sutas Suttiprapa
- Tropical Medicine Graduate Program, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; WHO Collaborating Centre for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Disease), Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Banchob Sripa
- Tropical Medicine Graduate Program, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; WHO Collaborating Centre for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Disease), Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
8
|
Mendoza JA, Weinberger KK, Swan MJ. The Hsp60 protein of helicobacter pylori displays chaperone activity under acidic conditions. Biochem Biophys Rep 2016; 9:95-99. [PMID: 28955994 PMCID: PMC5614549 DOI: 10.1016/j.bbrep.2016.11.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 11/17/2016] [Accepted: 11/23/2016] [Indexed: 10/26/2022] Open
Abstract
The heat shock protein, Hsp60, is one of the most abundant proteins in Helicobacter pylori. Given its sequence homology to the Escherichia coli Hsp60 or GroEL, Hsp60 from H. pylori would be expected to function as a molecular chaperone in this organism. H. pylori is an organism that grows on the gastric epithelium, where the pH can fluctuate between neutral and 4.5 and the intracellular pH can be as low as 5.0. This study was performed to test the ability of Hsp60 from H. pylori to function as a molecular chaperone under mildly acidic conditions. We report here that Hsp60 could suppress the acid-induced aggregation of alcohol dehydrogenase (ADH) in the 7.0-5.0 pH range. Hsp60 was found to undergo a conformational change within this pH range. It was also found that exposure of hydrophobic surfaces of Hsp60 is significant and that their exposure is increased under acidic conditions. Although, alcohol dehydrogenase does not contain exposed hydrophobic surfaces, we found that their exposure is triggered at low pH. Our results demonstrate that Hsp60 from H. pylori can function as a molecular chaperone under acidic conditions and that the interaction between Hsp60 and other proteins may be mediated by hydrophobic interactions.
Collapse
Affiliation(s)
- Jose A Mendoza
- Department of Chemistry and Biochemistry, California State University San Marcos, CA 92096-0001, United States
| | - Kevin K Weinberger
- Department of Chemistry and Biochemistry, California State University San Marcos, CA 92096-0001, United States
| | - Matthew J Swan
- Department of Chemistry and Biochemistry, California State University San Marcos, CA 92096-0001, United States
| |
Collapse
|
9
|
Lee H, Su YL, Huang BS, Hsieh FT, Chang YH, Tzeng SR, Hsu CH, Huang PT, Lou KL, Wang YT, Chow LP. Importance of the C-terminal histidine residues of Helicobacter pylori GroES for Toll-like receptor 4 binding and interleukin-8 cytokine production. Sci Rep 2016; 6:37367. [PMID: 27869178 PMCID: PMC5116745 DOI: 10.1038/srep37367] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 10/28/2016] [Indexed: 02/07/2023] Open
Abstract
Helicobacter pylori infection is associated with the development of gastric and duodenal ulcers as well as gastric cancer. GroES of H. pylori (HpGroES) was previously identified as a gastric cancer-associated virulence factor. Our group showed that HpGroES induces interleukin-8 (IL-8) cytokine release via a Toll-like receptor 4 (TLR4)-dependent mechanism and domain B of the protein is crucial for interactions with TLR4. In the present study, we investigated the importance of the histidine residues in domain B. To this end, a series of point mutants were expressed in Escherichia coli, and the corresponding proteins purified. Interestingly, H96, H104 and H115 were not essential, whereas H100, H102, H108, H113 and H118 were crucial for IL-8 production and TLR4 interactions in KATO-III cells. These residues were involved in nickel binding. Four of five residues, H102, H108, H113 and H118 induced certain conformation changes in extended domain B structure, which is essential for interactions with TLR4 and consequent IL-8 production. We conclude that interactions of nickel ions with histidine residues in domain B help to maintain the conformation of the C-terminal region to conserve the integrity of the HpGroES structure and modulate IL-8 release.
Collapse
Affiliation(s)
- Haur Lee
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Yu-Lin Su
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Bo-Shih Huang
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Feng-Tse Hsieh
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Ya-Hui Chang
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Shiou-Ru Tzeng
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Chun-Hua Hsu
- Department of Agricultural Chemistry, National Taiwan University, Taipei, 106, Taiwan
| | - Po-Tsang Huang
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan.,Graduate Institute of Oral Biology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Kuo-Long Lou
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan.,Graduate Institute of Oral Biology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Yeng-Tseng Wang
- Department of Biochemistry, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Lu-Ping Chow
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| |
Collapse
|
10
|
Kao CY, Sheu BS, Wu JJ. Helicobacter pylori infection: An overview of bacterial virulence factors and pathogenesis. Biomed J 2016; 39:14-23. [PMID: 27105595 PMCID: PMC6138426 DOI: 10.1016/j.bj.2015.06.002] [Citation(s) in RCA: 263] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 06/08/2015] [Indexed: 12/16/2022] Open
Abstract
Helicobacter pylori pathogenesis and disease outcomes are mediated by a complex interplay between bacterial virulence factors, host, and environmental factors. After H. pylori enters the host stomach, four steps are critical for bacteria to establish successful colonization, persistent infection, and disease pathogenesis: (1) Survival in the acidic stomach; (2) movement toward epithelium cells by flagella-mediated motility; (3) attachment to host cells by adhesins/receptors interaction; (4) causing tissue damage by toxin release. Over the past 20 years, the understanding of H. pylori pathogenesis has been improved by studies focusing on the host and bacterial factors through epidemiology researches and molecular mechanism investigations. These include studies identifying the roles of novel virulence factors and their association with different disease outcomes, especially the bacterial adhesins, cag pathogenicity island, and vacuolating cytotoxin. Recently, the development of large-scale screening methods, including proteomic, and transcriptomic tools, has been used to determine the complex gene regulatory networks in H. pylori. In addition, a more available complete genomic database of H. pylori strains isolated from patients with different gastrointestinal diseases worldwide is helpful to characterize this bacterium. This review highlights the key findings of H. pylori virulence factors reported over the past 20 years.
Collapse
Affiliation(s)
- Cheng-Yen Kao
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Bor-Shyang Sheu
- Department of Internal Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jiunn-Jong Wu
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan; Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
11
|
Mande SC, Kumar CMS, Sharma A. Evolution of Bacterial Chaperonin 60 Paralogues and Moonlighting Activity. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/978-94-007-6787-4_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
|
12
|
Henderson B, Fares MA, Lund PA. Chaperonin 60: a paradoxical, evolutionarily conserved protein family with multiple moonlighting functions. Biol Rev Camb Philos Soc 2013; 88:955-87. [DOI: 10.1111/brv.12037] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 02/20/2013] [Accepted: 03/04/2013] [Indexed: 02/07/2023]
Affiliation(s)
- Brian Henderson
- Department of Microbial Diseases, UCL-Eastman Dental Institute; University College London; London WC1X 8LD U.K
| | - Mario A. Fares
- Department of Genetics; University of Dublin, Trinity College Dublin; Dublin 2 Ireland
- Department of Abiotic Stress; Instituto de Biologia Molecular y Celular de Plantas, Consejo Superior de Investigaciones Cientificas (CSIC-UPV); Valencia 46022 Spain
| | - Peter A. Lund
- School of Biosciences; University of Birmingham; Birmingham B15 2TT U.K
| |
Collapse
|
13
|
Peng YC, Ho SP, Shyu CL, Chang CS, Huang LR. Clarithromycin modulates Helicobacter pylori-induced activation of nuclear factor-κB through classical and alternative pathways in gastric epithelial cells. Clin Exp Med 2012; 14:53-9. [PMID: 23129507 DOI: 10.1007/s10238-012-0217-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Accepted: 10/22/2012] [Indexed: 12/19/2022]
Abstract
Infection of gastric epithelial cells by Helicobacter pylori stimulates the activation of nuclear factor-κB (NF-κB) and the upregulation of interleukin-8 (IL-8) expression. Activation of NF-κB can occur through classical (p50/p65) and alternative (p52/RelB) pathways. The role of the bacterial cag pathogenicity island (PAI) in these events is controversial. This study aimed to evaluate the hypothesis that the CagA protein is required for H. pylori-induced activation of NF-κB and upregulation of IL-8 expression, and for clarithromycin (CAM) to exert its molecular effects. Cultured KATO-III human gastric cancer cells were treated with extracts of H. pylori strains ATCC43504 (cag PAI(+)) and ATCC51932 (cag PAI(-)) for 24 h. NF-κB and phospho-IκB protein expression was then evaluated using western blotting. IL-8 mRNA expression was evaluated using the reverse transcription polymerase chain reaction. Following the separation of the proteins using two-dimensional gel electrophoresis, proteomes of the two bacterial extracts were compared using nanoflow liquid chromatography-tandem mass spectrometry (nanoLC-MS/MS) analysis. Although the protein profiles of the two extracts differed, both extracts induced IκBα phosphorylation, upregulation of IL-8 expression, and NF-κB activation through classical and alternative pathways. In cells treated with either of the bacterial extracts, CAM inhibited H. pylori-induced activation of NF-κB and upregulation of IL-8 expression. These results suggested that CagA is not required for H. pylori-induced activation of NF-κB and upregulation of IL-8 expression in gastric epithelial cells. H. pylori-induced NF-κB signaling can occur through classical and alternative activation pathways, and that CAM inhibits these two pathways.
Collapse
Affiliation(s)
- Yen-Chun Peng
- Division of Gastroenterology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | | | | | | | | |
Collapse
|
14
|
Bacterial virulence in the moonlight: multitasking bacterial moonlighting proteins are virulence determinants in infectious disease. Infect Immun 2011; 79:3476-91. [PMID: 21646455 DOI: 10.1128/iai.00179-11] [Citation(s) in RCA: 347] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Men may not be able to multitask, but it is emerging that proteins can. This capacity of proteins to exhibit more than one function is termed protein moonlighting, and, surprisingly, many highly conserved proteins involved in metabolic regulation or the cell stress response have a range of additional biological actions which are involved in bacterial virulence. This review highlights the multiple roles exhibited by a range of bacterial proteins, such as glycolytic and other metabolic enzymes and molecular chaperones, and the role that such moonlighting activity plays in the virulence characteristics of a number of important human pathogens, including Staphylococcus aureus, Streptococcus pyogenes, Streptococcus pneumoniae, Helicobacter pylori, and Mycobacterium tuberculosis.
Collapse
|
15
|
Liao KW, Lin CS, Chen WL, Yang CT, Lin CM, Hsu WT, Lin YY, Chiu YH, Huang KC, Wu HY, Wu MS, Wu CJ, Mao SJT, Tsai NM. Antibodies against Helicobacter pylori heat shock protein 60 aggravate HSP60-mediated proinflammatory responses. Cytokine 2011; 55:174-80. [PMID: 21565524 DOI: 10.1016/j.cyto.2011.04.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 03/29/2011] [Accepted: 04/15/2011] [Indexed: 12/23/2022]
Abstract
Anti-Helicobacter pylori heat shock protein 60 (HpHSP60) antibodies are usually found in H. pylori-infected patients and are known to be associated with the progression of gastric diseases. However, the effects of these antibodies on the functions of HpHSP60 have not been identified. This study aims to investigate the effects of the interaction between anti-HSP60 antibodies and HpHSP60 on inflammatory responses. Anti-HpHSP60 polyclonal sera and monoclonal antibodies (mAbs) were produced to evaluate their effects on HpHSP60-induced IL-8 and TNF-α activity. The results indicated that anti-HpHSP60 polyclonal sera collected from patients infected with H. pylori or from rabbit and mice immunized with HpHSP60 could significantly enhance HpHSP60-mediated IL-8 and TNF-α secretion from monocytic THP-1 cells. Similar effects were also found with anti-HpHSP60 mAbs. Further analysis revealed that this phenomenon was only carried out by anti-HpHSP60 antibody but not by other non-specific mAbs. Moreover, the non-specific mAbs decreased the synergism of HpHSP60 and anti-HpHSP60 mAbs in proinflammatory cytokine induction. Herein, we have examined the role of anti-HpHSP60 antibody in host immune responses for the first time. This study demonstrated that H. pylori HSP60/mAbs could modulate helicobacterial pathogenesis by increasing IL-8 and TNF-α production. The pathogen-specific antibodies may execute potential immune functions rather than recognize or neutralize microbes.
Collapse
Affiliation(s)
- Kuang-Wen Liao
- Department of Biological Science and Technology and Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Vitoriano I, Rocha-Gonçalves A, Carvalho T, Oleastro M, Calado CRC, Roxo-Rosa M. Antigenic diversity among Portuguese clinical isolates of Helicobacter pylori. Helicobacter 2011; 16:153-68. [PMID: 21435094 DOI: 10.1111/j.1523-5378.2011.00825.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND The human gastroduodenal pathogen, Helicobacter pylori, is characterized by an unusual extent of genetic heterogeneity. This dictates differences in the antigenic pattern of strains resulting in heterogeneous human humoral immune responses. Here, we examined the antigenic variability among a group of 10 strains isolated from Portuguese patients differing in age, gender, and H. pylori-associated gastric diseases. MATERIAL AND METHODS Immunoassays were performed on two-dimensional electrophoresis gels obtained for the proteome of each strain, using a commercial pool of antibodies produced in rabbit, against the whole cell lysate of an Australian H. pylori strain. Relevant proteins were identified by mass spectrometry. RESULTS Immunoproteomes of the Portuguese strains showed no correlation between the number of antigenic proteins or the antigenic profile, and the disease to which each strain was associated. The Heat shock protein B was the unique immunoreactive protein common to all of them. Additionally, seven proteins were found to be antigenic in at least 80% of strains: enoyl-(acyl-carrier-protein) reductase (NADH); Catalase; Flagellin A; 2 isoforms of alkyl hydroperoxide reductase; succinyl-CoA transferase subunit B; and an unidentified protein. These proteins were present in the proteome of all tested strains, suggesting that differences in their antigenicity are related to antigenic variance. CONCLUSIONS This study showed evidence of the variability of antigenic pattern among H. pylori strains. We believe that this fact contributes to the failure of anti-H. pylori vaccines and the low accuracy of serological tests based on a low number of proteins or antigens of only one strain.
Collapse
Affiliation(s)
- Inês Vitoriano
- Faculdade de Engenharia, Universidade Católica Portuguesa, Rio de Mouro, Portugal Chymiotechnon, Departamento de Química, Universidade de Coimbra, Coimbra, Portugal
| | | | | | | | | | | |
Collapse
|
17
|
Henderson B, Martin A. Bacterial Moonlighting Proteins and Bacterial Virulence. Curr Top Microbiol Immunol 2011; 358:155-213. [DOI: 10.1007/82_2011_188] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
18
|
Lin CS, He PJ, Hsu WT, Wu MS, Wu CJ, Shen HW, Hwang CH, Lai YK, Tsai NM, Liao KW. Helicobacter pylori-derived Heat shock protein 60 enhances angiogenesis via a CXCR2-mediated signaling pathway. Biochem Biophys Res Commun 2010; 397:283-9. [PMID: 20580690 DOI: 10.1016/j.bbrc.2010.05.101] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 05/19/2010] [Indexed: 12/18/2022]
Abstract
Helicobacter pylori is a potent carcinogen associated with gastric cancer malignancy. Recently, H. pylori Heat shock protein 60 (HpHSP60) has been reported to promote cancer development by inducing chronic inflammation and promoting tumor cell migration. This study demonstrates a role for HpHSP60 in angiogenesis, a necessary precursor to tumor growth. We showed that HpHSP60 enhanced cell migration and tube formation, but not cell proliferation, in human umbilical vein endothelial cells (HUVECs). HpHSP60 also indirectly promoted HUVEC proliferation when HUVECs were co-cultured with supernatants collected from HpHSP60-treated AGS or THP-1 cells. The angiogenic array showed that HpHSP60 dramatically induced THP-1 cells and HUVECs to produce the chemotactic factors IL-8 and GRO. Inhibition of CXCR2, the receptor for IL-8 and GRO, or downstream PLCbeta2/Ca2+-mediated signaling, significantly abolished HpHSP60-induced tube formation. In contrast, suppression of MAP K or PI3 K signaling did not affect HpHSP60-mediated tubulogenesis. These data suggest that HpHSP60 enhances angiogenesis via CXCR2/PLCbeta2/Ca2+ signal transduction in endothelial cells.
Collapse
Affiliation(s)
- Chen-Si Lin
- Department of Biological Science and Technology, National Chiao-Tung University, Hsin-Chu, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Lin CS, He PJ, Tsai NM, Li CH, Yang SC, Hsu WT, Wu MS, Wu CJ, Cheng TL, Liao KW. A potential role for Helicobacter pylori heat shock protein 60 in gastric tumorigenesis. Biochem Biophys Res Commun 2010; 392:183-9. [PMID: 20060384 DOI: 10.1016/j.bbrc.2010.01.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 01/05/2010] [Indexed: 01/06/2023]
Abstract
Helicobacter pylori has been found to promote the malignant process leading to gastric cancer. Heat shock protein 60 of H. pylori (HpHSP60) was previously been identified as a potent immunogene. This study investigates the role of HpHSP60 in gastric cancer carcinogenesis. The effect of HpHSP60 on cell proliferation, anti-death activity, angiogenesis and cell migration were explored. The results showed that HpHSP60 enhanced migration by gastric cancer cells and promoted tube formation by umbilical vein endothelial cells (HUVECs); however, HpHSP60 did not increase cell proliferation nor was this protein able to rescue gastric cancer cells from death. Moreover, the results also indicated HpHSP60 had different effects on AGS gastric cancer cells or THP-1 monocytic cells in terms of their expression of pro-inflammatory cytokines, which are known to be important to cancer development. We propose that HpHSP60 may trigger the initiation of carcinogenesis by inducing pro-inflammatory cytokine release and by promoting angiogenesis and metastasis. Thus, this extracellular pathogen-derived HSP60 is potentially a vigorous virulence factor that can act as a carcinogen during gastric tumorigenesis.
Collapse
Affiliation(s)
- Chen-Si Lin
- Department of Biological Science and Technology, National Chiao-Tung University, Hsin-Chu, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|