1
|
Stefanova EE, Dychiao JVT, Chinn MC, Borhani M, Scott AL. P2X7 regulates ependymo-radial glial cell proliferation in adult Danio rerio following spinal cord injury. Biol Open 2024; 13:bio060270. [PMID: 38526172 PMCID: PMC11033521 DOI: 10.1242/bio.060270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/11/2024] [Indexed: 03/26/2024] Open
Abstract
In contrast to mammals, zebrafish undergo successful neural regeneration following spinal cord injury. Spinal cord ependymo-radial glia (ERG) undergo injury-induced proliferation and neuronal differentiation to replace damaged cells and restore motor function. However, the molecular cues driving these processes remain elusive. Here, we demonstrate that the evolutionarily conserved P2X7 receptors are widely distributed on neurons and ERG within the zebrafish spinal cord. At the protein level, the P2X7 receptor expressed in zebrafish is a truncated splice variant of the full-length variant found in mammals. The protein expression of this 50 kDa isoform was significantly downregulated at 7 days post-injury (dpi) but returned to basal levels at 14 dpi when compared to naïve controls. Pharmacological activation of P2X7 following SCI resulted in a greater number of proliferating cells around the central canal by 7 dpi but did not affect neuronal differentiation at 14 dpi. Our findings suggest that unlike in mammals, P2X7 signaling may not play a maladaptive role following SCI in adult zebrafish and may also work to curb the proliferative response of ERG following injury.
Collapse
Affiliation(s)
- Eva E. Stefanova
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | - Mavis C. Chinn
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Matin Borhani
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Angela L. Scott
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
2
|
Wang H, Wei Y, Wang N. Purinergic pathways and their clinical use in the treatment of acute myeloid leukemia. Purinergic Signal 2024:10.1007/s11302-024-09997-8. [PMID: 38446337 DOI: 10.1007/s11302-024-09997-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/21/2024] [Indexed: 03/07/2024] Open
Abstract
Despite the use of various therapies such as hematopoietic stem cell transplantation and chimeric antigen receptor T cell therapy (CAR-T), the prognosis of patients with acute myeloid leukemia (AML) is still generally poor. However, immunotherapy is currently a hot topic in the treatment of hematological tumors. Extracellular adenosine triphosphate (ATP) can be converted to adenosine diphosphate (ADP) via CD39, and ADP can be converted to adenosine via CD73, which can bind to P1 and P2 receptors to exert immunomodulatory effects. Research on the mechanism of the purinergic signaling pathway can provide a new direction for the treatment of AML, and inhibitors of this signaling pathway have been discovered by several researchers and gradually applied in the clinic. In this paper, the mechanism of the purinergic signaling pathway and its clinical application are described, revealing a new target for the treatment of AML and subsequent improvement in patient prognosis.
Collapse
Affiliation(s)
- Huijuan Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yujie Wei
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Na Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| |
Collapse
|
3
|
Ai Y, Wang H, Liu L, Qi Y, Tang S, Tang J, Chen N. Purine and purinergic receptors in health and disease. MedComm (Beijing) 2023; 4:e359. [PMID: 37692109 PMCID: PMC10484181 DOI: 10.1002/mco2.359] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023] Open
Abstract
Purines and purinergic receptors are widely distributed throughout the human body. Purine molecules within cells play crucial roles in regulating energy metabolism and other cellular processes, while extracellular purines transmit signals through specific purinergic receptors. The ubiquitous purinergic signaling maintains normal neural excitability, digestion and absorption, respiratory movement, and other complex physiological activities, and participates in cell proliferation, differentiation, migration, and death. Pathological dysregulation of purinergic signaling can result in the development of various diseases, including neurodegeneration, inflammatory reactions, and malignant tumors. The dysregulation or dysfunction of purines and purinergic receptors has been demonstrated to be closely associated with tumor progression. Compared with other subtypes of purinergic receptors, the P2X7 receptor (P2X7R) exhibits distinct characteristics (i.e., a low affinity for ATP, dual functionality upon activation, the mediation of ion channels, and nonselective pores formation) and is considered a promising target for antitumor therapy, particularly in patients with poor response to immunotherapy This review summarizes the physiological and pathological significance of purinergic signaling and purinergic receptors, analyzes their complex relationship with tumors, and proposes potential antitumor immunotherapy strategies from tumor P2X7R inhibition, tumor P2X7R overactivation, and host P2X7R activation. This review provides a reference for clinical immunotherapy and mechanism investigation.
Collapse
Affiliation(s)
- Yanling Ai
- Department of OncologyHospital of Chengdu University of Traditional Chinese MedicineChengduChina
| | - Hengyi Wang
- Department of Infectious DiseasesHospital of Chengdu University of Traditional Chinese MedicineChengduChina
| | - Lu Liu
- School of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Yulin Qi
- Department of OphthalmologyThe First Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhou University of Chinese MedicineGuangzhouChina
- Postdoctoral Research Station of Guangzhou University of Chinese MedicineGuangzhouChina
| | - Shiyun Tang
- Hospital of Chengdu University of Traditional Chinese MedicineChengduChina
| | - Jianyuan Tang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan ProvinceHospital of Chengdu University of Traditional Chinese MedicineChengduChina
| | - Nianzhi Chen
- State Key Laboratory of Ultrasound in Medicine and EngineeringCollege of Biomedical EngineeringChongqing Medical UniversityChongqingChina
| |
Collapse
|
4
|
Ledderose S, Rodler S, Eismann L, Ledderose G, Rudelius M, Junger WG, Ledderose C. P2X1 and P2X7 Receptor Overexpression Is a Negative Predictor of Survival in Muscle-Invasive Bladder Cancer. Cancers (Basel) 2023; 15:2321. [PMID: 37190249 PMCID: PMC10136747 DOI: 10.3390/cancers15082321] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/10/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
Bladder cancer is amongst the most common causes of cancer death worldwide. Muscle-invasive bladder cancer (MIBC) bears a particularly poor prognosis. Overexpression of purinergic P2X receptors (P2XRs) has been associated with worse outcome in several malignant tumors. Here, we investigated the role of P2XRs in bladder cancer cell proliferation in vitro and the prognostic value of P2XR expression in MIBC patients. Cell culture experiments with T24, RT4, and non-transformed TRT-HU-1 cells revealed a link between high ATP concentrations in the cell culture supernatants of bladder cell lines and a higher grade of malignancy. Furthermore, proliferation of highly malignant T24 bladder cancer cells depended on autocrine signaling through P2X receptors. P2X1R, P2X4R, and P2X7R expression was immunohistochemically analyzed in tumor specimens from 173 patients with MIBC. High P2X1R expression was associated with pathological parameters of disease progression and reduced survival time. High combined expression of P2X1R and P2X7R increased the risk of distant metastasis and was an independent negative predictor of overall and tumor-specific survival in multivariate analyses. Our results suggest that P2X1R/P2X7R expression scores are powerful negative prognostic markers in MIBC patients and that P2XR-mediated pathways are potential targets for novel therapeutic strategies in bladder cancer.
Collapse
Affiliation(s)
- Stephan Ledderose
- Institute of Pathology, Ludwig Maximilian University, 80337 Munich, Germany
| | - Severin Rodler
- Department of Urology, Ludwig Maximilian University, 81377 Munich, Germany
| | - Lennert Eismann
- Department of Urology, Ludwig Maximilian University, 81377 Munich, Germany
| | - Georg Ledderose
- Department of Oto-Rhino-Laryngology, Ludwig Maximilian University, 81377 Munich, Germany
| | - Martina Rudelius
- Institute of Pathology, Ludwig Maximilian University, 80337 Munich, Germany
| | - Wolfgang G. Junger
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Department of Surgery, University of California San Diego Health, La Jolla, CA 92037, USA
| | - Carola Ledderose
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Department of Surgery, University of California San Diego Health, La Jolla, CA 92037, USA
| |
Collapse
|
5
|
Immanuel T, Li J, Green TN, Bogdanova A, Kalev-Zylinska ML. Deregulated calcium signaling in blood cancer: Underlying mechanisms and therapeutic potential. Front Oncol 2022; 12:1010506. [PMID: 36330491 PMCID: PMC9623116 DOI: 10.3389/fonc.2022.1010506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/21/2022] [Indexed: 02/05/2023] Open
Abstract
Intracellular calcium signaling regulates diverse physiological and pathological processes. In solid tumors, changes to calcium channels and effectors via mutations or changes in expression affect all cancer hallmarks. Such changes often disrupt transport of calcium ions (Ca2+) in the endoplasmic reticulum (ER) or mitochondria, impacting apoptosis. Evidence rapidly accumulates that this is similar in blood cancer. Principles of intracellular Ca2+ signaling are outlined in the introduction. We describe different Ca2+-toolkit components and summarize the unique relationship between extracellular Ca2+ in the endosteal niche and hematopoietic stem cells. The foundational data on Ca2+ homeostasis in red blood cells is discussed, with the demonstration of changes in red blood cell disorders. This leads to the role of Ca2+ in neoplastic erythropoiesis. Then we expand onto the neoplastic impact of deregulated plasma membrane Ca2+ channels, ER Ca2+ channels, Ca2+ pumps and exchangers, as well as Ca2+ sensor and effector proteins across all types of hematologic neoplasms. This includes an overview of genetic variants in the Ca2+-toolkit encoding genes in lymphoid and myeloid cancers as recorded in publically available cancer databases. The data we compiled demonstrate that multiple Ca2+ homeostatic mechanisms and Ca2+ responsive pathways are altered in hematologic cancers. Some of these alterations may have genetic basis but this requires further investigation. Most changes in the Ca2+-toolkit do not appear to define/associate with specific disease entities but may influence disease grade, prognosis, treatment response, and certain complications. Further elucidation of the underlying mechanisms may lead to novel treatments, with the aim to tailor drugs to different patterns of deregulation. To our knowledge this is the first review of its type in the published literature. We hope that the evidence we compiled increases awareness of the calcium signaling deregulation in hematologic neoplasms and triggers more clinical studies to help advance this field.
Collapse
Affiliation(s)
- Tracey Immanuel
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Jixia Li
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
- Department of Laboratory Medicine, School of Medicine, Foshan University, Foshan City, China
| | - Taryn N. Green
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Anna Bogdanova
- Red Blood Cell Research Group, Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zürich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland
| | - Maggie L. Kalev-Zylinska
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
- Haematology Laboratory, Department of Pathology and Laboratory Medicine, Auckland City Hospital, Auckland, New Zealand
| |
Collapse
|
6
|
He X, Zhang Y, Xu Y, Xie L, Yu Z, Zheng J. Function of the P2X7 receptor in hematopoiesis and leukemogenesis. Exp Hematol 2021; 104:40-47. [PMID: 34687808 DOI: 10.1016/j.exphem.2021.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/04/2021] [Accepted: 10/08/2021] [Indexed: 10/20/2022]
Abstract
Adenosine triphosphate (ATP) accumulates at tissue injury and inflammation sites. The P2X7 receptor is an ATP-gated ion channel known for its cytotoxic activity. However, P2X7 receptors also play important roles in the growth of cancer and the immune regulation. Functional P2X7 receptor is widely expressed in murine and human hematopoietic stem cells and their lineages, including monocytes, macrophages, mast cells, and B or T lymphocytes, and participates in various physiological and pathologic activities. Therefore, it is not surprising that the P2X7 receptor is important for the normal hematopoiesis and leukemogenesis. Here, we summarize the biological functions of P2X7 receptor during both normal hematopoiesis and leukemogenesis. In particular, we found that ATP levels are dramatically increased in the leukemic bone marrow niche and the fates of leukemia-initiating cells of acute myeloid leukemia are tightly controlled by P2X7 expression and ATP-P2X7-mediated signaling pathways. These findings strongly indicate that the P2X7 receptor may be considered a potential biomarker of hematological malignancies in bone marrow niches, and its antagonists may be useful for the leukemia treatment in addition to the traditional chemotherapy.
Collapse
Affiliation(s)
- Xiaoxiao He
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yaping Zhang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yilu Xu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Xie
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhuo Yu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junke Zheng
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
7
|
Sharma A, Ramena GT, Elble RC. Advances in Intracellular Calcium Signaling Reveal Untapped Targets for Cancer Therapy. Biomedicines 2021; 9:1077. [PMID: 34572262 PMCID: PMC8466575 DOI: 10.3390/biomedicines9091077] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/15/2021] [Accepted: 07/18/2021] [Indexed: 02/07/2023] Open
Abstract
Intracellular Ca2+ distribution is a tightly regulated process. Numerous Ca2+ chelating, storage, and transport mechanisms are required to maintain normal cellular physiology. Ca2+-binding proteins, mainly calmodulin and calbindins, sequester free intracellular Ca2+ ions and apportion or transport them to signaling hubs needing the cations. Ca2+ channels, ATP-driven pumps, and exchangers assist the binding proteins in transferring the ions to and from appropriate cellular compartments. Some, such as the endoplasmic reticulum, mitochondria, and lysosomes, act as Ca2+ repositories. Cellular Ca2+ homeostasis is inefficient without the active contribution of these organelles. Moreover, certain key cellular processes also rely on inter-organellar Ca2+ signaling. This review attempts to encapsulate the structure, function, and regulation of major intracellular Ca2+ buffers, sensors, channels, and signaling molecules before highlighting how cancer cells manipulate them to survive and thrive. The spotlight is then shifted to the slow pace of translating such research findings into anticancer therapeutics. We use the PubMed database to highlight current clinical studies that target intracellular Ca2+ signaling. Drug repurposing and improving the delivery of small molecule therapeutics are further discussed as promising strategies for speeding therapeutic development in this area.
Collapse
Affiliation(s)
- Aarushi Sharma
- Department of Pharmacology and Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL 62702, USA;
| | - Grace T. Ramena
- Department of Aquaculture, University of Arkansas, Pine Bluff, AR 71601, USA;
| | - Randolph C. Elble
- Department of Pharmacology and Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL 62702, USA;
| |
Collapse
|
8
|
To inhibit or to boost the ATP/P2RX7 pathway to fight cancer-that is the question. Purinergic Signal 2021; 17:619-631. [PMID: 34347213 DOI: 10.1007/s11302-021-09811-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/09/2021] [Indexed: 12/12/2022] Open
Abstract
Despite new biological insights and recent therapeutic advances, many tumors remain at baseline during treatments. Therefore, there is an urgent need to find new therapeutic strategies to improve the care of patients with solid tumors. P2RX7 receptor (P2XR7), an ATP-gated ion channel characterized by its ability to form large pore within the cell membrane, is described by most of the investigators as a "chef d'orchestre" of the antitumor immune response. The purpose of this review is to detail the recent information concerning different cellular mechanisms linking P2RX7 to hallmarks of cancer and to discuss different progresses in elucidating how activation of the ATP/P2RX7/NLRP3/IL-18 pathway is a very promising approach to fight cancer progression by increasing antitumor immune responses.
Collapse
|
9
|
The ATP/P2X7 axis is a crucial regulator of leukemic initiating cells proliferation and homing and an emerging therapeutic target in acute myeloid leukemia. Purinergic Signal 2021; 17:319-321. [PMID: 34075525 DOI: 10.1007/s11302-021-09789-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 12/14/2022] Open
|
10
|
Feng W, Yang X, Wang L, Wang R, Yang F, Wang H, Liu X, Ren Q, Zhang Y, Zhu X, Zheng G. P2X7 promotes the progression of MLL-AF9 induced acute myeloid leukemia by upregulation of Pbx3. Haematologica 2021; 106:1278-1289. [PMID: 32165482 PMCID: PMC8094107 DOI: 10.3324/haematol.2019.243360] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Indexed: 12/21/2022] Open
Abstract
Nucleotides mediate intercellular communication by activating purinergic receptors and take part in various physiological and pathological processes. Abnormal purinergic signaling plays important roles in malignant progression. P2X7, which belongs to the P2X family of purinergic receptors, is abnormally expressed in various types of malignancies including leukemia. However, its role and molecular mechanism in leukemia have not been elucidated. Here, we analyzed the correlation between P2X7 expression and AML clinical outcome; explored the role and mechanism of P2X7 in AML progression by using mouse acute myeloid leukemia (AML), nude mouse xenograft and patient-derived xenograft models. High levels of P2X7 expression were correlated with worse survival in AML. P2X7 was highly expressed in MLL-rearranged AML. Furthermore, P2X7 accelerated the progression of MLL-rearranged AML by both promoting cell proliferation and increasing leukemia stem cell (LSC) levels. Moreover, P2X7 caused upregulation of Pbx3 accounts for its pro-leukemic effects. The P2X7-Pbx3 pathway might also contribute to the progression of other types of leukemia as well as solid tumors with high levels of P2X7 expression. Our study provides new insights into the malignant progression caused by abnormal purinergic signaling.
Collapse
Affiliation(s)
- Wenli Feng
- Institute of Hematology and Blood Diseases Hospital, Peking Union Medical College, China
| | - Xiao Yang
- Institute of Hematology and Blood Diseases Hospital, Peking Union Medical College, China
| | - Lina Wang
- Institute of Hematology and Blood Diseases Hospital, Peking Union Medical College, China
| | - Rong Wang
- Institute of Hematology and Blood Diseases Hospital, Peking Union Medical College, China
| | - Feifei Yang
- Institute of Hematology and Blood Diseases Hospital, Peking Union Medical College, China
| | - Hao Wang
- Institute of Hematology and Blood Diseases Hospital, Peking Union Medical College, China
| | - Xiaoli Liu
- Institute of Hematology and Blood Diseases Hospital, Peking Union Medical College, China
| | - Qian Ren
- Institute of Hematology and Blood Diseases Hospital, Peking Union Medical College, China
| | - Yingchi Zhang
- Institute of Hematology and Blood Diseases Hospital, Peking Union Medical College, China
| | - Xiaofan Zhu
- Institute of Hematology and Blood Diseases Hospital, Peking Union Medical College, China
| | - Guoguang Zheng
- Institute of Hematology and Blood Diseases Hospital, Peking Union Medical College, China
| |
Collapse
|
11
|
De Marchi E, Pegoraro A, Adinolfi E. P2X7 Receptor in Hematological Malignancies. Front Cell Dev Biol 2021; 9:645605. [PMID: 33763425 PMCID: PMC7982859 DOI: 10.3389/fcell.2021.645605] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/01/2021] [Indexed: 12/21/2022] Open
Abstract
The P2X7 receptor is an ion channel gated by the nucleotide ATP, known for its role in immune responses and recently emerging as a critical onco-promoting factor. Lymphocytes, myeloid cells, and their precursors were among the first cells proved to express a functional P2X7 receptor; therefore, it is not surprising that lymphoproliferative and myeloproliferative diseases, also known as hematological malignancies, were shown to be related in their insurgence and progression to P2X7 alterations. Here, we overview established and recent literature relating P2X7 with the biological mechanisms underlying leukemias, lymphomas, and multiple myeloma development. Particular attention is paid to studies published in the very recent past correlating P2X7 with ATP concentration in the leukemic microenvironment and P2X7 overexpression to acute myeloid leukemia aggressiveness and response to chemotherapy. The described literature strongly suggests that P2X7 and its genetic variants could be regarded as potential new biomarkers in hematological malignancies and that both P2X7 antagonists and agonists could emerge as new therapeutic tools alone or in combination with traditional chemotherapy.
Collapse
Affiliation(s)
- Elena De Marchi
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Anna Pegoraro
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Elena Adinolfi
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
12
|
Di Virgilio F, Vultaggio-Poma V, Sarti AC. P2X receptors in cancer growth and progression. Biochem Pharmacol 2020; 187:114350. [PMID: 33253643 DOI: 10.1016/j.bcp.2020.114350] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023]
Abstract
It is increasingly appreciated that ion channels have a crucial role in tumors, either as promoters of cancer cell growth, or modulators of immune cell functions, or both. Among ion channels, P2X receptors have a special status because they are gated by ATP, a common and abundant component of the tumor microenvironment. Furthermore, one P2X receptor, i.e. P2X7, may also function as a conduit for ATP release, thus fuelling the increased extracellular ATP level in the tumor interstitium. These findings show that P2X receptors and extracellular ATP are indissoluble partners and key regulators of tumor growth, and suggest the exploitation of the extracellular ATP-P2X partnership to develop innovative therapeutic approaches to cancer.
Collapse
|
13
|
He J, Zhou Y, Arredondo Carrera HM, Sprules A, Neagu R, Zarkesh SA, Eaton C, Luo J, Gartland A, Wang N. Inhibiting the P2X4 Receptor Suppresses Prostate Cancer Growth In Vitro and In Vivo, Suggesting a Potential Clinical Target. Cells 2020; 9:cells9112511. [PMID: 33233569 PMCID: PMC7699771 DOI: 10.3390/cells9112511] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/15/2020] [Accepted: 11/18/2020] [Indexed: 12/13/2022] Open
Abstract
Prostate cancer (PCa) is the most frequently diagnosed cancer in men, causing considerable morbidity and mortality. The P2X4 receptor (P2X4R) is the most ubiquitously expressed P2X receptor in mammals and is positively associated with tumorigenesis in many cancer types. However, its involvement in PCa progression is less understood. We hypothesized that P2X4R activity enhanced tumour formation by PCa cells. We showed that P2X4R was the most highly expressed, functional P2 receptor in these cells using quantitative reverse transcription PCR (RT-PCR) and a calcium influx assay. The effect of inhibiting P2X4R on PCa (PC3 and C4-2B4 cells) viability, proliferation, migration, invasion, and apoptosis were examined using the selective P2XR4 antagonists 5-BDBD and PSB-12062. The results demonstrated that inhibiting P2X4R impaired the growth and mobility of PCa cells but not apoptosis. In BALB/c immunocompromised nude mice inoculated with human PC3 cells subcutaneously, 5-BDBD showed anti-tumourigenic effects. Finally, a retrospective analysis of P2RX4 expression in clinical datasets (GDS1439, GDS1746, and GDS3289) suggested that P2X4R was positively associated with PCa malignancy. These studies suggest that P2X4R has a role in enhancing PCa tumour formation and is a clinically targetable candidate for which inhibitors are already available and have the potential to suppress disease progression.
Collapse
Affiliation(s)
- Jiepei He
- The Mellanby Centre for Bone Research, Department of Oncology and Metabolism, The University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK; (J.H.); (Y.Z.); (H.M.A.C.); (A.S.); (R.N.); (S.A.Z.); (C.E.); (A.G.)
| | - Yuhan Zhou
- The Mellanby Centre for Bone Research, Department of Oncology and Metabolism, The University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK; (J.H.); (Y.Z.); (H.M.A.C.); (A.S.); (R.N.); (S.A.Z.); (C.E.); (A.G.)
| | - Hector M. Arredondo Carrera
- The Mellanby Centre for Bone Research, Department of Oncology and Metabolism, The University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK; (J.H.); (Y.Z.); (H.M.A.C.); (A.S.); (R.N.); (S.A.Z.); (C.E.); (A.G.)
| | - Alexandria Sprules
- The Mellanby Centre for Bone Research, Department of Oncology and Metabolism, The University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK; (J.H.); (Y.Z.); (H.M.A.C.); (A.S.); (R.N.); (S.A.Z.); (C.E.); (A.G.)
| | - Ramona Neagu
- The Mellanby Centre for Bone Research, Department of Oncology and Metabolism, The University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK; (J.H.); (Y.Z.); (H.M.A.C.); (A.S.); (R.N.); (S.A.Z.); (C.E.); (A.G.)
| | - Sayyed Amin Zarkesh
- The Mellanby Centre for Bone Research, Department of Oncology and Metabolism, The University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK; (J.H.); (Y.Z.); (H.M.A.C.); (A.S.); (R.N.); (S.A.Z.); (C.E.); (A.G.)
| | - Colby Eaton
- The Mellanby Centre for Bone Research, Department of Oncology and Metabolism, The University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK; (J.H.); (Y.Z.); (H.M.A.C.); (A.S.); (R.N.); (S.A.Z.); (C.E.); (A.G.)
| | - Jian Luo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China;
| | - Alison Gartland
- The Mellanby Centre for Bone Research, Department of Oncology and Metabolism, The University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK; (J.H.); (Y.Z.); (H.M.A.C.); (A.S.); (R.N.); (S.A.Z.); (C.E.); (A.G.)
| | - Ning Wang
- The Mellanby Centre for Bone Research, Department of Oncology and Metabolism, The University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK; (J.H.); (Y.Z.); (H.M.A.C.); (A.S.); (R.N.); (S.A.Z.); (C.E.); (A.G.)
- Correspondence: ; Tel.: +44-(0)-114-2159216
| |
Collapse
|
14
|
Pegoraro A, Orioli E, De Marchi E, Salvestrini V, Milani A, Di Virgilio F, Curti A, Adinolfi E. Differential sensitivity of acute myeloid leukemia cells to daunorubicin depends on P2X7A versus P2X7B receptor expression. Cell Death Dis 2020; 11:876. [PMID: 33071281 PMCID: PMC7569086 DOI: 10.1038/s41419-020-03058-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 02/08/2023]
Abstract
Acute myeloid leukemia (AML) is a common adult leukemia often arising from a preexistent myelodysplastic syndrome (MDS). High mortality rates of AML are caused by relapse and chemoresistance; therefore, we analyzed the role of P2X7 receptor (P2X7R) splice variants A and B in AML progression and response to chemotherapy. The expression of P2X7RA and P2X7RB was investigated in samples obtained from MDS and AML untreated subjects or AML patients in relapse or remission after chemotherapy. Both P2X7RA and P2X7RB were overexpressed in AML versus MDS suggesting a disease-promoting function. However, in relapsing patients, P2X7RA was downmodulated, while P2X7RB was upmodulated. Treatment with daunorubicin (DNR), one of the main chemotherapeutics for AML, upregulated P2X7RB expression while reducing P2X7RA mRNA in AML blasts. Interestingly, DNR administration also caused ATP release from AML blasts suggesting that, following chemotherapy, activation of the receptor isoforms via their agonist will be responsible for the differential survival of blasts overexpressing P2X7RA versus P2X7RB. Indeed, AML blasts expressing high levels of P2X7RA were more prone to cell death if exposed to DNR, while those overexpressing P2X7RB were more vital and even protected against DNR toxicity. These data were reproducible also in HEK-293 cells separately expressing P2X7RA and B. P2X7RA facilitation of DNR toxicity was in part due to increased uptake of the drug inside the cell that was lost upon P2X7RB expression. Finally, in an AML xenograft model administration of DNR or the P2X7R antagonist, AZ10606120 significantly reduced leukemic growth and coadministration of the drugs proved more efficacious than single treatment as it reduced both P2X7RA and P2X7RB levels and downmodulated c-myc oncogene. Taken together, our data suggest P2X7RA and P2X7RB as potential prognostic markers for AML and P2X7RB as a therapeutic target to overcome chemoresistance in AML relapsing patients.
Collapse
Affiliation(s)
- Anna Pegoraro
- Department of Medical Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Elisa Orioli
- Department of Medical Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Elena De Marchi
- Department of Medical Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Valentina Salvestrini
- Department of Haematology and Oncology, University Hospital S.Orsola-Malpighi, Institute of Haematology "L. and A. Seràgnoli", 40138, Bologna, Italy
| | - Asia Milani
- Department of Medical Sciences, University of Ferrara, 44121, Ferrara, Italy
| | | | - Antonio Curti
- Department of Haematology and Oncology, University Hospital S.Orsola-Malpighi, Institute of Haematology "L. and A. Seràgnoli", 40138, Bologna, Italy
| | - Elena Adinolfi
- Department of Medical Sciences, University of Ferrara, 44121, Ferrara, Italy.
| |
Collapse
|
15
|
Benzaquen J, Dit Hreich SJ, Heeke S, Juhel T, Lalvee S, Bauwens S, Saccani S, Lenormand P, Hofman V, Butori M, Leroy S, Berthet JP, Marquette CH, Hofman P, Vouret-Craviari V. P2RX7B is a new theranostic marker for lung adenocarcinoma patients. Theranostics 2020; 10:10849-10860. [PMID: 33042257 PMCID: PMC7532666 DOI: 10.7150/thno.48229] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 06/21/2020] [Indexed: 12/25/2022] Open
Abstract
Rationale: The characterization of new theranostic biomarkers is crucial to improving the clinical outcome of patients with advanced lung cancer. Here, we aimed at characterizing the P2RX7 receptor, a positive modulator of the anti-tumor immune response, in patients with lung adenocarcinoma. Methods: The expression of P2RX7 and its splice variants was analyzed by RT-qPCR using areas of tumor and non-tumor lung adenocarcinoma (LUAD) tissues on both immune and non-immune cells. The biological activity of P2RX7 was studied by flow cytometry using fluorescent dyes. Bi-molecular fluorescence complementation and confocal microscopy were used to assess the oligomerization of P2RX7. Tumor immune infiltrates were characterized by immunohistochemistry. Results: Fifty-three patients with LUAD were evaluated. P2RX7A, and 3 alternative splice variants were expressed in LUAD tissues and expression was down regulated in tumor versus adjacent non-tumor tissues. The protein retained biological activity only in immune cells. The P2RX7B splice variant was differentially upregulated in immune cells (P < 0.001) of the tumor and strong evidence of oligomerization of P2RX7A and B was observed in the HEK expression model, which correlated with a default in the activity of P2RX7. Finally, LUAD patients with a high level of P2RX7B had non-inflamed tumors (P = 0.001). Conclusion: Our findings identified P2RX7B as a new theranostic tool to restore functional P2RX7 activity and open alternative therapeutic opportunities to improve LUAD patient outcome.
Collapse
|
16
|
Extracellular Adenine Nucleotides and Adenosine Modulate the Growth and Survival of THP-1 Leukemia Cells. Int J Mol Sci 2020; 21:ijms21124425. [PMID: 32580317 PMCID: PMC7352165 DOI: 10.3390/ijms21124425] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 12/26/2022] Open
Abstract
A new approach to improve the effectiveness of acute myeloid leukemia (AML) treatment is to use the properties of purinergic signaling molecules secreted into the bone marrow milieu in response to leukemic cell growth. Therefore, our study aimed to evaluate the effects of extracellular adenine nucleotides and adenosine on the growth and death parameters in the leukemic THP-1 cell line. Cells were exposed to ATP, ADP, AMP, adenosine and nonhydrolyzable analogues of ATP and ADP (ATPγS and ADPβS) in a 1–1000 μM broad concentration range. The basal mRNA expression of the P1 and P2 receptors was evaluated by real-time PCR. Changes in the processes of cell growth and death were assessed by flow cytometry analysis of proliferation, cell cycle and apoptosis. Chemotaxis toward stromal cell-derived factor-1 (SDF-1) was performed using the modified Boyden chamber assay, and chemokine receptor type 4 (CXCR4) surface expression was quantified by flow cytometry. We indicated several antileukemic actions. High micromolar concentrations (100–1000 μM) of extracellular adenine nucleotides and adenosine inhibit the growth of cells by arresting the cell cycle and/or inducing apoptosis. ATP is characterized by the highest potency and widest range of effects, and is responsible for the cell cycle arrest and the apoptosis induction. Compared to ATP, the effect of ADP is slightly weaker. Adenosine mostly has a cytotoxic effect, with the induction of apoptosis. The last studied nucleotide, AMP, demonstrated only a weak cytotoxic effect without affecting the cell cycle. In addition, cell migration towards SDF-1 was inhibited by low micromolar concentrations (10 μM). One of the reasons for this action of ATPγS and adenosine was a reduction in CXCR4 surface expression, but this only partially explains the mechanism of antimigratory action. In summary, extracellular adenine nucleotides and adenosine inhibit THP-1 cell growth, cause death of cells and modulate the functioning of the SDF-1/CXCR4 axis. Thus, they negatively affect the processes that are responsible for the progression of AML and the difficulties in AML treatment.
Collapse
|
17
|
Lara R, Adinolfi E, Harwood CA, Philpott M, Barden JA, Di Virgilio F, McNulty S. P2X7 in Cancer: From Molecular Mechanisms to Therapeutics. Front Pharmacol 2020; 11:793. [PMID: 32581786 PMCID: PMC7287489 DOI: 10.3389/fphar.2020.00793] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/13/2020] [Indexed: 12/18/2022] Open
Abstract
P2X7 is a transmembrane receptor expressed in multiple cell types including neurons, dendritic cells, macrophages, monocytes, B and T cells where it can drive a wide range of physiological responses from pain transduction to immune response. Upon activation by its main ligand, extracellular ATP, P2X7 can form a nonselective channel for cations to enter the cell. Prolonged activation of P2X7, via high levels of extracellular ATP over an extended time period can lead to the formation of a macropore, leading to depolarization of the plasma membrane and ultimately to cell death. Thus, dependent on its activation state, P2X7 can either drive cell survival and proliferation, or induce cell death. In cancer, P2X7 has been shown to have a broad range of functions, including playing key roles in the development and spread of tumor cells. It is therefore unsurprising that P2X7 has been reported to be upregulated in several malignancies. Critically, ATP is present at high extracellular concentrations in the tumor microenvironment (TME) compared to levels observed in normal tissues. These high levels of ATP should present a survival challenge for cancer cells, potentially leading to constitutive receptor activation, prolonged macropore formation and ultimately to cell death. Therefore, to deliver the proven advantages for P2X7 in driving tumor survival and metastatic potential, the P2X7 macropore must be tightly controlled while retaining other functions. Studies have shown that commonly expressed P2X7 splice variants, distinct SNPs and post-translational receptor modifications can impair the capacity of P2X7 to open the macropore. These receptor modifications and potentially others may ultimately protect cancer cells from the negative consequences associated with constitutive activation of P2X7. Significantly, the effects of both P2X7 agonists and antagonists in preclinical tumor models of cancer demonstrate the potential for agents modifying P2X7 function, to provide innovative cancer therapies. This review summarizes recent advances in understanding of the structure and functions of P2X7 and how these impact P2X7 roles in cancer progression. We also review potential therapeutic approaches directed against P2X7.
Collapse
Affiliation(s)
- Romain Lara
- Biosceptre (UK) Limited, Cambridge, United Kingdom
| | - Elena Adinolfi
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Catherine A Harwood
- Centre for Cell Biology and Cutaneous Research, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Mike Philpott
- Centre for Cutaneous Research, Blizard Institute, Bart's & The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | | | - Francesco Di Virgilio
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | | |
Collapse
|
18
|
Koldej RM, Perera T, Collins J, Ritchie DS. Association between P2X7 Polymorphisms and Post-Transplant Outcomes in Allogeneic Haematopoietic Stem Cell Transplantation. Int J Mol Sci 2020; 21:ijms21113772. [PMID: 32471261 PMCID: PMC7312926 DOI: 10.3390/ijms21113772] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/21/2020] [Accepted: 05/24/2020] [Indexed: 12/18/2022] Open
Abstract
Allogeneic stem cell transplantation (alloSCT) is a highly effective treatment method for haematologic malignancies. However, infection of acute organ dysfunction and graft versus host disease (GVHD) impact negatively on patient outcomes. Pre-transplant conditioning regimes are associated with high levels of immunogenic cell death and the release of extracellular ATP, which binds to the P2X7 receptor. It has been proposed that signaling through the P2X7 receptor may lead to activation of downstream effectors that influence alloSCT outcome. In this study, we examined the effect of gain-of-function (GOF) or loss-of-function (LOF) P2X7 Single Nucleotide Polymorphisms (SNP) in 453 paired alloSCT donors and recipients and correlated their presence or absence to the major post-transplant outcomes of acute GVHD, relapse free survival and overall survival. The allelic frequency of P2X7 SNP in recipients and donors was not different from those SNP for which there is published population data. The LOF SNP Glu496Ala was overrepresented in recipients who did not develop severe acute GVHD and was associated with improved overall survival in rare homozygous recipients, whereas the LOF SNP Ile568Asn was more common in patients with grade 1–4 GVHD but lost statistical association in patients with grade 2–4 aGVHD, and was associated with reduced overall survival in heterozygotes due to an excess of infection-related deaths. The GOF variant haplotype (homozygous Gln460Arg-Ala348Thr) had no impact on post-alloSCT outcomes. Overall, our data indicate that allelic variations in recipients or donors occurs at the same frequency as the general population and may have a minor, but clinically nominal, impact on post-alloSCT outcomes.
Collapse
Affiliation(s)
- Rachel M Koldej
- ACRF Translational Research Laboratory, Royal Melbourne Hospital, Melbourne, VIC 3050, Australia; (T.P.); (J.C.); (D.S.R.)
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC 3010, Australia
- Correspondence: ; Tel.: +61-3-8559-7264
| | - Travis Perera
- ACRF Translational Research Laboratory, Royal Melbourne Hospital, Melbourne, VIC 3050, Australia; (T.P.); (J.C.); (D.S.R.)
- Department of Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, VIC 3000, Australia
| | - Jenny Collins
- ACRF Translational Research Laboratory, Royal Melbourne Hospital, Melbourne, VIC 3050, Australia; (T.P.); (J.C.); (D.S.R.)
- Department of Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, VIC 3000, Australia
| | - David S Ritchie
- ACRF Translational Research Laboratory, Royal Melbourne Hospital, Melbourne, VIC 3050, Australia; (T.P.); (J.C.); (D.S.R.)
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC 3010, Australia
- Department of Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, VIC 3000, Australia
| |
Collapse
|
19
|
Calik I, Calik M, Sarikaya B, Ozercan IH, Arslan R, Artas G, Dagli AF. P2X7 receptor as an independent prognostic indicator in gastric cancer. Bosn J Basic Med Sci 2020; 20:188-196. [PMID: 32070268 PMCID: PMC7202194 DOI: 10.17305/bjbms.2020.4620] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 02/18/2020] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer (GC) is one of the foremost causes of cancer-related death around the world. The P2X7 receptor (P2X7R), a member of the P2X7R subfamily of P2 receptors, is a unique molecule that has been shown to affect tumor growth and progression as well as various inflammatory processes, including proliferation of T lymphocytes, release of cytokines, and production of free oxygen radicals. P2X7R has been established as a prognostic parameter in some cancers, and recently, it has been investigated in the development of new targeted therapies. In the present study, we aimed to investigate the prognostic value of P2X7R expression in GC. The expression profile of P2X7R was evaluated immunohistochemically in 156 paraffin-embedded human GC specimens. P2X7R expression was higher in patients with lymph node metastasis than in those without (p < 0.001). P2X7R overexpression was closely related with tumor-infiltrating lymphocytes (TILs) (p = 0.001), vascular invasion (p = 0.006), depth of invasion (p < 0.001), distant metastasis (p < 0.001), and advanced tumor, node, metastasis stage (p < 0.001). Moreover, univariate (hazard ratio [HR] 3.98; 95% confidence interval (CI) 1.89-11.82; p < 0.001) and multivariate (HR 2.24; 95% CI 3.53-12.50; p < 0.001) Cox regression analysis showed that upregulated P2X7R expression clearly correlated with worsened overall survival. In summary, our data revealed that P2X7R may serve as a reliable prognostic parameter and promising therapeutic target for GC.
Collapse
Affiliation(s)
- Ilknur Calik
- Department of Pathology, Faculty of Medicine, Fırat University, Elazığ, Turkey
| | - Muhammet Calik
- Department of Pathology, Faculty of Medicine, Fırat University, Elazığ, Turkey
| | - Burcu Sarikaya
- Department of Pathology, Faculty of Medicine, Fırat University, Elazığ, Turkey
| | | | - Ramazan Arslan
- Department of Pathology, Faculty of Medicine, Fırat University, Elazığ, Turkey
| | - Gokhan Artas
- Department of Pathology, Faculty of Medicine, Fırat University, Elazığ, Turkey
| | - Adile Ferda Dagli
- Department of Pathology, Faculty of Medicine, Fırat University, Elazığ, Turkey
| |
Collapse
|
20
|
Filippin KJ, de Souza KFS, de Araujo Júnior RT, Torquato HFV, Dias DA, Parisotto EB, Ferreira AT, Paredes-Gamero EJ. Involvement of P2 receptors in hematopoiesis and hematopoietic disorders, and as pharmacological targets. Purinergic Signal 2020; 16:1-15. [PMID: 31863258 PMCID: PMC7166233 DOI: 10.1007/s11302-019-09684-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/12/2019] [Indexed: 12/11/2022] Open
Abstract
Several reports have shown the presence of P2 receptors in hematopoietic stem cells (HSCs). These receptors are activated by extracellular nucleotides released from different sources. In the hematopoietic niche, the release of purines and pyrimidines in the milieu by lytic and nonlytic mechanisms has been described. The expression of P2 receptors from HSCs until maturity is still intriguing scientists. Several reports have shown the participation of P2 receptors in events associated with modulation of the immune system, but their participation in other physiological processes is under investigation. The presence of P2 receptors in HSCs and their ability to modulate this population have awakened interest in exploring the involvement of P2 receptors in hematopoiesis and their participation in hematopoietic disorders. Among the P2 receptors, the receptor P2X7 is of particular interest, because of its different roles in hematopoietic cells (e.g., infection, inflammation, cell death and survival, leukemias and lymphomas), making the P2X7 receptor a promising pharmacological target. Additionally, the role of P2Y12 receptor in platelet activation has been well-documented and is the main example of the importance of the pharmacological modulation of P2 receptor activity. In this review, we focus on the role of P2 receptors in the hematopoietic system, addressing these receptors as potential pharmacological targets.
Collapse
Affiliation(s)
- Kelly Juliana Filippin
- Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, 79070-900, Brazil
| | - Kamylla F S de Souza
- Departamento de Bioquímica, Universidade Federal de São Paulo, R. Três de Maio 100, São Paulo, SP, 04044-020, Brazil
| | | | - Heron Fernandes Vieira Torquato
- Departamento de Bioquímica, Universidade Federal de São Paulo, R. Três de Maio 100, São Paulo, SP, 04044-020, Brazil
- Universidade Braz Cubas, Av. Francisco Rodrigues Filho 1233, Mogi das Cruzes, SP, 08773-380, Brazil
| | - Dhébora Albuquerque Dias
- Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, 79070-900, Brazil
| | - Eduardo Benedetti Parisotto
- Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, 79070-900, Brazil
| | - Alice Teixeira Ferreira
- Departamento de Biofísica, Universidade Federal de São Paulo, R. Botucatu 862, São Paulo, SP, 04023-062, Brazil.
- Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição (FACFAN), Laboratório de Biologia Molecular e Culturas Celulares, Av. Costa e Silva, s/n Bairro Universitário, Campo Grande, MS, CEP: 79070-900, Brazil.
| | - Edgar J Paredes-Gamero
- Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, 79070-900, Brazil.
- Departamento de Bioquímica, Universidade Federal de São Paulo, R. Três de Maio 100, São Paulo, SP, 04044-020, Brazil.
- Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição (FACFAN), Laboratório de Biologia Molecular e Culturas Celulares, Av. Costa e Silva, s/n Bairro Universitário, Campo Grande, MS, CEP: 79070-900, Brazil.
| |
Collapse
|
21
|
Benzaquen J, Heeke S, Janho Dit Hreich S, Douguet L, Marquette CH, Hofman P, Vouret-Craviari V. Alternative splicing of P2RX7 pre-messenger RNA in health and diseases: Myth or reality? Biomed J 2019; 42:141-154. [PMID: 31466708 PMCID: PMC6717933 DOI: 10.1016/j.bj.2019.05.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/24/2019] [Accepted: 05/24/2019] [Indexed: 12/21/2022] Open
Abstract
Alternative splicing (AS) tremendously increases the use of genetic information by generating protein isoforms that differ in protein-protein interactions, catalytic activity and/or subcellular localization. This review is not dedicated to AS in general, but rather we focus our attention on AS of P2RX7 pre-mRNA. Whereas P2RX7 mRNA is expressed by virtually all eukaryotic mammalian cells, the expression of this channel receptor is restrained to certain cells. When expressed at the cell membrane, P2RX7 controls downstream events including release of inflammatory molecules, phagocytosis, cell proliferation and death and metabolic events. Therefore, P2RX7 is an important actor of health and diseases. In this review, we summarize the general mechanisms leading to AS. Further, we recapitulate our current knowledge concerning the functional regions in P2RX7, identified at the genetic or exonic levels, and how AS may affect the expression of these regions. Finally, the potential of P2RX7 splice variants to control the fate of cancer cells is discussed.
Collapse
Affiliation(s)
- Jonathan Benzaquen
- University of Cote d'Azur, CNRS, INSERM, IRCAN, Nice, France; FHU OncoAge, Nice, France
| | - Simon Heeke
- University of Cote d'Azur, CNRS, INSERM, IRCAN, Nice, France; Laboratory of Clinical and Experimental Pathology and Biobank, Pasteur Hospital, Nice, France; FHU OncoAge, Nice, France
| | | | | | - Charles Hugo Marquette
- University of Cote d'Azur, CNRS, INSERM, IRCAN, Nice, France; FHU OncoAge, Nice, France; University of Cote d'Azur, CHU de Nice, Department of Pulmonary Medicine, FHU OncoAge, Nice, France
| | - Paul Hofman
- University of Cote d'Azur, CNRS, INSERM, IRCAN, Nice, France; Laboratory of Clinical and Experimental Pathology and Biobank, Pasteur Hospital, Nice, France; Hospital-Related Biobank (BB-0033-00025), Pasteur Hospital, Nice, France; FHU OncoAge, Nice, France
| | | |
Collapse
|
22
|
Vaisitti T, Arruga F, Deaglio S. Targeting the Adenosinergic Axis in Chronic Lymphocytic Leukemia: A Way to Disrupt the Tumor Niche? Int J Mol Sci 2018; 19:ijms19041167. [PMID: 29649100 PMCID: PMC5979564 DOI: 10.3390/ijms19041167] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/06/2018] [Accepted: 04/09/2018] [Indexed: 12/11/2022] Open
Abstract
Targeting adenosine triphosphate (ATP) metabolism and adenosinergic signaling in cancer is gaining momentum, as increasing evidence is showing their relevance in tumor immunology and biology. Chronic lymphocytic leukemia (CLL) results from the expansion of a population of mature B cells that progressively occupies the bone marrow (BM), the blood, and peripheral lymphoid organs. Notwithstanding significant progress in the treatment of these patients, the cure remains an unmet clinical need, suggesting that novel drugs or drug combinations are needed. A unique feature of CLL is its reliance on micro-environmental signals for proliferation and cell survival. We and others have shown that the lymphoid niche, an area of intense interactions between leukemic and bystander non-tumor cells, is a typically hypoxic environment. Here adenosine is generated by leukemic cells, as well as by cells of myeloid origin, acting through autocrine and paracrine mechanisms, ultimately affecting tumor growth, limiting drug responses, and skewing the immune cells towards a tolerant phenotype. Hence, understanding the mechanisms through which this complex network of enzymes, receptors, and metabolites functions in CLL, will pave the way to the use of pharmacological agents targeting the system, which, in combination with drugs targeting leukemic cells, may get us one step closer to curing these patients.
Collapse
MESH Headings
- Adenosine/metabolism
- Adenosine Triphosphate/metabolism
- Animals
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Gene Regulatory Networks/drug effects
- Humans
- Hypoxia
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Molecular Targeted Therapy/methods
- Signal Transduction/drug effects
- Stem Cell Niche
- Tumor Microenvironment
Collapse
Affiliation(s)
- Tiziana Vaisitti
- Department of Medical Sciences, University of Turin School of Medicine & Italian Institute for Genomic Medicine (IIGM), via Nizza, 52, 10126 Torino, Italy.
| | - Francesca Arruga
- Department of Medical Sciences, University of Turin School of Medicine & Italian Institute for Genomic Medicine (IIGM), via Nizza, 52, 10126 Torino, Italy.
| | - Silvia Deaglio
- Department of Medical Sciences, University of Turin School of Medicine & Italian Institute for Genomic Medicine (IIGM), via Nizza, 52, 10126 Torino, Italy.
| |
Collapse
|
23
|
Fbxw11 promotes the proliferation of lymphocytic leukemia cells through the concomitant activation of NF-κB and β-catenin/TCF signaling pathways. Cell Death Dis 2018; 9:427. [PMID: 29555946 PMCID: PMC5859049 DOI: 10.1038/s41419-018-0440-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 02/24/2018] [Accepted: 02/27/2018] [Indexed: 12/22/2022]
Abstract
The ubiquitin–proteasome system (UPS) participates in both physiological and pathological processes through the posttranslational regulation of intracellular signal transduction pathways. F-box and WD-40 domain protein 11 (Fbxw11) is a component of the SCF (Skp1–Cul1–F-box) E3 ubiquitin ligase complex. Fbxw11 regulates various signal transduction pathways, and it may have pathological roles in tumorigenesis. However, the role of Fbxw11 in the development of leukemia and the underlying mechanisms remain largely unknown. In this study, Fbxw11 expression was aberrantly upregulated in patients with lymphocytic leukemia. Its expression was dramatically decreased in patients who achieved complete remission (CR) after chemotherapy. The high level of Fbxw11 expression in L1210 lymphocytic leukemia cells stimulated cell proliferation in vitro and tumor formation in vivo. The effects were mediated by the stimulation of cell cycle progression rather than the induction of apoptosis. Furthermore, a bioinformatics analysis suggested concomitant activation of the NF-κB and β-catenin/TCF signaling pathways, which were confirmed by reporter gene assays. Moreover, blocking experiments suggested the involvement of both pathways in the growth-promoting effects of Fbxw11. Our results reveal the role of Fbxw11 in lymphocytic leukemia cells and imply that Fbxw11 may serve as a potential molecular target for the treatment of lymphocytic leukemia.
Collapse
|
24
|
Savio LEB, de Andrade Mello P, da Silva CG, Coutinho-Silva R. The P2X7 Receptor in Inflammatory Diseases: Angel or Demon? Front Pharmacol 2018; 9:52. [PMID: 29467654 PMCID: PMC5808178 DOI: 10.3389/fphar.2018.00052] [Citation(s) in RCA: 299] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/15/2018] [Indexed: 12/13/2022] Open
Abstract
Under physiological conditions, adenosine triphosphate (ATP) is present at low levels in the extracellular milieu, being massively released by stressed or dying cells. Once outside the cells, ATP and related nucleotides/nucleoside generated by ectonucleotidases mediate a high evolutionary conserved signaling system: the purinergic signaling, which is involved in a variety of pathological conditions, including inflammatory diseases. Extracellular ATP has been considered an endogenous adjuvant that can initiate inflammation by acting as a danger signal through the activation of purinergic type 2 receptors-P2 receptors (P2Y G-protein coupled receptors and P2X ligand-gated ion channels). Among the P2 receptors, the P2X7 receptor is the most extensively studied from an immunological perspective, being involved in both innate and adaptive immune responses. P2X7 receptor activation induces large-scale ATP release via its intrinsic ability to form a membrane pore or in association with pannexin hemichannels, boosting purinergic signaling. ATP acting via P2X7 receptor is the second signal to the inflammasome activation, inducing both maturation and release of pro-inflammatory cytokines, such as IL-1β and IL-18, and the production of reactive nitrogen and oxygen species. Furthermore, the P2X7 receptor is involved in caspases activation, as well as in apoptosis induction. During adaptive immune response, P2X7 receptor modulates the balance between the generation of T helper type 17 (Th17) and T regulatory (Treg) lymphocytes. Therefore, this receptor is involved in several inflammatory pathological conditions. In infectious diseases and cancer, P2X7 receptor can have different and contrasting effects, being an angel or a demon depending on its level of activation, cell studied, type of pathogen, and severity of infection. In neuroinflammatory and neurodegenerative diseases, P2X7 upregulation and function appears to contribute to disease progression. In this review, we deeply discuss P2X7 receptor dual function and its pharmacological modulation in the context of different pathologies, and we also highlight the P2X7 receptor as a potential target to treat inflammatory related diseases.
Collapse
Affiliation(s)
- Luiz E B Savio
- Laboratory of Immunophysiology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paola de Andrade Mello
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Harvard University, Boston, MA, United States
| | - Cleide Gonçalves da Silva
- Division of Vascular Surgery, Department of Surgery, Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Robson Coutinho-Silva
- Laboratory of Immunophysiology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
25
|
de Andrade Mello P, Coutinho-Silva R, Savio LEB. Multifaceted Effects of Extracellular Adenosine Triphosphate and Adenosine in the Tumor-Host Interaction and Therapeutic Perspectives. Front Immunol 2017; 8:1526. [PMID: 29184552 PMCID: PMC5694450 DOI: 10.3389/fimmu.2017.01526] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 10/27/2017] [Indexed: 12/20/2022] Open
Abstract
Cancer is still one of the world's most pressing health-care challenges, leading to a high number of deaths worldwide. Immunotherapy is a new developing therapy that boosts patient's immune system to fight cancer by modifying tumor-immune cells interaction in the tumor microenvironment (TME). Extracellular adenosine triphosphate (eATP) and adenosine (Ado) are signaling molecules released in the TME that act as modulators of both immune and tumor cell responses. Extracellular adenosine triphosphate and Ado activate purinergic type 2 (P2) and type 1 (P1) receptors, respectively, triggering the so-called purinergic signaling. The concentration of eATP and Ado within the TME is tightly controlled by several cell-surface ectonucleotidases, such as CD39 and CD73, the major ecto-enzymes expressed in cancer cells, immune cells, stromal cells, and vasculature, being CD73 also expressed on tumor-associated fibroblasts. Once accumulated in the TME, eATP boosts antitumor immune response, while Ado attenuates or suppresses immunity against the tumor. In addition, both molecules can mediate growth stimulation or inhibition of the tumor, depending on the specific receptor activated. Therefore, purinergic signaling is able to modulate both tumor and immune cells behavior and, consequently, the tumor-host interaction and disease progression. In this review, we discuss the role of purinergic signaling in the host-tumor interaction detailing the multifaceted effects of eATP and Ado in the inflammatory TME. Moreover, we present recent findings into the application of purinergic-targeting therapy as a potential novel option to boost antitumor immune responses in cancer.
Collapse
Affiliation(s)
- Paola de Andrade Mello
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Robson Coutinho-Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiz Eduardo Baggio Savio
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
26
|
High Level P2X7-Mediated Signaling Impairs Function of Hematopoietic Stem/Progenitor Cells. Stem Cell Rev Rep 2017; 12:305-14. [PMID: 27059869 DOI: 10.1007/s12015-016-9651-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Nucleotides, which bind to P2 receptors, have emerged as a family of mediators in intercellular communication. P2X7 is a member of the P2X family ligand-gated ion channels respond to extracellular ATP. High level expression of P2X7 was detected in leukemia samples, especially in relapsed cases. However, the role of P2X7 mediated signaling in hematopoietic stem/progenitor cells (HSPCs) as well as its potential role in leukemogenesis have not been established. In this study, the expression of P2X7 in hematopoietic cells in different lineages and stages was analyzed. Over-expression of P2X7 in HSPCs was carried out by retrovirus infection to study the impact on HSPCs. The results showed that low level expression of P2X7 was detected in HSPCs. Over-expression of P2X7 in HSPCs resulted in decreased colony forming ability in vitro and engraftment potential in vivo. These results suggested that high level purinergic signaling by P2X7 impaired function of HSPCs.
Collapse
|
27
|
Di Virgilio F, Adinolfi E. Extracellular purines, purinergic receptors and tumor growth. Oncogene 2016; 36:293-303. [PMID: 27321181 PMCID: PMC5269532 DOI: 10.1038/onc.2016.206] [Citation(s) in RCA: 373] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/02/2016] [Accepted: 05/02/2016] [Indexed: 12/13/2022]
Abstract
Virtually, all tumor cells as well as all immune cells express plasma membrane receptors for extracellular nucleosides (adenosine) and nucleotides (ATP, ADP, UTP, UDP and sugar UDP). The tumor microenvironment is characterized by an unusually high concentration of ATP and adenosine. Adenosine is a major determinant of the immunosuppressive tumor milieu. Sequential hydrolysis of extracellular ATP catalyzed by CD39 and CD73 is the main pathway for the generation of adenosine in the tumor interstitium. Extracellular ATP and adenosine mold both host and tumor responses. Depending on the specific receptor activated, extracellular purines mediate immunosuppression or immunostimulation on the host side, and growth stimulation or cytotoxicity on the tumor side. Recent progress in this field is providing the key to decode this complex scenario and to lay the basis to harness the potential benefits for therapy. Preclinical data show that targeting the adenosine-generating pathway (that is, CD73) or adenosinergic receptors (that is, A2A) relieves immunosuppresion and potently inhibits tumor growth. On the other hand, growth of experimental tumors is strongly inhibited by targeting the P2X7 ATP-selective receptor of cancer and immune cells. This review summarizes the recent data on the role played by extracellular purines (purinergic signaling) in host-tumor interaction and highlights novel therapeutic options stemming from recent advances in this field.
Collapse
Affiliation(s)
- F Di Virgilio
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - E Adinolfi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
28
|
De Marchi E, Orioli E, Dal Ben D, Adinolfi E. P2X7 Receptor as a Therapeutic Target. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2016; 104:39-79. [PMID: 27038372 DOI: 10.1016/bs.apcsb.2015.11.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
P2X7 receptor is an ATP-gated cation channel that upon agonist interaction leads to cellular influx of Na(+) and Ca(2+) and efflux of K(+). P2X7 is expressed by a wide variety of cells and its activation mediates a large number of biological processes like inflammation, neuromodulation, cell death or cell proliferation and it has been associated to related pathological conditions including infectious, inflammatory, autoimmune, neurological, and musculoskeletal disorders and, in the last years, to cancer. This chapter describes structural features of P2X7, chemical properties of its agonist, antagonist, and allosteric modulators and summarizes recent advances on P2X7 receptor as therapeutic target in the aforementioned diseases. We also give an overview on recent literature suggesting that P2X7 single-nucleotide polymorphisms could be exploited as diagnostic biomarkers for the development of tailored therapies.
Collapse
Affiliation(s)
- Elena De Marchi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Elisa Orioli
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Diego Dal Ben
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Camerino, Italy
| | - Elena Adinolfi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy.
| |
Collapse
|
29
|
Feng W, Wang L, Zheng G. Expression and function of P2 receptors in hematopoietic stem and progenitor cells. Stem Cell Investig 2015; 2:14. [PMID: 27358882 DOI: 10.3978/j.issn.2306-9759.2015.07.01] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 05/28/2015] [Indexed: 12/15/2022]
Abstract
Nucleotides have unambiguously emerged as a family of mediators of intercellular communication, which bind to a class of plasma membrane receptors, P2 receptors, to trigger intercellular signaling. P2 receptors can be further divided into P2X and P2Y subfamilies based on structure and function. Different hematopoietic cells express diverse spectrums of P2 receptors at different levels, including hematopoietic stem and progenitor cells (HSPCs). Extracellular adenosine triphosphate (ATP) exerts different effects on HSPCs, regulating cell proliferation, differentiation, migration, and chemotaxis, release of cytokines or lysosomal constituents, and generation of reactive oxygen or nitrogen species. The relationship between abnormal P2 receptor function and human diseases attracts more and more attention. This review summarizes the expression and function of P2 receptors in HSPCs and the relationship to hematopoietic diseases.
Collapse
Affiliation(s)
- Wenli Feng
- 1 State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Disease Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300020, China ; 2 Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Lina Wang
- 1 State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Disease Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300020, China ; 2 Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Guoguang Zheng
- 1 State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Disease Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300020, China ; 2 Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
30
|
An Improved Method for P2X7R Antagonist Screening. PLoS One 2015; 10:e0123089. [PMID: 25993132 PMCID: PMC4437783 DOI: 10.1371/journal.pone.0123089] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 02/27/2015] [Indexed: 11/19/2022] Open
Abstract
ATP physiologically activates the P2X7 receptor (P2X7R), a member of the P2X ionotropic receptor family. When activated by high concentrations of ATP (i.e., at inflammation sites), this receptor is capable of forming a pore that allows molecules of up to 900 Da to pass through. This receptor is upregulated in several diseases, particularly leukemia, rheumatoid arthritis and Alzheimer's disease. A selective antagonist of this receptor could be useful in the treatment of P2X7R activation-related diseases. In the present study, we have evaluated several parameters using in vitro protocols to validate a high-throughput screening (HTS) method to identify P2X7R antagonists. We generated dose-response curves to determine the EC50 value of the known agonist ATP and the ICs50 values for the known antagonists Brilliant Blue G (BBG) and oxidized ATP (OATP). The values obtained were consistent with those found in the literature (0.7 ± 0.07 mM, 1.3-2.6 mM and 173-285 μM for ATP, BBG and OATP, respectively). The Z-factor, an important statistical tool that can be used to validate the robustness and suitability of an HTS assay, was 0.635 for PI uptake and 0.867 for LY uptake. No inter-operator variation was observed, and the results obtained using our improved method were reproducible. Our data indicate that our assay is suitable for the selective and reliable evaluation of P2X7 activity in multiwell plates using spectrophotometry-based methodology. This method might improve the high-throughput screening of conventional chemical or natural product libraries for possible candidate P2X7R antagonist or agonist
Collapse
|
31
|
The P2X7 receptor is a key modulator of the PI3K/GSK3β/VEGF signaling network: evidence in experimental neuroblastoma. Oncogene 2015; 34:5240-51. [PMID: 25619831 DOI: 10.1038/onc.2014.444] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 11/21/2014] [Accepted: 12/01/2014] [Indexed: 02/06/2023]
Abstract
Neuroblastoma (NB) is an aggressive pediatric tumor, responsible for 15% of cancer-related deaths in childhood, lacking an effective treatment in its advanced stages. The P2X7 receptor for extracellular ATP was associated to NB cell proliferation and recently emerged as a promoter of tumor engraftment, growth and vascularization. In an effort to identify new therapeutic options for neuroblastoma, we studied the role of P2X7 receptor in NB biology. We first analyzed the effect of P2X7 activation or down-modulation of the main biochemical ways involved in NB progression: the PI3K/Akt/GSK3β/MYCN and the HIF1α/VEGF pathways. In ACN human NB cells, P2X7 stimulation enhanced PI3K/Akt, while decreasing GSK3β activity. In the same model, P2X7 silencing or antagonist administration reduced the activity of PI3K/Akt and increased that of GSK3β, leading to a decrease in cellular glycogen stores. Similarly, P2X7 downmodulation caused a reduction in HIF1α levels and vascular endothelial growth factor (VEGF) secretion. Systemic administration of two different P2X7 antagonists (AZ10606120 or A740003) in nude/nude mice reduced ACN-derived tumor growth. An even stronger effect of P2X7 blockade was obtained in a syngeneic immune-competent neuroblastoma model: Neuro2A cells injected in AlbinoJ mice. Together with tumor regression, treatment with P2X7 antagonists caused downmodulation of the Akt/HIF1α axis, leading to reduced VEGF content and decreased vessel formation. Interestingly, in both experimental models, P2X7 antagonists strongly reduced the expression of the probably best-accepted oncogene in NB: MYCN. Finally, we associated P2X7 overexpression with poor prognosis in advanced-stage NB patients. Taken together, our data suggest that P2X7 receptor is an upstream regulator of the main signaling pathways involved in NB growth, metabolic activity and angiogenesis, and a promising therapeutic target for neuroblastoma treatment.
Collapse
|
32
|
BOLDRINI LAURA, GIORDANO MIRELLA, ALÌ GRETA, MELFI FRANCA, ROMANO GAETANO, LUCCHI MARCO, FONTANINI GABRIELLA. P2X7 mRNA expression in non-small cell lung cancer: MicroRNA regulation and prognostic value. Oncol Lett 2015; 9:449-453. [PMID: 25436007 PMCID: PMC4247004 DOI: 10.3892/ol.2014.2620] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 09/11/2014] [Indexed: 12/21/2022] Open
Abstract
The human P2X7 receptor is significant and exhibits several functions in neoplasia. At present, little is known with regard to its regulation. P2X7 expression may be regulated post-transcriptionally and putative microRNA (miRNA) binding sites are considered to be involved. The aim of this study was to determine whether miRNAs (miR-21, let-7 g and miR-205) regulate P2X7 mRNA stability. In addition, the impact of P2X7 expression in patients with non-small cell lung cancer (NSCLC) was investigated. P2X7 mRNA and mature Let-7 g, miR-21, and miR-205 expression levels were quantified in 96 NSCLC cases using quantitative reverse transcription polymerase chain reaction. In all samples, epidermal growth factor receptor and K-Ras mutational analysis was also performed. Samples with low P2X7 expression were found to exhibit a higher fold change in miR-21 expression when compared with samples exhibiting high P2X7 expression. Significantly higher miR-21 expression was observed in the tumors of NSCLC patients with a K-Ras mutation when compared with patients who had K-Ras wild-type tumors (P=0.003). Additionally, to evaluate the association between P2X7 expression and prognosis in NSCLC patients, survival analysis was performed using the Kaplan-Meier method. A significant difference in the progression-free survival and overall survival in the NSCLC patients with high P2X7 expression was identified, when compared with that of patients with low expression (P=0.03 and P=0.02, respetively). Therefore, we hypothesized that high levels of miR-21 expression in NSCLC patients with K-Ras mutations may be regulated by a complex circuit, including P2X7 downregulation and together these processes may promote tumor progression.
Collapse
Affiliation(s)
- LAURA BOLDRINI
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Pisa 56126, Italy
| | - MIRELLA GIORDANO
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Pisa 56126, Italy
| | - GRETA ALÌ
- Unit of Pathological Anatomy III, University Hospital of Pisa, Pisa 56126, Italy
| | - FRANCA MELFI
- Unit of Thoracic Surgery, University Hospital of Pisa, Pisa 56126, Italy
| | - GAETANO ROMANO
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Pisa 56126, Italy
| | - MARCO LUCCHI
- Unit of Thoracic Surgery, University Hospital of Pisa, Pisa 56126, Italy
| | - GABRIELLA FONTANINI
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Pisa 56126, Italy
| |
Collapse
|
33
|
Isidori A, Salvestrini V, Ciciarello M, Loscocco F, Visani G, Parisi S, Lecciso M, Ocadlikova D, Rossi L, Gabucci E, Clissa C, Curti A. The role of the immunosuppressive microenvironment in acute myeloid leukemia development and treatment. Expert Rev Hematol 2014; 7:807-18. [PMID: 25227702 DOI: 10.1586/17474086.2014.958464] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Functional interplay between acute myeloid leukemia (AML) cells and the bone marrow microenvironment is a distinctive characteristic of this hematological cancer. Indeed, a large body of evidence suggests that proliferation, survival and drug resistance of AML are sustained and modulated by the bone marrow immunosuppressive microenvironment, where both innate and adaptive immune responses are profoundly deregulated. Furthermore, the presence of a number of different immunosuppressive mechanisms results in massive immune deregulation, which causes the eventual escape from natural immune control. Modulating the immune system, as documented by 40 years of stem cell transplantation, may improve survival of AML patients, as the immune system is clearly able to recognize and attack leukemic cells. The understanding of the factors responsible for the escape from immune destruction in AML, which becomes more prominent with disease progression, is necessary for the development of innovative immunotherapeutic treatment modalities in AML.
Collapse
Affiliation(s)
- Alessandro Isidori
- Haematology and Haematopoietic Stem Cell Transplant Center, AORMN Hospital, Via Lombroso, 1, 61122, Pesaro, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Trophic activity of human P2X7 receptor isoforms A and B in osteosarcoma. PLoS One 2014; 9:e107224. [PMID: 25226385 PMCID: PMC4165768 DOI: 10.1371/journal.pone.0107224] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 08/14/2014] [Indexed: 12/13/2022] Open
Abstract
The P2X7 receptor (P2X7R) is attracting increasing attention for its involvement in cancer. Several recent studies have shown a crucial role of P2X7R in tumour cell growth, angiogenesis and invasiveness. In this study, we investigated the role of the two known human P2X7R functional splice variants, the full length P2X7RA and the truncated P2X7RB, in osteosarcoma cell growth. Immunohistochemical analysis of a tissue array of human osteosarcomas showed that forty-four, of a total fifty-four tumours (81.4%), stained positive for both P2X7RA and B, thirty-one (57.4%) were positive using an anti-P2X7RA antibody, whereas fifteen of the total number (27.7%) expressed only P2X7RB. P2X7RB positive tumours showed increased cell density, at the expense of extracellular matrix. The human osteosarcoma cell line Te85, which lacks endogenous P2X7R expression, was stably transfected with either P2X7RA, P2X7RB, or both. Receptor expression was a powerful stimulus for cell growth, the most efficient growth-promoting isoform being P2X7RB alone. Growth stimulation was matched by increased Ca2+ mobilization and enhanced NFATc1 activity. Te85 P2X7RA+B cells presented pore formation as well as spontaneous extracellular ATP release. The ATP release was sustained in all clones by P2X7R agonist (BzATP) and reduced following P2X7R antagonist (A740003) application. BzATP also increased cell growth and activated NFATc1 levels. On the other hand cyclosporin A (CSA) affected both NFATc1 activation and cell growth, definitively linking P2X7R stimulation to NFATc1 and cell proliferation. All transfected clones also showed reduced RANK-L expression, and an overall decreased RANK-L/OPG ratio. Mineralization was increased in Te85 P2X7RA+B cells while it was significantly diminished in Te85 P2X7RB clones, in agreement with immunohistochemical results. In summary, our data show that the majority of human osteosarcomas express P2X7RA and B and suggest that expression of either isoform is differently coupled to cell growth or activity.
Collapse
|
35
|
P2X7 receptors are a potential novel target for anti-glioma therapies. JOURNAL OF INFLAMMATION-LONDON 2014. [DOI: 10.1186/s12950-014-0025-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
36
|
Burnstock G, Di Virgilio F. Purinergic signalling and cancer. Purinergic Signal 2014; 9:491-540. [PMID: 23797685 DOI: 10.1007/s11302-013-9372-5] [Citation(s) in RCA: 245] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 06/06/2013] [Indexed: 01/24/2023] Open
Abstract
Receptors for extracellular nucleotides are widely expressed by mammalian cells. They mediate a large array of responses ranging from growth stimulation to apoptosis, from chemotaxis to cell differentiation and from nociception to cytokine release, as well as neurotransmission. Pharma industry is involved in the development and clinical testing of drugs selectively targeting the different P1 nucleoside and P2 nucleotide receptor subtypes. As described in detail in the present review, P2 receptors are expressed by all tumours, in some cases to a very high level. Activation or inhibition of selected P2 receptor subtypes brings about cancer cell death or growth inhibition. The field has been largely neglected by current research in oncology, yet the evidence presented in this review, most of which is based on in vitro studies, although with a limited amount from in vivo experiments and human studies, warrants further efforts to explore the therapeutic potential of purinoceptor targeting in cancer.
Collapse
|
37
|
Chen S, Feng W, Yang X, Yang W, Ru Y, Liao J, Wang L, Lin Y, Ren Q, Zheng G. Functional expression of P2X family receptors in macrophages is affected by microenvironment in mouse T cell acute lymphoblastic leukemia. Biochem Biophys Res Commun 2014; 446:1002-9. [PMID: 24661878 DOI: 10.1016/j.bbrc.2014.03.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 03/12/2014] [Indexed: 10/25/2022]
Abstract
Nucleotides are important players in intercellular signaling communication network. P2X family receptors (P2XRs) are ATP-gated plasma membrane ion channels with diverse biological functions. Macrophages are important components in the microenvironment of hematopoiesis participating in both physiological and pathological processes. However, the role of P2XRs in macrophages in leukemia has not been established. Here we investigated expression pattern and functions of P2XRs in macrophages from bone marrow (BM) and spleen of Notch1-induced T-ALL mice. Real-time PCR showed that P2XRs except P2X5R were expressed in BM and spleen macrophages. Furthermore, with the development of leukemia, the expression of P2X7R increased in both BM and spleen macrophages whereas expression of P2X1R increased in spleen macrophages. Live cell imaging recoding the Ca(2+) response demonstrated that P2X7R expressed in macrophages was functional. TUNEL and electron microscopy analysis found that apoptotic macrophages were frequently observed in BM and spleen at late stage of leukemia, which was partly contributed by the activation of overexpressed P2X7R. Our results suggested that the intercellular communication mediated by nucleotides might orchestrate in the pathological process of leukemia and could be a potential target for the treatment of leukemia.
Collapse
Affiliation(s)
- Shayan Chen
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Wenli Feng
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Xiao Yang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Wanzhu Yang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Yongxin Ru
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Jinfeng Liao
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Lina Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Yongmin Lin
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Qian Ren
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Guoguang Zheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China.
| |
Collapse
|
38
|
Abstract
Ability to adapt to conditions of limited nutrient supply requires a reorganization of the metabolic pathways to balance energy generation and production of biosynthetic intermediates. Several fast-growing cells overexpress the P2X7 receptor (P2X7R) for extracellular ATP. A feature of this receptor is to allow growth in the absence of serum. We show here that transfection of P2X7R allows proliferation of P2X7R-transfected HEK293 (HEK293-P2X7) cells not only in the absence of serum but also in low (4 mM) glucose, and increases lactate output compared with mock-transfected HEK293 (HEK293-mock) cells. In HEK293-P2X7, lactate output is further stimulated upon addition of exogenous ATP or the mitochondrial uncoupler carbonylcyanide p-trifluoromethoxyphenylhydrazone (FCCP). In the human neuroblastoma cell line ACN, lactate output is also dependent on P2X7R function. P2X7R-expressing cells upregulate (a) the glucose transporter Glut1, (b) the glycolytic enzymes glyceraldehyde 3-phosphate dehydrogenase (G3PDH), (c) phosphofructokinase (PFK), (d) pyruvate kinase M2 (PKM2) and (e) pyruvate dehydrogenase kinase 1 (PDHK1); furthermore, P2X7R expression (a) inhibits pyruvate dehydrogenase (PDH) activity, (b) increases phosphorylated Akt/PKB and hypoxia-inducible factor 1α (HIF-1α) expression and (c) enhances intracellular glycogen stores. In HEK293-P2X7 cells, glucose deprivation increases lactate production, expression of glycolytic enzymes and ph-Akt/PKB level. These data show that the P2X7R has an intrinsic ability to reprogram cell metabolism to meet the needs imposed by adverse environmental conditions.
Collapse
|
39
|
Abstract
Over the past decade, extracellular nucleotides (such as ATP and UTP) have emerged as key immunomodulators. This family of molecules, already known for its key metabolic functions, has been the focus of intense investigation that has unambiguously shown its crucial role as mediators of cell-to-cell communication. More recently, in addition to its involvement in inflammation and immunity, purinergic signaling has also been shown to modulate BM-derived stem cells. Extracellular nucleotides promote proliferation, CXCL12-driven migration, and BM engraftment of hematopoietic progenitor and stem cells. In addition, purinergic signaling acts indirectly on hematopoietic progenitor and stem cells by regulating differentiation and release of proinflammatory cytokines in BM-derived human mesenchymal stromal cells, which are part of the hematopoietic stem cell (HSC) niche. HSC research has recently blended into the field of immunology, as new findings highlighted the role played by immunologic signals (such as IFN-α, IFN-γ, or TNF-α) in the regulation of the HSC compartment. In this review, we summarize recent reports unveiling a previously unsuspected ability of HSCs to integrate inflammatory signals released by immune and stromal cells, with particular emphasis on the dual role of extracellular nucleotides as mediators of both immunologic responses and BM stem cell functions.
Collapse
|
40
|
Gadeock S, Pupovac A, Sluyter V, Spildrejorde M, Sluyter R. P2X7 receptor activation mediates organic cation uptake into human myeloid leukaemic KG-1 cells. Purinergic Signal 2012; 8:669-76. [PMID: 22661222 DOI: 10.1007/s11302-012-9320-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 05/22/2012] [Indexed: 01/04/2023] Open
Abstract
The P2X7 purinergic receptor is an ATP-gated cation channel with an emerging role in neoplasia. In this study we demonstrate that the human KG-1 cell line, a model of acute myelogenous leukaemia, expresses functional P2X7. RT-PCR and immunochemical techniques demonstrated the presence of P2X7 mRNA and protein respectively in KG-l cells, as well as in positive control multiple myeloma RPMI 8226 cells. Flow cytometric measurements demonstrated that ATP induced ethidium(+) uptake into KG-l cells suspended in sucrose medium (EC(50) of ≈ 3 μM), but not into cells in NaCl medium. In contrast, ATP induced ethidium(+) uptake into RPMI 8226 cells suspended in either sucrose or NaCl medium (EC(50) of ≈ 3 or ≈ 99 μM, respectively), as well as into RPMI 8226 cells in KCl medium (EC(50) of ≈ 18 μM). BzATP and to a lesser extent ATPγS and αβ-methylene ATP, but not ADP or UTP, also induced ethidium(+) uptake into KG-1 cells. ATP-induced ethidium(+) uptake was completely impaired by the P2X7 antagonists, AZ10606120 and A-438079. ATP-induced ethidium(+) uptake was also impaired by probenecid but not by carbenoxolone, both pannexin-1 antagonists. ATP induced YO-PRO-1(2+) and propidium(2+) uptake into KG-1 cells. Finally, sequencing of full-length P2X7 cDNA identified several single nucleotide polymorphisms (SNPs) in KG-1 cells including H155Y, A348T, T357S and Q460R. RPMI 8226 cells contained A348T, A433V and H521Q SNPs. In conclusion, the KG-1 cell line expresses functional P2X7. This cell line may help elucidate the signalling pathways involved in P2X7-induced survival and invasiveness of myeloid leukaemic cells.
Collapse
Affiliation(s)
- Safina Gadeock
- School of Biological Sciences, University of Wollongong, Wollongong, NSW, 2522, Australia
| | | | | | | | | |
Collapse
|
41
|
Adinolfi E, Raffaghello L, Giuliani AL, Cavazzini L, Capece M, Chiozzi P, Bianchi G, Kroemer G, Pistoia V, Di Virgilio F. Expression of P2X7 Receptor Increases In Vivo Tumor Growth. Cancer Res 2012; 72:2957-69. [DOI: 10.1158/0008-5472.can-11-1947] [Citation(s) in RCA: 255] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
42
|
Purinergic signaling inhibits human acute myeloblastic leukemia cell proliferation, migration, and engraftment in immunodeficient mice. Blood 2011; 119:217-26. [PMID: 22053107 DOI: 10.1182/blood-2011-07-370775] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Extracellular ATP and UTP nucleotides increase the proliferation and engraftment potential of normal human hematopoietic stem cells via the engagement of purinergic receptors (P2Rs). In the present study, we show that ATP and UTP have strikingly opposite effects on human acute myeloblastic leukemia (AML) cells. Leukemic cells express P2Rs. ATP-stimulated leukemic cells, but not normal CD34+ cells, undergo down-regulation of genes involved in cell proliferation and migration, whereas cell-cycle inhibitors are up-regulated. Functionally, ATP induced the inhibition of proliferation and accumulation of AML cells, but not of normal cells, in the G0 phase of the cell cycle. Exposure to ATP or UTP inhibited AML-cell migration in vitro. In vivo, xenotransplantation experiments demonstrated that the homing and engraftment capacity of AML blasts and CD34+CD38- cells to immunodeficient mice BM was significantly inhibited by pretreatment with nucleotides. P2R-expression analysis and pharmacologic profiling suggested that the inhibition of proliferation by ATP was mediated by the down-regulation of the P2X7R, which is up-regulated on untreated blasts, whereas the inhibition of chemotaxis was mainly mediated via P2Y2R and P2Y4R subtypes. We conclude that, unlike normal cells, P2R signaling inhibits leukemic cells and therefore its pharmacologic modulation may represent a novel therapeutic strategy.
Collapse
|
43
|
Ma CH, Chong JH, Guo Y, Zeng HM, Liu SY, Xu LL, Wei J, Lin YM, Zhu XF, Zheng GG. Abnormal expression of ADAR1 isoforms in Chinese pediatric acute leukemias. Biochem Biophys Res Commun 2011; 406:245-51. [PMID: 21316340 DOI: 10.1016/j.bbrc.2011.02.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 02/06/2011] [Indexed: 10/18/2022]
Abstract
The posttranscriptional RNA editing by the type 1 adenosine deaminase acting on RNAs (ADAR1), expressed as p110 and p150 isoforms, is important for both physiological and pathological processes. Their expression and significance in leukemias remain unknown. Here, we investigated the expression of ADAR1 in Chinese pediatric acute leukemias by real-time PCR and Western blot. The results showed that significant high expression of p110 was detected in leukemias, especially in B-ALL, whereas a slight increase of p150 could be observed. Furthermore, the decrease of p110 expression was observed in B-ALL patients achieving complete remission. Moreover, among prognostic risk groups in ALL, the highest expressions of p110 and p150 were detected in standard-risk group, whereas their lowest expressions were in high-risk group. This observation was further confirmed in comparisons between good and poor prognostic groups based on prognostic related clinical features. These results demonstrated that ADAR1 isoforms showed different expression patterns, suggesting that they might play different roles in pediatric leukemias. Our results will help us for the better understanding of RNA editing, exploring the potential target for the treatment, and making prognostic evaluation in childhood leukemias.
Collapse
Affiliation(s)
- Cui-Hua Ma
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Chong JH, Zheng GG, Ma YY, Zhang HY, Nie K, Lin YM, Wu KF. The hyposensitive N187D P2X7 mutant promotes malignant progression in nude mice. J Biol Chem 2010; 285:36179-87. [PMID: 20837475 PMCID: PMC2975240 DOI: 10.1074/jbc.m110.128488] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 08/19/2010] [Indexed: 02/06/2023] Open
Abstract
Nucleotides are new players in the intercellular communication network. P2X7 is a member of the P2X family of receptors, which are ATP-gated plasma membrane ion channels with diverse biological functions. Abnormal expression and dysfunction of P2X7 have been reported in leukemias. Here, we report a new P2X7 mutant (an A(559)-to-G substitution causing N187D P2X7) cloned from J6-1 leukemia cells. The characteristics of N187D P2X7 were studied by establishing stably transfected K562 cell lines. Our results show that N187D P2X7 required a higher concentration of agonist for its activation, leading to Ca(2+) influx (EC(50) = 293.3 ± 6.6 μm for the mutant and 93.6 ± 2.2 μm for wild-type P2X7) and ERK phosphorylation, which were not caused by differential cell-surface expression or related to high ATPase activity on the cell surface and in the extracellular space. K562 cells expressing this N187D mutant showed a proliferative advantage and reduced pro-apoptosis effects in vitro and in vivo. Furthermore, elevated angiogenesis and CD206-positive macrophage infiltration were found in tumor tissues formed by K562-M cells. In addition, higher expression of VEGF and MCP1 could be detected in tumor tissues formed by K562-M cells. Our results suggest that N187D P2X7, representing mutants hyposensitive to agonist, might be a positive regulator in the progression of hematopoietic malignancies.
Collapse
MESH Headings
- Adenosine Triphosphate/analogs & derivatives
- Adenosine Triphosphate/pharmacology
- Animals
- Blotting, Western
- Calcium/metabolism
- Cell Line, Tumor
- Disease Progression
- Enzyme Activation/drug effects
- Female
- Gene Expression Regulation, Leukemic
- Humans
- Intracellular Space/drug effects
- Intracellular Space/metabolism
- K562 Cells
- Leukemia, Experimental/genetics
- Leukemia, Experimental/metabolism
- Leukemia, Experimental/pathology
- MAP Kinase Signaling System/drug effects
- Macrophages/metabolism
- Macrophages/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Mutation, Missense
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Receptors, Purinergic P2X7/genetics
- Receptors, Purinergic P2X7/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Transplantation, Heterologous
- Tumor Burden/genetics
- p38 Mitogen-Activated Protein Kinases/metabolism
Collapse
Affiliation(s)
- Jing-Hui Chong
- From the State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, China and
- the Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Guo-Guang Zheng
- From the State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, China and
- the Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yuan-Yuan Ma
- From the State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, China and
| | - Hai-Yan Zhang
- From the State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, China and
| | - Kun Nie
- From the State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, China and
| | - Yong-Min Lin
- From the State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, China and
- the Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Ke-Fu Wu
- From the State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, China and
| |
Collapse
|