1
|
Tennant JM, Henderson DM, Wisniewski TM, Hoover EA. RT-QuIC detection of tauopathies using full-length tau substrates. Prion 2020; 14:249-256. [PMID: 33171070 PMCID: PMC7671068 DOI: 10.1080/19336896.2020.1832946] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 11/25/2022] Open
Abstract
Early detection and diagnosis of neurodegenerative diseases has been hampered by the lack of sensitive testing. Real-time quaking induced conversion (RT-QuIC) has been used for the early and sensitive detection of prion-induced neurologic disease, and has more recently been adapted to detect misfolded alpha-synuclein and tau as biomarkers for neurodegenerative disease. Here we use full-length recombinant tau substrates to detect tau seeding activity in Alzheimer's disease and other human tauopathies.
Collapse
Affiliation(s)
- Joanne M. Tennant
- Prion Research Center, Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Davin M. Henderson
- Prion Research Center, Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Thomas M. Wisniewski
- Center for Cognitive Neurology and Departments of Neurology, Pathology and Psychiatry, NYU School of Medicine, New York, NY, USA
| | - Edward A. Hoover
- Prion Research Center, Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
2
|
Moudjou M, Castille J, Passet B, Herzog L, Reine F, Vilotte JL, Rezaei H, Béringue V, Igel-Egalon A. Improving the Predictive Value of Prion Inactivation Validation Methods to Minimize the Risks of Iatrogenic Transmission With Medical Instruments. Front Bioeng Biotechnol 2020; 8:591024. [PMID: 33335894 PMCID: PMC7736614 DOI: 10.3389/fbioe.2020.591024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022] Open
Abstract
Prions are pathogenic infectious agents responsible for fatal, incurable neurodegenerative diseases in animals and humans. Prions are composed exclusively of an aggregated and misfolded form (PrPSc) of the cellular prion protein (PrPC). During the propagation of the disease, PrPSc recruits and misfolds PrPC into further PrPSc. In human, iatrogenic prion transmission has occurred with incompletely sterilized medical material because of the unusual resistance of prions to inactivation. Most commercial prion disinfectants validated against the historical, well-characterized laboratory strain of 263K hamster prions were recently shown to be ineffective against variant Creutzfeldt-Jakob disease human prions. These observations and previous reports support the view that any inactivation method must be validated against the prions for which they are intended to be used. Strain-specific variations in PrPSc physico-chemical properties and conformation are likely to explain the strain-specific efficacy of inactivation methods. Animal bioassays have long been used as gold standards to validate prion inactivation methods, by measuring reduction of prion infectivity. Cell-free assays such as the real-time quaking-induced conversion (RT-QuIC) assay and the protein misfolding cyclic amplification (PMCA) assay have emerged as attractive alternatives. They exploit the seeding capacities of PrPSc to exponentially amplify minute amounts of prions in biospecimens. European and certain national medicine agencies recently implemented their guidelines for prion inactivation of non-disposable medical material; they encourage or request the use of human prions and cell-free assays to improve the predictive value of the validation methods. In this review, we discuss the methodological and technical issues regarding the choice of (i) the cell-free assay, (ii) the human prion strain type, (iii) the prion-containing biological material. We also introduce a new optimized substrate for high-throughput PMCA amplification of human prions bound on steel wires, as translational model for prion-contaminated instruments.
Collapse
Affiliation(s)
- Mohammed Moudjou
- Université Paris Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Johan Castille
- Université Paris Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Bruno Passet
- Université Paris Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Laetitia Herzog
- Université Paris Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Fabienne Reine
- Université Paris Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Jean-Luc Vilotte
- Université Paris Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Human Rezaei
- Université Paris Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Vincent Béringue
- Université Paris Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Angélique Igel-Egalon
- Université Paris Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France.,FB.INT'L, Montigny-le-Bretonneux, France
| |
Collapse
|
3
|
Detection of Pathognomonic Biomarker PrP Sc and the Contribution of Cell Free-Amplification Techniques to the Diagnosis of Prion Diseases. Biomolecules 2020; 10:biom10030469. [PMID: 32204429 PMCID: PMC7175149 DOI: 10.3390/biom10030469] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 02/07/2023] Open
Abstract
Transmissible spongiform encephalopathies or prion diseases are rapidly progressive neurodegenerative diseases, the clinical manifestation of which can resemble other promptly evolving neurological maladies. Therefore, the unequivocal ante-mortem diagnosis is highly challenging and was only possible by histopathological and immunohistochemical analysis of the brain at necropsy. Although surrogate biomarkers of neurological damage have become invaluable to complement clinical data and provide more accurate diagnostics at early stages, other neurodegenerative diseases show similar alterations hindering the differential diagnosis. To solve that, the detection of the pathognomonic biomarker of disease, PrPSc, the aberrantly folded isoform of the prion protein, could be used. However, the amounts in easily accessible tissues or body fluids at pre-clinical or early clinical stages are extremely low for the standard detection methods. The solution comes from the recent development of in vitro prion propagation techniques, such as Protein Misfolding Cyclic Amplification (PMCA) and Real Time-Quaking Induced Conversion (RT-QuIC), which have been already applied to detect minute amounts of PrPSc in different matrixes and make early diagnosis of prion diseases feasible in a near future. Herein, the most relevant tissues and body fluids in which PrPSc has been detected in animals and humans are being reviewed, especially those in which cell-free prion propagation systems have been used with diagnostic purposes.
Collapse
|
4
|
In vitro Modeling of Prion Strain Tropism. Viruses 2019; 11:v11030236. [PMID: 30857283 PMCID: PMC6466166 DOI: 10.3390/v11030236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 12/30/2022] Open
Abstract
Prions are atypical infectious agents lacking genetic material. Yet, various strains have been isolated from animals and humans using experimental models. They are distinguished by the resulting pattern of disease, including the localization of PrPsc deposits and the spongiform changes they induce in the brain of affected individuals. In this paper, we discuss the emerging use of cellular and acellular models to decipher the mechanisms involved in the strain-specific targeting of distinct brain regions. Recent studies suggest that neuronal cultures, protein misfolding cyclic amplification, and combination of both approaches may be useful to explore this under-investigated but central domain of the prion field.
Collapse
|
5
|
Abstract
Prion diseases are rapidly progressive, incurable neurodegenerative disorders caused by misfolded, aggregated proteins known as prions, which are uniquely infectious. Remarkably, these infectious proteins have been responsible for widespread disease epidemics, including kuru in humans, bovine spongiform encephalopathy in cattle, and chronic wasting disease in cervids, the latter of which has spread across North America and recently appeared in Norway and Finland. The hallmark histopathological features include widespread spongiform encephalopathy, neuronal loss, gliosis, and deposits of variably sized aggregated prion protein, ranging from small, soluble oligomers to long, thin, unbranched fibrils, depending on the disease. Here, we explore recent advances in prion disease research, from the function of the cellular prion protein to the dysfunction triggering neurotoxicity, as well as mechanisms underlying prion spread between cells. We also highlight key findings that have revealed new therapeutic targets and consider unanswered questions for future research.
Collapse
Affiliation(s)
- Christina J Sigurdson
- Departments of Pathology and Medicine, UC San Diego School of Medicine, University of California, San Diego, La Jolla, California 92093, USA;
| | - Jason C Bartz
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, Nebraska 68178, USA
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
6
|
Moudjou M, Chapuis J, Mekrouti M, Reine F, Herzog L, Sibille P, Laude H, Vilette D, Andréoletti O, Rezaei H, Dron M, Béringue V. Glycoform-independent prion conversion by highly efficient, cell-based, protein misfolding cyclic amplification. Sci Rep 2016; 6:29116. [PMID: 27384922 PMCID: PMC4935985 DOI: 10.1038/srep29116] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 06/15/2016] [Indexed: 11/15/2022] Open
Abstract
Prions are formed of misfolded assemblies (PrPSc) of the variably N-glycosylated cellular prion protein (PrPC). In infected species, prions replicate by seeding the conversion and polymerization of host PrPC. Distinct prion strains can be recognized, exhibiting defined PrPSc biochemical properties such as the glycotype and specific biological traits. While strain information is encoded within the conformation of PrPSc assemblies, the storage of the structural information and the molecular requirements for self-perpetuation remain uncertain. Here, we investigated the specific role of PrPC glycosylation status. First, we developed an efficient protein misfolding cyclic amplification method using cells expressing the PrPC species of interest as substrate. Applying the technique to PrPC glycosylation mutants expressing cells revealed that neither PrPC nor PrPSc glycoform stoichiometry was instrumental to PrPSc formation and strainness perpetuation. Our study supports the view that strain properties, including PrPSc glycotype are enciphered within PrPSc structural backbone, not in the attached glycans.
Collapse
Affiliation(s)
- Mohammed Moudjou
- VIM, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Jérôme Chapuis
- VIM, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Mériem Mekrouti
- VIM, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Fabienne Reine
- VIM, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Laetitia Herzog
- VIM, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Pierre Sibille
- VIM, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Hubert Laude
- VIM, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Didier Vilette
- VIM, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France.,IHAP, INRA, Ecole Nationale Vétérinaire de Toulouse, 31000, Toulouse, France
| | - Olivier Andréoletti
- IHAP, INRA, Ecole Nationale Vétérinaire de Toulouse, 31000, Toulouse, France
| | - Human Rezaei
- VIM, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Michel Dron
- VIM, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Vincent Béringue
- VIM, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| |
Collapse
|
7
|
Clouse MD, Shikiya RA, Bartz JC, Kincaid AE. Nasal associated lymphoid tissue of the Syrian golden hamster expresses high levels of PrPC. PLoS One 2015; 10:e0117935. [PMID: 25642714 PMCID: PMC4314084 DOI: 10.1371/journal.pone.0117935] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 01/06/2015] [Indexed: 11/30/2022] Open
Abstract
The key event in the pathogenesis of the transmissible spongiform encephalopathies is a template-dependent misfolding event where an infectious isoform of the prion protein (PrPSc) comes into contact with native prion protein (PrPC) and changes its conformation to PrPSc. In many extraneurally inoculated models of prion disease this PrPC misfolding event occurs in lymphoid tissues prior to neuroinvasion. The primary objective of this study was to compare levels of total PrPC in hamster lymphoid tissues involved in the early pathogenesis of prion disease. Lymphoid tissues were collected from golden Syrian hamsters and Western blot analysis was performed to quantify PrPC levels. PrPC immunohistochemistry (IHC) of paraffin embedded tissue sections was performed to identify PrPC distribution in tissues of the lymphoreticular system. Nasal associated lymphoid tissue contained the highest amount of total PrPC followed by Peyer’s patches, mesenteric and submandibular lymph nodes, and spleen. The relative levels of PrPC expression in IHC processed tissue correlated strongly with the Western blot data, with high levels of PrPC corresponding with a higher percentage of PrPC positive B cell follicles. High levels of PrPC in lymphoid tissues closely associated with the nasal cavity could contribute to the relative increased efficiency of the nasal route of entry of prions, compared to other routes of infection.
Collapse
Affiliation(s)
- Melissa D. Clouse
- Department of Biomedical Sciences, Creighton University, Omaha, Nebraska, United States of America
| | - Ronald A. Shikiya
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, Nebraska, United States of America
| | - Jason C. Bartz
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, Nebraska, United States of America
| | - Anthony E. Kincaid
- Department of Biomedical Sciences, Creighton University, Omaha, Nebraska, United States of America
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, Nebraska, United States of America
- Department of Pharmacy Sciences, Creighton University, Omaha, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
8
|
Protocol for further laboratory investigations into the distribution of infectivity of Atypical BSE. EFSA J 2014. [DOI: 10.2903/j.efsa.2014.3798] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
9
|
Mays CE, Kim C, Haldiman T, van der Merwe J, Lau A, Yang J, Grams J, Di Bari MA, Nonno R, Telling GC, Kong Q, Langeveld J, McKenzie D, Westaway D, Safar JG. Prion disease tempo determined by host-dependent substrate reduction. J Clin Invest 2014; 124:847-58. [PMID: 24430187 DOI: 10.1172/jci72241] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 11/07/2013] [Indexed: 01/01/2023] Open
Abstract
The symptoms of prion infection can take years or decades to manifest following the initial exposure. Molecular markers of prion disease include accumulation of the misfolded prion protein (PrPSc), which is derived from its cellular precursor (PrPC), as well as downregulation of the PrP-like Shadoo (Sho) glycoprotein. Given the overlapping cellular environments for PrPC and Sho, we inferred that PrPC levels might also be altered as part of a host response during prion infection. Using rodent models, we found that, in addition to changes in PrPC glycosylation and proteolytic processing, net reductions in PrPC occur in a wide range of prion diseases, including sheep scrapie, human Creutzfeldt-Jakob disease, and cervid chronic wasting disease. The reduction in PrPC results in decreased prion replication, as measured by the protein misfolding cyclic amplification technique for generating PrPSc in vitro. While PrPC downregulation is not discernible in animals with unusually short incubation periods and high PrPC expression, slowly evolving prion infections exhibit downregulation of the PrPC substrate required for new PrPSc synthesis and as a receptor for pathogenic signaling. Our data reveal PrPC downregulation as a previously unappreciated element of disease pathogenesis that defines the extensive, presymptomatic period for many prion strains.
Collapse
|
10
|
Highly infectious prions generated by a single round of microplate-based protein misfolding cyclic amplification. mBio 2013; 5:e00829-13. [PMID: 24381300 PMCID: PMC3884057 DOI: 10.1128/mbio.00829-13] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Measurements of the presence of prions in biological tissues or fluids rely more and more on cell-free assays. Although protein misfolding cyclic amplification (PMCA) has emerged as a valuable, sensitive tool, it is currently hampered by its lack of robustness and rapidity for high-throughput purposes. Here, we made a number of improvements making it possible to amplify the maximum levels of scrapie prions in a single 48-h round and in a microplate format. The amplification rates and the infectious titer of the PMCA-formed prions appeared similar to those derived from the in vivo laboratory bioassays. This enhanced technique also amplified efficiently prions from different species, including those responsible for human variant Creutzfeldt-Jakob disease. This new format should help in developing ultrasensitive, high-throughput prion assays for cognitive, diagnostic, and therapeutic applications. IMPORTANCE The method developed here allows large-scale, fast, and reliable cell-free amplification of subinfectious levels of prions from different species. The sensitivity and rapidity achieved approach or equal those of other recently developed prion-seeded conversion assays. Our simplified assay may be amenable to high-throughput, automated purposes and serve in a complementary manner with other recently developed assays for urgently needed antemortem diagnostic tests, by using bodily fluids containing small amounts of prion infectivity. Such a combination of assays is of paramount importance to reduce the transfusion risk in the human population and to identify asymptomatic carriers of variant Creutzfeldt-Jakob disease.
Collapse
|
11
|
|
12
|
Vascellari S, Orrù CD, Hughson AG, King D, Barron R, Wilham JM, Baron GS, Race B, Pani A, Caughey B. Prion seeding activities of mouse scrapie strains with divergent PrPSc protease sensitivities and amyloid plaque content using RT-QuIC and eQuIC. PLoS One 2012; 7:e48969. [PMID: 23139828 PMCID: PMC3489776 DOI: 10.1371/journal.pone.0048969] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 10/02/2012] [Indexed: 11/18/2022] Open
Abstract
Different transmissible spongiform encephalopathy (TSE)-associated forms of prion protein (e.g. PrPSc) can vary markedly in ultrastructure and biochemical characteristics, but each is propagated in the host. PrPSc propagation involves conversion from its normal isoform, PrPC, by a seeded or templated polymerization mechanism. Such a mechanism is also the basis of the RT-QuIC and eQuIC prion assays which use recombinant PrP (rPrPSen) as a substrate. These ultrasensitive detection assays have been developed for TSE prions of several host species and sample tissues, but not for murine models which are central to TSE pathogenesis research. Here we have adapted RT-QuIC and eQuIC to various murine prions and evaluated how seeding activity depends on glycophosphatidylinositol (GPI) anchoring and the abundance of amyloid plaques and protease-resistant PrPSc (PrPRes). Scrapie brain dilutions up to 10−8 and 10−13 were detected by RT-QuIC and eQuIC, respectively. Comparisons of scrapie-affected wild-type mice and transgenic mice expressing GPI anchorless PrP showed that, although similar concentrations of seeding activity accumulated in brain, the heavily amyloid-laden anchorless mouse tissue seeded more rapid reactions. Next we compared seeding activities in the brains of mice with similar infectivity titers, but widely divergent PrPRes levels. For this purpose we compared the 263K and 139A scrapie strains in transgenic mice expressing P101L PrPC. Although the brains of 263K-affected mice had little immunoblot-detectable PrPRes, RT-QuIC indicated that seeding activity was comparable to that associated with a high-PrPRes strain, 139A. Thus, in this comparison, RT-QuIC seeding activity correlated more closely with infectivity than with PrPRes levels. We also found that eQuIC, which incorporates a PrPSc immunoprecipitation step, detected seeding activity in plasma from wild-type and anchorless PrP transgenic mice inoculated with 22L, 79A and/or RML scrapie strains. Overall, we conclude that these new mouse-adapted prion seeding assays detect diverse types of PrPSc.
Collapse
Affiliation(s)
- Sarah Vascellari
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Christina D. Orrù
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Andrew G. Hughson
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Declan King
- Division of Neurobiology, The Roslin Institute and R(D)SVS, University of Edinburgh, Roslin, Midlothian, United Kingdom
| | - Rona Barron
- Division of Neurobiology, The Roslin Institute and R(D)SVS, University of Edinburgh, Roslin, Midlothian, United Kingdom
| | - Jason M. Wilham
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Gerald S. Baron
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Brent Race
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Alessandra Pani
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Byron Caughey
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
- * E-mail:
| |
Collapse
|
13
|
Chang B, Petersen R, Wisniewski T, Rubenstein R. Influence of Mabs on PrP(Sc) formation using in vitro and cell-free systems. PLoS One 2012; 7:e41626. [PMID: 22848548 PMCID: PMC3407222 DOI: 10.1371/journal.pone.0041626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 06/22/2012] [Indexed: 11/19/2022] Open
Abstract
PrPSc is believed to serve as a template for the conversion of PrPC to the abnormal isoform. This process requires contact between the two proteins and implies that there may be critical contact sites that are important for conversion. We hypothesized that antibodies binding to either PrPcor PrPSc would hinder or prevent the formation of the PrPC–PrPSc complex and thus slow down or prevent the conversion process. Two systems were used to analyze the effect of different antibodies on PrPSc formation: (i) neuroblastoma cells persistently infected with the 22L mouse-adapted scrapie stain, and (ii) protein misfolding cyclic amplification (PMCA), which uses PrPSc as a template or seed, and a series of incubations and sonications, to convert PrPC to PrPSc. The two systems yielded similar results, in most cases, and demonstrate that PrP-specific monoclonal antibodies (Mabs) vary in their ability to inhibit the PrPC–PrPSc conversion process. Based on the numerous and varied Mabs analyzed, the inhibitory effect does not appear to be epitope specific, related to PrPC conformation, or to cell membrane localization, but is influenced by the targeted PrP region (amino vs carboxy).
Collapse
Affiliation(s)
- Binggong Chang
- Departments of Neurology and Physiology/Pharmacology, State University New York Downstate Medical Center, Brooklyn, New York, United States of America
| | - Robert Petersen
- Departments of Pathology, Neuroscience, and Neurology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Thomas Wisniewski
- Departments of Neurology, Psychiatry and Pathology, New York University School of Medicine, New York, New York, United States of America
| | - Richard Rubenstein
- Departments of Neurology and Physiology/Pharmacology, State University New York Downstate Medical Center, Brooklyn, New York, United States of America
- * E-mail:
| |
Collapse
|
14
|
Madsen-Bouterse SA, Zhuang D, O'Rourke KI, Schneider DA. Differential immunoreactivity of goat derived scrapie following in vitro misfolding versus mouse bioassay. Biochem Biophys Res Commun 2012; 423:770-4. [PMID: 22713450 DOI: 10.1016/j.bbrc.2012.06.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 06/11/2012] [Indexed: 02/01/2023]
Abstract
The protein misfolding cyclic amplification (PMCA) assay allows for detection of prion protein misfolding activity in tissues and fluids from sheep with scrapie where it was previously undetected by conventional western blot and immunohistochemistry assays. Studies of goats with scrapie have yet to take advantage of PMCA, which could aid in discerning the risk of transmission between goats and goats to sheep. The aim of the current study was to adapt PMCA for evaluation of scrapie derived from goats. Diluted brain homogenate from scrapie-infected goats (i.e., the scrapie seed, PrP(Sc)) was subjected to PMCA using normal brain homogenate from ovinized transgenic mice (tg338) as the source of normal cellular prion protein (the substrate, PrP(C)). The assay end-point was detection of the proteinase K-resistant misfolded prion protein core (PrP(res)) by western blot. Protein misfolding activity was consistently observed in caprine brain homogenate diluted 10,000-fold after 5 PMCA rounds. Epitope mapping by western blot analyses demonstrated that PrP(res) post-PMCA was readily detected with an N-terminus anti-PrP monoclonal antibody (P4), similar to scrapie inoculum from goats. This was in contrast to limited detection of PrP(res) with P4 following mouse bioassay. The inverse was observed with a monoclonal antibody to the C-terminus (F99/97.6.1). Thus, brain homogenate prepared from uninoculated tg338 served as an appropriate substrate for serial PMCA of PrP(Sc) derived from goats. These observations suggest that concurrent PMCA and bioassay with tg338 could improve characterization of goat derived scrapie.
Collapse
Affiliation(s)
- Sally A Madsen-Bouterse
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA.
| | | | | | | |
Collapse
|
15
|
Barria MA, Gonzalez-Romero D, Soto C. Cyclic amplification of prion protein misfolding. Methods Mol Biol 2012; 849:199-212. [PMID: 22528092 DOI: 10.1007/978-1-61779-551-0_14] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Protein misfolding cyclic amplification (PMCA) is a technique that takes advantage of the nucleation-dependent prion replication process to accelerate the conversion of PrP(C) into PrP(Sc) in the test tube. PMCA uses ultrasound waves to fragment the PrP(Sc) polymers, increasing the amount of seeds present in the infected sample without affecting their ability to act as conversion nuclei. Over the past 5 years, PMCA has become an invaluable technique to study diverse aspects of prions. The PMCA technology has been used by several groups to understand the molecular mechanism of prion replication, the cellular factors involved in prion propagation, the intriguing phenomena of prion strains and species barriers, to detect PrP(Sc) in tissues and biological fluids, and to screen for inhibitors against prion replication. In this chapter, we describe a detailed protocol of the PMCA technique, highlighting some of the important technical aspects to obtain a successful and reproducible application of the technology.
Collapse
Affiliation(s)
- Marcelo A Barria
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas Houston Medical School, Houston, TX, USA
| | | | | |
Collapse
|
16
|
Smith JD, Moylan JS, Hardin BJ, Chambers MA, Estus S, Telling GC, Reid MB. Prion protein expression and functional importance in skeletal muscle. Antioxid Redox Signal 2011; 15:2465-75. [PMID: 21453198 PMCID: PMC3176344 DOI: 10.1089/ars.2011.3945] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
UNLABELLED Skeletal muscle expresses prion protein (PrP) that buffers oxidant activity in neurons. AIMS We hypothesize that PrP deficiency would increase oxidant activity in skeletal muscle and alter redox-sensitive functions, including contraction and glucose uptake. We used real-time polymerase chain reaction and Western blot analysis to measure PrP mRNA and protein in human diaphragm, five murine muscles, and muscle-derived C2C12 cells. Effects of PrP deficiency were tested by comparing PrP-deficient mice versus wild-type mice and morpholino-knockdown versus vehicle-treated myotubes. Oxidant activity (dichlorofluorescin oxidation) and specific force were measured in murine diaphragm fiber bundles. RESULTS PrP content differs among mouse muscles (gastrocnemius>extensor digitorum longus, EDL>tibialis anterior, TA; soleus>diaphragm) as does glycosylation (di-, mono-, nonglycosylated; gastrocnemius, EDL, TA=60%, 30%, 10%; soleus, 30%, 40%, 30%; diaphragm, 30%, 30%, 40%). PrP is predominantly di-glycosylated in human diaphragm. PrP deficiency decreases body weight (15%) and EDL mass (9%); increases cytosolic oxidant activity (fiber bundles, 36%; C2C12 myotubes, 7%); and depresses specific force (12%) in adult (8-12 mos) but not adolescent (2 mos) mice. INNOVATION This study is the first to directly assess a role of prion protein in skeletal muscle function. CONCLUSIONS PrP content varies among murine skeletal muscles and is essential for maintaining normal redox homeostasis, muscle size, and contractile function in adult animals.
Collapse
Affiliation(s)
- Jeffrey D Smith
- Department of Physiology, University of Kentucky, Lexington, 40536, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
In vitro amplification of misfolded prion protein using lysate of cultured cells. PLoS One 2011; 6:e18047. [PMID: 21464935 PMCID: PMC3065467 DOI: 10.1371/journal.pone.0018047] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Accepted: 02/18/2011] [Indexed: 11/19/2022] Open
Abstract
Protein misfolding cyclic amplification (PMCA) recapitulates the prion protein (PrP) conversion process under cell-free conditions. PMCA was initially established with brain material and then with further simplified constituents such as partially purified and recombinant PrP. However, availability of brain material from some species or brain material from animals with certain mutations or polymorphisms within the PrP gene is often limited. Moreover, preparation of native PrP from mammalian cells and tissues, as well as recombinant PrP from bacterial cells, involves time-consuming purification steps. To establish a convenient and versatile PMCA procedure unrestricted to the availability of substrate sources, we attempted to conduct PMCA with the lysate of cells that express cellular PrP (PrPC). PrPSc was efficiently amplified with lysate of rabbit kidney epithelial RK13 cells stably transfected with the mouse or Syrian hamster PrP gene. Furthermore, PMCA was also successful with lysate of other established cell lines of neuronal or non-neuronal origins. Together with the data showing that the abundance of PrPC in cell lysate was a critical factor to drive efficient PrPSc amplification, our results demonstrate that cell lysate in which PrPC is present abundantly serves as an excellent substrate source for PMCA.
Collapse
|
18
|
Highly efficient protein misfolding cyclic amplification. PLoS Pathog 2011; 7:e1001277. [PMID: 21347353 PMCID: PMC3037363 DOI: 10.1371/journal.ppat.1001277] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 01/07/2011] [Indexed: 01/13/2023] Open
Abstract
Protein misfolding cyclic amplification (PMCA) provides faithful replication of mammalian prions in vitro and has numerous applications in prion research. However, the low efficiency of conversion of PrP(C) into PrP(Sc) in PMCA limits the applicability of PMCA for many uses including structural studies of infectious prions. It also implies that only a small sub-fraction of PrP(C) may be available for conversion. Here we show that the yield, rate, and robustness of prion conversion and the sensitivity of prion detection are significantly improved by a simple modification of the PMCA format. Conducting PMCA reactions in the presence of Teflon beads (PMCAb) increased the conversion of PrP(C) into PrP(Sc) from ∼10% to up to 100%. In PMCAb, a single 24-hour round consistently amplified PrP(Sc) by 600-700-fold. Furthermore, the sensitivity of prion detection in one round (24 hours) increased by 2-3 orders of magnitude. Using serial PMCAb, a 10¹²-fold dilution of scrapie brain material could be amplified to the level detectible by Western blotting in 3 rounds (72 hours). The improvements in amplification efficiency were observed for the commonly used hamster 263K strain and for the synthetic strain SSLOW that otherwise amplifies poorly in PMCA. The increase in the amplification efficiency did not come at the expense of prion replication specificity. The current study demonstrates that poor conversion efficiencies observed previously have not been due to the scarcity of a sub-fraction of PrP(C) susceptible to conversion nor due to limited concentrations of essential cellular cofactors required for conversion. The new PMCAb format offers immediate practical benefits and opens new avenues for developing fast ultrasensitive assays and for producing abundant quantities of PrP(Sc)in vitro.
Collapse
|
19
|
The suppression of prion propagation using poly-L-lysine by targeting plasminogen that stimulates prion protein conversion. Biomaterials 2011; 32:3141-9. [PMID: 21288569 DOI: 10.1016/j.biomaterials.2011.01.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 01/06/2011] [Indexed: 11/23/2022]
Abstract
Poly-l-lysine (PLL), a homopolymer of amino acid l-lysine (LL), has been frequently used for drug delivery. Here, we report that PLL is an effective agent to inhibit propagation of prions that cause fatal and incurable neurologic disorders in humans and animals, termed prion diseases. In our recent investigation on prion propagation facilitated by conversion of the cellular prion protein (PrP) to the misfolded, disease-associated PrP (PrP(Sc)), we demonstrated that plasminogen stimulates PrP conversion as a cellular cofactor. In the current study, we targeted plasminogen using PLL and assessed its anti-prion efficacy. The results showed that PLL strongly inhibited PrP(Sc) propagation in the cell-free, cell culture, and mouse models of prion disease. These results confirm the role of plasminogen in PrP(Sc) propagation, validates plasminogen as a therapeutic target to combat prion disease, and suggests PLL as a potential anti-prion agent. Therefore, our study represents a proof-of-concept that targeting plasminogen, a cofactor for PrP conversion, using PLL results in suppression of prion propagation, which represents a successful translation of our understanding on details of prion propagation into a potential therapeutic strategy for prion diseases.
Collapse
|
20
|
Jones M, Peden AH, Head MW, Ironside JW. The application of in vitro cell-free conversion systems to human prion diseases. Acta Neuropathol 2011; 121:135-43. [PMID: 20535485 DOI: 10.1007/s00401-010-0708-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 05/20/2010] [Accepted: 05/30/2010] [Indexed: 01/15/2023]
Abstract
A key event in the pathogenesis of prion diseases is the conversion of the normal cellular isoform of the prion protein into the disease-associated isoform, but the mechanisms operating in this critical event are not yet fully understood. A number of novel approaches have recently been developed to study factors influencing this process. One of these, the protein misfolding cyclical amplification (PMCA) technique, has been used to explore defined factors influencing the conversion of cellular prion protein in a cell-free model system. Although initially developed in animal models, this technique has been increasingly applied to human prion diseases. Recent studies have focused on the role of different isoforms of the disease-associated human prion protein and the effects of the naturally occurring polymorphism at codon 129 in the human prion protein gene on the conversion process, improving our understanding of the interaction between host and agent factors that influence the wide range of phenotypes in human prion diseases. This technique also allows a greatly enhanced sensitivity of detection of disease-associated prion protein in human tissues and fluids, which is potentially applicable to disease screening, particularly for variant Creutzfeldt-Jakob disease. The PMCA technique can also be used to model human susceptibility to a range of prions of non-human origin, which is likely to prove of considerable future interest as more novel and potentially pathogenic prion diseases are identified in animal species that form part of the human food chain.
Collapse
Affiliation(s)
- Michael Jones
- Components and vCJD Research, National Science Laboratories, Scottish National Blood Transfusion Service, Edinburgh, EH 17 7QT, UK
| | | | | | | |
Collapse
|
21
|
Mays CE, Ryou C. Plasminogen stimulates propagation of protease‐resistant prion protein
in vitro. FASEB J 2010. [DOI: 10.1096/fj.10.163600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Charles E. Mays
- Sanders‐Brown Center on AgingDepartment of MicrobiologyImmunology and Molecular GeneticsUniversity of Kentucky College of Medicine Lexington Kentucky USA
| | - Chongsuk Ryou
- Sanders‐Brown Center on AgingDepartment of MicrobiologyImmunology and Molecular GeneticsUniversity of Kentucky College of Medicine Lexington Kentucky USA
| |
Collapse
|
22
|
Mays CE, Ryou C. Plasminogen stimulates propagation of protease-resistant prion protein in vitro. FASEB J 2010; 24:5102-12. [PMID: 20732953 DOI: 10.1096/fj.10-163600] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
To clarify the role of plasminogen as a cofactor for prion propagation, we conducted functional assays using a cell-free prion protein (PrP) conversion assay termed protein misfolding cyclic amplification (PMCA) and prion-infected cell lines. Here, we report that plasminogen stimulates propagation of the protease-resistant scrapie PrP (PrP(Sc)). Compared to control PMCA conducted without plasminogen, addition of plasminogen in PMCA using wild-type brain material significantly increased PrP conversion, with an EC(50) = ∼56 nM. PrP conversion in PMCA was substantially less efficient with plasminogen-deficient brain material than with wild-type material. The activity stimulating PrP conversion was specific for plasminogen and conserved in its kringle domains. Such activity was abrogated by modification of plasminogen structure and interference of PrP-plasminogen interaction. Kinetic analysis of PrP(Sc) generation demonstrated that the presence of plasminogen in PMCA enhanced the PrP(Sc) production rate to ∼0.97 U/μl/h and reduced turnover time to ∼1 h compared to those (∼0.4 U/μl/h and ∼2.5 h) obtained without supplementation. Furthermore, as observed in PMCA, plasminogen and kringles promoted PrP(Sc) propagation in ScN2a and Elk 21(+) cells. Our results demonstrate that plasminogen functions in stimulating conversion processes and represents the first cellular protein cofactor that enhances the hypothetical mechanism of prion propagation.
Collapse
Affiliation(s)
- Charles E Mays
- Sanders-Brown Center on Aging and Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | | |
Collapse
|