1
|
Vorländer MK, Rothe P, Kleifeld J, Cormack ED, Veleti L, Riabov-Bassat D, Fin L, Phillips AW, Cochella L, Plaschka C. Mechanism for the initiation of spliceosome disassembly. Nature 2024; 632:443-450. [PMID: 38925148 PMCID: PMC7616679 DOI: 10.1038/s41586-024-07741-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
Precursor-mRNA (pre-mRNA) splicing requires the assembly, remodelling and disassembly of the multi-megadalton ribonucleoprotein complex called the spliceosome1. Recent studies have shed light on spliceosome assembly and remodelling for catalysis2-6, but the mechanism of disassembly remains unclear. Here we report cryo-electron microscopy structures of nematode and human terminal intron lariat spliceosomes along with biochemical and genetic data. Our results uncover how four disassembly factors and the conserved RNA helicase DHX15 initiate spliceosome disassembly. The disassembly factors probe large inner and outer spliceosome surfaces to detect the release of ligated mRNA. Two of these factors, TFIP11 and C19L1, and three general spliceosome subunits, SYF1, SYF2 and SDE2, then dock and activate DHX15 on the catalytic U6 snRNA to initiate disassembly. U6 therefore controls both the start5 and end of pre-mRNA splicing. Taken together, our results explain the molecular basis of the initiation of canonical spliceosome disassembly and provide a framework to understand general spliceosomal RNA helicase control and the discard of aberrant spliceosomes.
Collapse
Affiliation(s)
- Matthias K Vorländer
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Patricia Rothe
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Justus Kleifeld
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Eric D Cormack
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lalitha Veleti
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Daria Riabov-Bassat
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Laura Fin
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Alex W Phillips
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Luisa Cochella
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria.
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Clemens Plaschka
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria.
| |
Collapse
|
2
|
Jagtap PKA, Müller M, Kiss AE, Thomae AW, Lapouge K, Beck M, Becker PB, Hennig J. Structural basis of RNA-induced autoregulation of the DExH-type RNA helicase maleless. Mol Cell 2023; 83:4318-4333.e10. [PMID: 37989319 DOI: 10.1016/j.molcel.2023.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 07/27/2023] [Accepted: 10/18/2023] [Indexed: 11/23/2023]
Abstract
RNA unwinding by DExH-type helicases underlies most RNA metabolism and function. It remains unresolved if and how the basic unwinding reaction of helicases is regulated by auxiliary domains. We explored the interplay between the RecA and auxiliary domains of the RNA helicase maleless (MLE) from Drosophila using structural and functional studies. We discovered that MLE exists in a dsRNA-bound open conformation and that the auxiliary dsRBD2 domain aligns the substrate RNA with the accessible helicase tunnel. In an ATP-dependent manner, dsRBD2 associates with the helicase module, leading to tunnel closure around ssRNA. Furthermore, our structures provide a rationale for blunt-ended dsRNA unwinding and 3'-5' translocation by MLE. Structure-based MLE mutations confirm the functional relevance of our model for RNA unwinding. Our findings contribute to our understanding of the fundamental mechanics of auxiliary domains in DExH helicase MLE, which serves as a model for its human ortholog and potential therapeutic target, DHX9/RHA.
Collapse
Affiliation(s)
- Pravin Kumar Ankush Jagtap
- Structural and Computational Biology Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany; Chair of Biochemistry IV, Biophysical Chemistry, University of Bayreuth, Bayreuth, Germany.
| | - Marisa Müller
- Molecular Biology Division, Biomedical Center, LMU Munich, 82152 Planegg-Martinsried, Germany
| | - Anna E Kiss
- Molecular Biology Division, Biomedical Center, LMU Munich, 82152 Planegg-Martinsried, Germany
| | - Andreas W Thomae
- Molecular Biology Division, Biomedical Center, LMU Munich, 82152 Planegg-Martinsried, Germany; Core Facility Bioimaging at the Biomedical Center, LMU Munich, 82152 Planegg-Martinsried, Germany
| | - Karine Lapouge
- Protein Expression and Purification Core Facility, EMBL Heidelberg, 69117 Heidelberg, Germany
| | - Martin Beck
- Structural and Computational Biology Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany; Department of Molecular Sociology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Peter B Becker
- Molecular Biology Division, Biomedical Center, LMU Munich, 82152 Planegg-Martinsried, Germany
| | - Janosch Hennig
- Structural and Computational Biology Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany; Chair of Biochemistry IV, Biophysical Chemistry, University of Bayreuth, Bayreuth, Germany.
| |
Collapse
|
3
|
Wettasinghe AP, Seifi MO, Bravo M, Adams AC, Patel A, Lou M, Kahanda D, Peng H, Stelling AL, Fan L, Slinker JD. Molecular wrench activity of DNA helicases: Keys to modulation of rapid kinetics in DNA repair. Protein Sci 2023; 32:e4815. [PMID: 37874269 PMCID: PMC10659936 DOI: 10.1002/pro.4815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/03/2023] [Accepted: 10/19/2023] [Indexed: 10/25/2023]
Abstract
DNA helicase activity is essential for the vital DNA metabolic processes of recombination, replication, transcription, translation, and repair. Recently, an unexpected, rapid exponential ATP-stimulated DNA unwinding rate was observed from an Archaeoglobus fulgidus helicase (AfXPB) as compared to the slower conventional helicases from Sulfolobus tokodaii, StXPB1 and StXPB2. This unusual rapid activity suggests a "molecular wrench" mechanism arising from the torque applied by AfXPB on the duplex structure in transitioning from open to closed conformations. However, much remains to be understood. Here, we investigate the concentration dependence of DNA helicase binding and ATP-stimulated kinetics of StXPB2 and AfXPB, as well as their binding and activity in Bax1 complexes, via an electrochemical assay with redox-active DNA monolayers. StXPB2 ATP-stimulated activity is concentration-independent from 8 to 200 nM. Unexpectedly, AfXPB activity is concentration-dependent in this range, with exponential rate constants varying from seconds at concentrations greater than 20 nM to thousands of seconds at lower concentrations. At 20 nM, rapid exponential signal decay ensues, linearly reverses, and resumes with a slower exponential decay. This change in AfXPB activity as a function of its concentration is rationalized as the crossover between the fast molecular wrench and slower conventional helicase modes. AfXPB-Bax1 inhibits rapid activity, whereas the StXPB2-Bax1 complex induces rapid kinetics at higher concentrations. This activity is rationalized with the crystal structures of these complexes. These findings illuminate the different physical models governing molecular wrench activity for improved biological insight into a key factor in DNA repair.
Collapse
Affiliation(s)
| | - Melodee O. Seifi
- Department of PhysicsThe University of Texas at DallasRichardsonTexasUSA
| | - Marco Bravo
- Department of BiochemistryUniversity of CaliforniaRiversideCaliforniaUSA
| | - Austen C. Adams
- Department of PhysicsThe University of Texas at DallasRichardsonTexasUSA
| | - Aman Patel
- Department of PhysicsThe University of Texas at DallasRichardsonTexasUSA
| | - Monica Lou
- Department of PhysicsThe University of Texas at DallasRichardsonTexasUSA
| | - Dimithree Kahanda
- Department of PhysicsThe University of Texas at DallasRichardsonTexasUSA
| | - Hao‐Che Peng
- Department of ChemistryThe University of Texas at DallasRichardsonTexasUSA
| | | | - Li Fan
- Department of ChemistryThe University of Texas at DallasRichardsonTexasUSA
| | - Jason D. Slinker
- Department of PhysicsThe University of Texas at DallasRichardsonTexasUSA
- Department of ChemistryThe University of Texas at DallasRichardsonTexasUSA
- Department of Materials Science and EngineeringThe University of Texas at DallasRichardsonTexasUSA
| |
Collapse
|
4
|
O'Sullivan MH, Fraser CS. Monitoring RNA restructuring in a human cell-free extract reveals eIF4A-dependent and eIF4A-independent unwinding activity. J Biol Chem 2023:104936. [PMID: 37331603 PMCID: PMC10362145 DOI: 10.1016/j.jbc.2023.104936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/20/2023] Open
Abstract
The canonical DEAD-box helicase, eIF4A, unwinds 5' UTR secondary structures to promote mRNA translation initiation. Growing evidence has indicated that other helicases, such as DHX29 and DDX3/ded1p, also function to promote the scanning of the 40S subunit on highly structured mRNAs. It is unknown how the relative contributions of eIF4A and other helicases regulate duplex unwinding on an mRNA to promote initiation. Here, we have adapted a real-time fluorescent duplex unwinding assay to monitor precisely helicase activity in the 5' UTR of a reporter mRNA that can be translated in a cell-free extract in parallel. We monitored the rate of 5' UTR-dependent duplex unwinding in the absence or presence of an eIF4A inhibitor (Hippuristanol), a dominant negative eIF4A (eIF4A-R362Q), or a mutant eIF4E (eIF4E-W73L) that can bind the m7G cap but not eIF4G. Our experiments reveal that the duplex unwinding activity in the cell-free extract is roughly evenly split between eIF4A-dependent and eIF4A-independent mechanisms. Importantly, we show that the robust eIF4A-independent duplex unwinding is not sufficient for translation. We also show that the m7G cap structure, and not the poly(A) tail, is the primary mRNA modification responsible for promoting duplex unwinding in our cell-free extract system. Overall, the fluorescent duplex unwinding assay provides a precise method to investigate how eIF4A-dependent and eIF4A-independent helicase activity regulates translation initiation in cell-free extracts. We anticipate that potential small molecule inhibitors could be tested for helicase inhibition using this duplex unwinding assay.
Collapse
Affiliation(s)
- Mattie H O'Sullivan
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, CA 95616
| | - Christopher S Fraser
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, CA 95616.
| |
Collapse
|
5
|
Bottega R, Ravera S, Napolitano LMR, Chiappetta V, Zini N, Crescenzi B, Arniani S, Faleschini M, Cortone G, Faletra F, Medagli B, Sirchia F, Moretti M, de Lange J, Cappelli E, Mecucci C, Onesti S, Pisani FM, Savoia A. Genomic integrity and mitochondrial metabolism defects in Warsaw syndrome cells: a comparison with Fanconi anemia. J Cell Physiol 2021; 236:5664-5675. [PMID: 33432587 DOI: 10.1002/jcp.30265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/25/2022]
Abstract
Warsaw breakage syndrome (WABS), is caused by biallelic mutations of DDX11, a gene coding a DNA helicase. We have recently reported two affected sisters, compound heterozygous for a missense (p.Leu836Pro) and a frameshift (p.Lys303Glufs*22) variant. By investigating the pathogenic mechanism, we demonstrate the inability of the DDX11 p.Leu836Pro mutant to unwind forked DNA substrates, while retaining DNA binding activity. We observed the accumulation of patient-derived cells at the G2/M phase and increased chromosomal fragmentation after mitomycin C treatment. The phenotype partially overlaps with features of the Fanconi anemia cells, which shows not only genomic instability but also defective mitochondria. This prompted us to examine mitochondrial functionality in WABS cells and revealed an altered aerobic metabolism. This opens the door to the further elucidation of the molecular and cellular basis of an impaired mitochondrial phenotype and sheds light on this fundamental process in cell physiology and the pathogenesis of these diseases.
Collapse
Affiliation(s)
- Roberta Bottega
- Institute for Maternal and Child Health-IRCCS Burlo Garofolo, Trieste, Italy
| | - Silvia Ravera
- Department of Experimental Medicine, University of Genova, Genova, Italy
| | | | - Viviana Chiappetta
- Istituto di Biochimica e Biologia Cellulare (IBBC), Consiglio Nazionale delle Ricerche (CNR), Naples, Italy
| | - Nicoletta Zini
- CNR-National Research Council of Italy, Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza"-Unit of Bologna, Bologna, Italy.,IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Barbara Crescenzi
- Sezione di Ematologia ed Immunologia Clinica, Centro Ricerche Emato-Oncologiche, University of Perugia, Perugia, Italy
| | - Silvia Arniani
- Sezione di Ematologia ed Immunologia Clinica, Centro Ricerche Emato-Oncologiche, University of Perugia, Perugia, Italy
| | - Michela Faleschini
- Institute for Maternal and Child Health-IRCCS Burlo Garofolo, Trieste, Italy
| | - Giuseppe Cortone
- Structural Biology Laboratory, Elettra-Sincrotrone Trieste, Trieste, Italy.,International School for Advanced Studies (SISSA), Trieste, Italy
| | - Flavio Faletra
- Institute for Maternal and Child Health-IRCCS Burlo Garofolo, Trieste, Italy
| | - Barbara Medagli
- Structural Biology Laboratory, Elettra-Sincrotrone Trieste, Trieste, Italy.,Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Fabio Sirchia
- Institute for Maternal and Child Health-IRCCS Burlo Garofolo, Trieste, Italy
| | - Martina Moretti
- Sezione di Ematologia ed Immunologia Clinica, Centro Ricerche Emato-Oncologiche, University of Perugia, Perugia, Italy
| | - Job de Lange
- Amsterdam UMC, Clinical Genetics, Section Oncogenetics, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Enrico Cappelli
- UO Ematologia, IRCCS Istituto Giannina Gaslini, Genova, Italy, Genova, Italy
| | - Cristina Mecucci
- Sezione di Ematologia ed Immunologia Clinica, Centro Ricerche Emato-Oncologiche, University of Perugia, Perugia, Italy
| | - Silvia Onesti
- Structural Biology Laboratory, Elettra-Sincrotrone Trieste, Trieste, Italy
| | - Francesca M Pisani
- Istituto di Biochimica e Biologia Cellulare (IBBC), Consiglio Nazionale delle Ricerche (CNR), Naples, Italy
| | - Anna Savoia
- Institute for Maternal and Child Health-IRCCS Burlo Garofolo, Trieste, Italy.,Department of Medical Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
6
|
Kumar D, Yu X, Crawford SE, Moreno R, Jakana J, Sankaran B, Anish R, Kaundal S, Hu L, Estes MK, Wang Z, Prasad BVV. 2.7 Å cryo-EM structure of rotavirus core protein VP3, a unique capping machine with a helicase activity. SCIENCE ADVANCES 2020; 6:eaay6410. [PMID: 32494598 PMCID: PMC7159914 DOI: 10.1126/sciadv.aay6410] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 01/22/2020] [Indexed: 05/08/2023]
Abstract
In many viruses, including rotavirus (RV), the major pathogen of infantile gastroenteritis, capping of viral messenger RNAs is a pivotal step for efficient translation of the viral genome. In RV, VP3 caps the nascent transcripts synthesized from the genomic dsRNA segments by the RV polymerase VP1 within the particle core. Here, from cryo-electron microscopy, x-ray crystallography, and biochemical analyses, we show that VP3 forms a stable tetrameric assembly with each subunit having a modular domain organization, which uniquely integrates five distinct enzymatic steps required for capping the transcripts. In addition to the previously known guanylyl- and methyltransferase activities, we show that VP3 exhibits hitherto unsuspected RNA triphosphatase activity necessary for initiating transcript capping and RNA helicase activity likely required for separating the RNA duplex formed transiently during endogenous transcription. From our studies, we propose a new mechanism for how VP3 inside the virion core caps the nascent transcripts exiting from the polymerase.
Collapse
Affiliation(s)
- Dilip Kumar
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xinzhe Yu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sue E. Crawford
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rodolfo Moreno
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Joanita Jakana
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- CryoEM Core, Baylor College of Medicine, Houston, TX 77030, USA
| | - Banumathi Sankaran
- Molecular Biophysics and Integrated Bioimaging, Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Ramakrishnan Anish
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Soni Kaundal
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Liya Hu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mary K Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhao Wang
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- CryoEM Core, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Corresponding author. (B.V.V.P.); (Z.W.)
| | - B. V. Venkataram Prasad
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Corresponding author. (B.V.V.P.); (Z.W.)
| |
Collapse
|
7
|
Licatalosi DD, Ye X, Jankowsky E. Approaches for measuring the dynamics of RNA-protein interactions. WILEY INTERDISCIPLINARY REVIEWS. RNA 2020; 11:e1565. [PMID: 31429211 PMCID: PMC7006490 DOI: 10.1002/wrna.1565] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/20/2019] [Accepted: 07/25/2019] [Indexed: 12/17/2022]
Abstract
RNA-protein interactions are pivotal for the regulation of gene expression from bacteria to human. RNA-protein interactions are dynamic; they change over biologically relevant timescales. Understanding the regulation of gene expression at the RNA level therefore requires knowledge of the dynamics of RNA-protein interactions. Here, we discuss the main experimental approaches to measure dynamic aspects of RNA-protein interactions. We cover techniques that assess dynamics of cellular RNA-protein interactions that accompany biological processes over timescales of hours or longer and techniques measuring the kinetic dynamics of RNA-protein interactions in vitro. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Evolution and Genomics > Ribonomics.
Collapse
Affiliation(s)
- Donny D Licatalosi
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Xuan Ye
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Eckhard Jankowsky
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
8
|
TANI H. Development and Application of Analytical Methods for Biological Molecules Using the Fluorescent Dyes and the Nucleotide Analogs. BUNSEKI KAGAKU 2019. [DOI: 10.2116/bunsekikagaku.68.109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Hidenori TANI
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| |
Collapse
|
9
|
Rumlová M, Ruml T. In vitro methods for testing antiviral drugs. Biotechnol Adv 2018; 36:557-576. [PMID: 29292156 PMCID: PMC7127693 DOI: 10.1016/j.biotechadv.2017.12.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/22/2017] [Accepted: 12/27/2017] [Indexed: 12/24/2022]
Abstract
Despite successful vaccination programs and effective treatments for some viral infections, humans are still losing the battle with viruses. Persisting human pandemics, emerging and re-emerging viruses, and evolution of drug-resistant strains impose continuous search for new antiviral drugs. A combination of detailed information about the molecular organization of viruses and progress in molecular biology and computer technologies has enabled rational antivirals design. Initial step in establishing efficacy of new antivirals is based on simple methods assessing inhibition of the intended target. We provide here an overview of biochemical and cell-based assays evaluating the activity of inhibitors of clinically important viruses.
Collapse
Affiliation(s)
- Michaela Rumlová
- Department of Biotechnology, University of Chemistry and Technology, Prague 166 28, Czech Republic.
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague 166 28, Czech Republic.
| |
Collapse
|
10
|
Kahanda D, DuPrez KT, Hilario E, McWilliams MA, Wohlgamuth CH, Fan L, Slinker JD. Application of Electrochemical Devices to Characterize the Dynamic Actions of Helicases on DNA. Anal Chem 2018; 90:2178-2185. [PMID: 29285929 PMCID: PMC5957534 DOI: 10.1021/acs.analchem.7b04515] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Much remains to be understood about the kinetics and thermodynamics of DNA helicase binding and activity. Here, we utilize probe-modified DNA monolayers on multiplexed gold electrodes as a sensitive recognition element and morphologically responsive transducer of helicase-DNA interactions. The electrochemical signals from these devices are highly sensitive to structural distortion of the DNA produced by the helicases. We used this DNA electrochemistry to distinguish the details of the DNA interactions of three distinct XPB helicases, which belong to the superfamily-2 of helicases. Clear changes in DNA melting temperature and duplex stability were observed upon helicase binding, shifts that could not be observed with conventional UV-visible absorption measurements. Binding dissociation constants were estimated in the range from 10 to 50 nM and correlated with observations of activity. ATP-stimulated DNA unwinding activity was also followed, revealing exponential time scales and distinct time constants associated with conventional and molecular wrench modes of operation further confirmed by crystal structures. These devices thus provide a sensitive measure of the structural thermodynamics and kinetics of helicase-DNA interactions.
Collapse
Affiliation(s)
- Dimithree Kahanda
- Department of Physics, The University of Texas at Dallas, 800 West Campbell Road, PHY 36, Richardson, Texas 75080, United States
| | - Kevin T. DuPrez
- Department of Biochemistry, University of California, 900 University Avenue, Riverside, California 92521, United States
| | - Eduardo Hilario
- Department of Biochemistry, University of California, 900 University Avenue, Riverside, California 92521, United States
| | - Marc A. McWilliams
- Department of Physics, The University of Texas at Dallas, 800 West Campbell Road, PHY 36, Richardson, Texas 75080, United States
| | - Chris H. Wohlgamuth
- Department of Physics, The University of Texas at Dallas, 800 West Campbell Road, PHY 36, Richardson, Texas 75080, United States
| | - Li Fan
- Department of Biochemistry, University of California, 900 University Avenue, Riverside, California 92521, United States
| | - Jason D. Slinker
- Department of Physics, The University of Texas at Dallas, 800 West Campbell Road, PHY 36, Richardson, Texas 75080, United States
| |
Collapse
|
11
|
DNA-conjugated gold nanoparticles based colorimetric assay to assess helicase activity: a novel route to screen potential helicase inhibitors. Sci Rep 2017; 7:44358. [PMID: 28287182 PMCID: PMC5347027 DOI: 10.1038/srep44358] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 02/08/2017] [Indexed: 12/28/2022] Open
Abstract
Helicase are essential enzymes which are widespread in all life-forms. Due to their central role in nucleic acid metabolism, they are emerging as important targets for anti-viral, antibacterial and anti-cancer drugs. The development of easy, cheap, fast and robust biochemical assays to measure helicase activity, overcoming the limitations of the current methods, is a pre-requisite for the discovery of helicase inhibitors through high-throughput screenings. We have developed a method which exploits the optical properties of DNA-conjugated gold nanoparticles (AuNP) and meets the required criteria. The method was tested with the catalytic domain of the human RecQ4 helicase and compared with a conventional FRET-based assay. The AuNP-based assay produced similar results but is simpler, more robust and cheaper than FRET. Therefore, our nanotechnology-based platform shows the potential to provide a useful alternative to the existing conventional methods for following helicase activity and to screen small-molecule libraries as potential helicase inhibitors.
Collapse
|
12
|
Tani H, Sato H, Torimura M. Rapid monitoring of RNA degradation activity in vivo for mammalian cells. J Biosci Bioeng 2017; 123:523-527. [PMID: 28038925 DOI: 10.1016/j.jbiosc.2016.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 11/28/2016] [Indexed: 11/18/2022]
Abstract
We have developed a rapid fluorescence assay based on fluorescence resonance energy transfer (FRET) for the monitoring of RNA degradation activity in mammalian cells. In this technique, double-stranded RNA (dsRNA) fluorescent probes are used. The dsRNA fluorescent probes consist of a 5' fluorophore-labeled strand hybridized to a 3' quencher-labeled strand, and the fluorescent dye is quenched by a quencher dye. When the dsRNA is degraded by nascent RNases in cells, the fluorescence emission of the fluorophore is induced following the degradation of the double strands. The degradation rates of the dsRNA are decelerated in response to chemical or environmental toxicity; therefore, in the case of cellular toxicity, the dsRNA is not degraded and remains intact, thus quenching the fluorescence. Unlike in conventional cell-counting assays, this new assay eliminates time-consuming steps, and can be used to simply evaluate the cellular toxicity via a single reaction. Our results demonstrate that this assay can rapidly quantify the RNA degradation rates in vivo within 4 h for three model chemicals. We propose that this assay will be useful for monitoring cellular toxicity in high-throughput applications.
Collapse
Affiliation(s)
- Hidenori Tani
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan.
| | - Hiroaki Sato
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Masaki Torimura
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| |
Collapse
|
13
|
Mojumdar A, De March M, Marino F, Onesti S. The Human RecQ4 Helicase Contains a Functional RecQ C-terminal Region (RQC) That Is Essential for Activity. J Biol Chem 2016; 292:4176-4184. [PMID: 27998982 DOI: 10.1074/jbc.m116.767954] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 12/18/2016] [Indexed: 11/06/2022] Open
Abstract
RecQ helicases are essential in the maintenance of genome stability. Five paralogues (RecQ1, Bloom, Werner, RecQ4, and RecQ5) are found in human cells, with distinct but overlapping roles. Mutations in human RecQ4 give rise to three distinct genetic disorders (Rothmund-Thomson, RAPADILINO, and Baller-Gerold syndromes), characterized by genetic instability, growth deficiency, and predisposition to cancer. Previous studies suggested that RecQ4 was unique because it did not seem to contain a RecQ C-terminal region (RQC) found in the other RecQ paralogues; such a region consists of a zinc domain and a winged helix domain and plays an important role in enzyme activity. However, our recent bioinformatic analysis identified in RecQ4 a putative RQC. To experimentally confirm this hypothesis, we report the purification and characterization of the catalytic core of human RecQ4. Inductively coupled plasma-atomic emission spectrometry detected the unusual presence of two zinc clusters within the zinc domain, consistent with the bioinformatic prediction. Analysis of site-directed mutants, targeting key RQC residues (putative zinc ligands and the aromatic residue predicted to be at the tip of the winged helix β-hairpin), showed a decrease in DNA binding, unwinding, and annealing, as expected for a functional RQC domain. Low resolution structural information obtained by small angle X-ray scattering data suggests that RecQ4 interacts with DNA in a manner similar to RecQ1, whereas the winged helix domain may assume alternative conformations, as seen in the bacterial enzymes. These combined results experimentally confirm the presence of a functional RQC domain in human RecQ4.
Collapse
Affiliation(s)
- Aditya Mojumdar
- From the Structural Biology Laboratory, Elettra-Sincrotrone Trieste, 34149 Basovizza, Trieste, Italy and.,the Dipartimento di Scienze della Vita, Università degli Studi di Trieste, 34127 Trieste, Italy
| | - Matteo De March
- From the Structural Biology Laboratory, Elettra-Sincrotrone Trieste, 34149 Basovizza, Trieste, Italy and
| | - Francesca Marino
- From the Structural Biology Laboratory, Elettra-Sincrotrone Trieste, 34149 Basovizza, Trieste, Italy and
| | - Silvia Onesti
- From the Structural Biology Laboratory, Elettra-Sincrotrone Trieste, 34149 Basovizza, Trieste, Italy and
| |
Collapse
|
14
|
Nandakumar D, Patel SS. Methods to study the coupling between replicative helicase and leading-strand DNA polymerase at the replication fork. Methods 2016; 108:65-78. [PMID: 27173619 DOI: 10.1016/j.ymeth.2016.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/05/2016] [Accepted: 05/06/2016] [Indexed: 01/26/2023] Open
Abstract
Replicative helicases work closely with the replicative DNA polymerases to ensure that the genomic DNA is copied in a timely and error free manner. In the replisomes of prokaryotes, mitochondria, and eukaryotes, the helicase and DNA polymerase enzymes are functionally and physically coupled at the leading strand replication fork and rely on each other for optimal DNA strand separation and synthesis activities. In this review, we describe pre-steady state kinetic methods to quantify the base pair unwinding-synthesis rate constant, a fundamental parameter to understand how the helicase and polymerase help each other during leading strand replication. We describe a robust method to measure the chemical step size of the helicase-polymerase complex that determines how the two motors are energetically coupled while tracking along the DNA. The 2-aminopurine fluorescence-based method provide structural information on the leading strand helicase-polymerase complex, such as the distance between the two enzymes, their relative positions at the replication fork, and their roles in fork junction melting. The combined information garnered from these methods informs on the mutual dependencies between the helicase and DNA polymerase enzymes, their stepping mechanism, and their individual functions at the replication fork during leading strand replication.
Collapse
Affiliation(s)
- Divya Nandakumar
- Department of Biochemistry and Molecular Biology, Rutgers, Robert Wood Johnson Medical School, 683 Hoes Lane West, Piscataway 08854, NJ, USA
| | - Smita S Patel
- Department of Biochemistry and Molecular Biology, Rutgers, Robert Wood Johnson Medical School, 683 Hoes Lane West, Piscataway 08854, NJ, USA.
| |
Collapse
|
15
|
Zheng T, Jiang P, Cao B, Cheng Q, Kong L, Zheng X, Hu Q, You D. DndEi Exhibits Helicase Activity Essential for DNA Phosphorothioate Modification and ATPase Activity Strongly Stimulated by DNA Substrate with a GAAC/GTTC Motif. J Biol Chem 2015; 291:1492-500. [PMID: 26631733 DOI: 10.1074/jbc.m115.694018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Indexed: 11/06/2022] Open
Abstract
Phosphorothioate (PT) modification of DNA, in which the non-bridging oxygen of the backbone phosphate group is replaced by sulfur, is governed by the DndA-E proteins in prokaryotes. To better understand the biochemical mechanism of PT modification, functional analysis of the recently found PT-modifying enzyme DndEi, which has an additional domain compared with canonical DndE, from Riemerella anatipestifer is performed in this study. The additional domain is identified as a DNA helicase, and functional deletion of this domain in vivo leads to PT modification deficiency, indicating an essential role of helicase activity in PT modification. Subsequent analysis reveals that the additional domain has an ATPase activity. Intriguingly, the ATPase activity is strongly stimulated by DNA substrate containing a GAAC/GTTC motif (i.e. the motif at which PT modifications occur in R. anatipestifer) when the additional domain and the other domain (homologous to canonical DndE) are co-expressed as a full-length DndEi. These results reveal that PT modification is a biochemical process with DNA strand separation and intense ATP hydrolysis.
Collapse
Affiliation(s)
- Tao Zheng
- From the State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200030
| | - Pan Jiang
- the Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Shanghai 200240, and
| | - Bo Cao
- From the State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200030
| | - Qiuxiang Cheng
- From the State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200030
| | - Lingxin Kong
- From the State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200030
| | - Xiaoqing Zheng
- From the State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200030
| | - Qinghai Hu
- the Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Shanghai 200240, and
| | - Delin You
- From the State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, the Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
16
|
Furuta A, Salam KA, Tani H, Tsuneda S, Sekiguchi Y, Akimitsu N, Noda N. A fluorescence-based screening assay for identification of hepatitis C virus NS3 helicase inhibitors and characterization of their inhibitory mechanism. Methods Mol Biol 2015; 1259:211-28. [PMID: 25579589 DOI: 10.1007/978-1-4939-2214-7_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Hepatitis C virus (HCV) can establish a chronic infection in the majority of individuals infected, resulting in liver cirrhosis and hepatocellular carcinoma. Because the current standard treatment for HCV infection has limitations in terms of severe side effects, the emergence of drug resistance, and drug-drug interactions, it is desirable to develop novel antivirals that target viral proteins involved in viral replication. HCV nonstructural protein 3 (NS3) helicase, which unwinds double-stranded nucleic acids to yield single-stranded nucleic acids, is one possible target for new drug development, because it plays an essential role in viral replication. In this chapter, we describe a helicase assay based on fluorescence resonance energy transfer (FRET) that can be used for high-throughput screening of HCV NS3 helicase inhibitors. The assay uses a double-stranded RNA (dsRNA) substrate with a fluorophore-labeled strand hybridized to a quencher-labeled strand and monitors the increase in fluorescence intensity resulting from helicase-catalyzed unwinding of the dsRNA substrate. We further describe radioactive assays to directly visualize RNA strands unwound by helicase and to evaluate the ATPase and RNA-binding activities of NS3, which are linked to helicase activity, for characterization of the inhibitory mechanism.
Collapse
Affiliation(s)
- Atsushi Furuta
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
17
|
Furuta A, Tsubuki M, Endoh M, Miyamoto T, Tanaka J, Salam KA, Akimitsu N, Tani H, Yamashita A, Moriishi K, Nakakoshi M, Sekiguchi Y, Tsuneda S, Noda N. Identification of Hydroxyanthraquinones as Novel Inhibitors of Hepatitis C Virus NS3 Helicase. Int J Mol Sci 2015; 16:18439-53. [PMID: 26262613 PMCID: PMC4581254 DOI: 10.3390/ijms160818439] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/14/2015] [Accepted: 07/31/2015] [Indexed: 01/27/2023] Open
Abstract
Hepatitis C virus (HCV) is an important etiological agent of severe liver diseases, including cirrhosis and hepatocellular carcinoma. The HCV genome encodes nonstructural protein 3 (NS3) helicase, which is a potential anti-HCV drug target because its enzymatic activity is essential for viral replication. Some anthracyclines are known to be NS3 helicase inhibitors and have a hydroxyanthraquinone moiety in their structures; mitoxantrone, a hydroxyanthraquinone analogue, is also known to inhibit NS3 helicase. Therefore, we hypothesized that the hydroxyanthraquinone moiety alone could also inhibit NS3 helicase. Here, we performed a structure-activity relationship study on a series of hydroxyanthraquinones by using a fluorescence-based helicase assay. Hydroxyanthraquinones inhibited NS3 helicase with IC50 values in the micromolar range. The inhibitory activity varied depending on the number and position of the phenolic hydroxyl groups, and among different hydroxyanthraquinones examined, 1,4,5,8-tetrahydroxyanthraquinone strongly inhibited NS3 helicase with an IC50 value of 6 µM. Furthermore, hypericin and sennidin A, which both have two hydroxyanthraquinone-like moieties, were found to exert even stronger inhibition with IC50 values of 3 and 0.8 µM, respectively. These results indicate that the hydroxyanthraquinone moiety can inhibit NS3 helicase and suggest that several key chemical structures are important for the inhibition.
Collapse
Affiliation(s)
- Atsushi Furuta
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan.
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| | - Masayoshi Tsubuki
- Institute of Medical Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan.
| | - Miduki Endoh
- Institute of Medical Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan.
| | - Tatsuki Miyamoto
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan.
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| | - Junichi Tanaka
- Department of Chemistry, Biology and Marine Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan.
| | - Kazi Abdus Salam
- Radioisotope Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.
| | - Nobuyoshi Akimitsu
- Radioisotope Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.
| | - Hidenori Tani
- Environmental Measurement Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan.
| | - Atsuya Yamashita
- Department of Microbiology, Division of Medicine, Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo-shi, Yamanashi 409-3898, Japan.
| | - Kohji Moriishi
- Department of Microbiology, Division of Medicine, Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo-shi, Yamanashi 409-3898, Japan.
| | - Masamichi Nakakoshi
- Department of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi-shi, Chiba 274-8510, Japan.
| | - Yuji Sekiguchi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| | - Satoshi Tsuneda
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan.
| | - Naohiro Noda
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan.
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| |
Collapse
|
18
|
Ezrin Binds to DEAD-Box RNA Helicase DDX3 and Regulates Its Function and Protein Level. Mol Cell Biol 2015; 35:3145-62. [PMID: 26149384 DOI: 10.1128/mcb.00332-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 06/21/2015] [Indexed: 12/30/2022] Open
Abstract
Ezrin is a key regulator of cancer metastasis that links the extracellular matrix to the actin cytoskeleton and regulates cell morphology and motility. We discovered a small-molecule inhibitor, NSC305787, that directly binds to ezrin and inhibits its function. In this study, we used a nano-liquid chromatography-tandem mass spectrometry (nano-LC-MS-MS)-based proteomic approach to identify ezrin-interacting proteins that are competed away by NSC305787. A large number of the proteins that interact with ezrin were implicated in protein translation and stress granule dynamics. We validated direct interaction between ezrin and the RNA helicase DDX3, and NSC305787 blocked this interaction. Downregulation or long-term pharmacological inhibition of ezrin led to reduced DDX3 protein levels without changes in DDX3 mRNA. Ectopic overexpression of ezrin in low-ezrin-expressing osteosarcoma cells caused a notable increase in DDX3 protein levels. Ezrin inhibited the RNA helicase activity of DDX3 but increased its ATPase activity. Our data suggest that ezrin controls the translation of mRNAs preferentially with a structured 5' untranslated region, at least in part, by sustaining the protein level of DDX3 and/or regulating its function. Therefore, our findings suggest a novel function for ezrin in regulation of gene translation that is distinct from its canonical role as a cytoskeletal scaffold at the cell membrane.
Collapse
|
19
|
Suzuki Y, Kubota H, Sato'o Y, Ono H, Kato R, Sadamasu K, Kai A, Kamata Y. Identification and characterization of novel Staphylococcus aureus
pathogenicity islands encoding staphylococcal enterotoxins originating from staphylococcal food poisoning isolates. J Appl Microbiol 2015; 118:1507-20. [DOI: 10.1111/jam.12786] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 02/20/2015] [Accepted: 02/24/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Y. Suzuki
- Department of Veterinary Medicine; Faculty of Agriculture; Iwate University; Morioka City Iwate Japan
- The United Graduate School of Veterinary Sciences; Gifu University; Gifu City Gifu Japan
- Department of Microbiology; Tokyo Metropolitan Institute of Public Health; Shinjuku-ku Tokyo Japan
| | - H. Kubota
- Department of Microbiology; Tokyo Metropolitan Institute of Public Health; Shinjuku-ku Tokyo Japan
| | - Y. Sato'o
- Department of Bacteriology; Hiroshima University Graduate School of Biomedical and Health Sciences; Hiroshima City Hiroshima Japan
| | - H.K. Ono
- Department of Microbiology and Immunology; Hirosaki University Graduate School of Medicine; Hirosaki City Aomori Japan
| | - R. Kato
- Department of Microbiology; Tokyo Metropolitan Institute of Public Health; Shinjuku-ku Tokyo Japan
| | - K. Sadamasu
- Department of Microbiology; Tokyo Metropolitan Institute of Public Health; Shinjuku-ku Tokyo Japan
| | - A. Kai
- Department of Microbiology; Tokyo Metropolitan Institute of Public Health; Shinjuku-ku Tokyo Japan
| | - Y. Kamata
- Department of Veterinary Medicine; Faculty of Agriculture; Iwate University; Morioka City Iwate Japan
- The United Graduate School of Veterinary Sciences; Gifu University; Gifu City Gifu Japan
| |
Collapse
|
20
|
Mendoza O, Gueddouda NM, Boulé JB, Bourdoncle A, Mergny JL. A fluorescence-based helicase assay: application to the screening of G-quadruplex ligands. Nucleic Acids Res 2015; 43:e71. [PMID: 25765657 PMCID: PMC4477640 DOI: 10.1093/nar/gkv193] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 02/24/2015] [Indexed: 11/13/2022] Open
Abstract
Helicases, enzymes that unwind DNA or RNA structure, are present in the cell nucleus and in the mitochondrion. Although the majority of the helicases unwind DNA or RNA duplexes, some of these proteins are known to resolve unusual structures such as G-quadruplexes (G4) in vitro. G4 may form stable barrier to the progression of molecular motors tracking on DNA. Monitoring G4 unwinding by these enzymes may reveal the mechanisms of the enzymes and provides information about the stability of these structures. In the experiments presented herein, we developed a reliable, inexpensive and rapid fluorescence-based technique to monitor the activity of G4 helicases in real time in a 96-well plate format. This system was used to screen a series of G4 structures and G4 binders for their effect on the Pif1 enzyme, a 5' to 3' DNA helicase. This simple assay should be adaptable to analysis of other helicases and G4 structures.
Collapse
Affiliation(s)
- Oscar Mendoza
- University of Bordeaux, ARNA laboratory, Bordeaux, France INSERM, U869, IECB, Pessac, France
| | | | | | - Anne Bourdoncle
- INSERM, U869, IECB, Pessac, France Univ. Poitiers, 40 avenue du recteur Pineau, 86000 Poitiers, France
| | - Jean-Louis Mergny
- University of Bordeaux, ARNA laboratory, Bordeaux, France INSERM, U869, IECB, Pessac, France
| |
Collapse
|
21
|
Real-time fluorescence assays to monitor duplex unwinding and ATPase activities of helicases. Nat Protoc 2014; 9:1645-61. [PMID: 24945382 DOI: 10.1038/nprot.2014.112] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Many physiological functions of helicases are dependent on their ability to unwind nucleic acid duplexes in an ATP-dependent fashion. Determining the kinetic frameworks of these processes is crucial to understanding how these proteins function. We recently developed a fluorescence assay to monitor RNA duplex unwinding by DEAD-box helicases in real time. In this assay, two fluorescently modified short reporter oligonucleotides are annealed to an unmodified RNA loading strand of any length so that the fluorescent moieties of the two reporters find themselves in close proximity to each other and fluorescence is quenched. One reporter is modified with cyanine 3 (Cy3), whereas the other is modified with a spectrally paired black-hole quencher (BHQ). As the helicase unwinds the loading strand, the enzyme displaces the Cy3-modified reporter, which will bind to a capture or competitor DNA strand, permanently separating it from the BHQ-modified reporter. Complete separation of the Cy3-modified reporter strand is thus detected as an increase in total fluorescence. This assay is compatible with reagentless biosensors to monitor ATPase activity so that the coupling between ATP hydrolysis and duplex unwinding can be determined. With the protocol described, obtaining data and analyzing results of unwinding and ATPase assays takes ∼4 h.
Collapse
|
22
|
Salam KA, Furuta A, Noda N, Tsuneda S, Sekiguchi Y, Yamashita A, Moriishi K, Nakakoshi M, Tani H, Roy SR, Tanaka J, Tsubuki M, Akimitsu N. PBDE: structure-activity studies for the inhibition of hepatitis C virus NS3 helicase. Molecules 2014; 19:4006-20. [PMID: 24699145 PMCID: PMC6271602 DOI: 10.3390/molecules19044006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 03/05/2014] [Accepted: 03/13/2014] [Indexed: 01/05/2023] Open
Abstract
The helicase portion of the hepatitis C virus nonstructural protein 3 (NS3) is considered one of the most validated targets for developing direct acting antiviral agents. We isolated polybrominated diphenyl ether (PBDE) 1 from a marine sponge as an NS3 helicase inhibitor. In this study, we evaluated the inhibitory effects of PBDE (1) on the essential activities of NS3 protein such as RNA helicase, ATPase, and RNA binding activities. The structure-activity relationship analysis of PBDE (1) against the HCV ATPase revealed that the biphenyl ring, bromine, and phenolic hydroxyl group on the benzene backbone might be a basic scaffold for the inhibitory potency.
Collapse
Affiliation(s)
- Kazi Abdus Salam
- Radioisotope Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.
| | - Atsushi Furuta
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan.
| | - Naohiro Noda
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan.
| | - Satoshi Tsuneda
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan.
| | - Yuji Sekiguchi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| | - Atsuya Yamashita
- Department of Microbiology, Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo-shi, Yamanashi 409-3898, Japan.
| | - Kohji Moriishi
- Department of Microbiology, Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo-shi, Yamanashi 409-3898, Japan.
| | - Masamichi Nakakoshi
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan.
| | - Hidenori Tani
- Research Institute for Environmental Management Technology, National Institute of Advanced Industrial Science and Technology (AIST), 16-1, Onogawa, Tsukuba, Ibaraki 305-8569, Japan.
| | - Sona Rani Roy
- Department of Chemistry, Biology and Marine Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan.
| | - Junichi Tanaka
- Department of Chemistry, Biology and Marine Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan.
| | - Masayoshi Tsubuki
- Institute of Medical Chemistry, Hoshi University, Ebara 2-4-41, Shinagawa-ku, Tokyo 142-8501, Japan.
| | - Nobuyoshi Akimitsu
- Radioisotope Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.
| |
Collapse
|
23
|
Bian Y, Zhao S, Zhu S, Zeng J, Li T, Fu Y, Wang Y, Zheng X, Zhang L, Wang W, Yang B, Zhou Y, Allain JP, Li C. Significance of monoclonal antibodies against the conserved epitopes within non-structural protein 3 helicase of hepatitis C virus. PLoS One 2013; 8:e70214. [PMID: 23894620 PMCID: PMC3722154 DOI: 10.1371/journal.pone.0070214] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 06/18/2013] [Indexed: 12/16/2022] Open
Abstract
Nonstructural protein 3 (NS3) of hepatitis C virus (HCV), codes for protease and helicase carrying NTPase enzymatic activities, plays a crucial role in viral replication and an ideal target for diagnosis, antiviral therapy and vaccine development. In this study, monoclonal antibodies (mAbs) to NS3 helicase were characterized by epitope mapping and biological function test. A total of 29 monoclonal antibodies were produced to the truncated NS3 helicase of HCV-1b (T1b-rNS3, aa1192–1459). Six mAbs recognized 8/29 16mer peptides, which contributed to identify 5 linear and 1 discontinuous putative epitope sequences. Seven mAbs reacted with HCV-2a JFH-1 infected Huh-7.5.1 cells by immunofluorescent staining, of which 2E12 and 3E5 strongly bound to the exposed linear epitope 1231PTGSGKSTK1239 (EP05) or core motif 1373IPFYGKAI1380 (EP21), respectively. Five other mAbs recognized semi-conformational or conformational epitopes of HCV helicase. MAb 2E12 binds to epitope EP05 at the ATP binding site of motif I in domain 1, while mAb 3E5 reacts with epitope EP21 close to helicase nucleotide binding region of domain 2. Epitope EP05 is totally conserved and EP21 highly conserved across HCV genotypes. These two epitope peptides reacted strongly with 59–79% chronic and weakly with 30–58% resolved HCV infected blood donors, suggesting that these epitopes were dominant in HCV infection. MAb 2E12 inhibited 50% of unwinding activity of NS3 helicase in vitro. Novel monoclonal antibodies recognize highly conserved epitopes at crucial functional sites within NS3 helicase, which may become important antibodies for diagnosis and antiviral therapy in chronic HCV infection.
Collapse
Affiliation(s)
- Yixin Bian
- Department of Transfusion Medicine, Southern Medical University, Guangzhou, China
| | - Shuoxian Zhao
- Department of Transfusion Medicine, Southern Medical University, Guangzhou, China
| | - Shaomei Zhu
- Department of Transfusion Medicine, Southern Medical University, Guangzhou, China
| | | | - Tingting Li
- Department of Transfusion Medicine, Southern Medical University, Guangzhou, China
| | | | - Yuanzhan Wang
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xin Zheng
- Shenzhen Blood Center, Shenzhen, China
| | - Ling Zhang
- Department of Transfusion Medicine, Southern Medical University, Guangzhou, China
| | - Wenjing Wang
- Department of Transfusion Medicine, Southern Medical University, Guangzhou, China
| | | | - Yuanping Zhou
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jean-Pierre Allain
- Department of Transfusion Medicine, Southern Medical University, Guangzhou, China
- Department of Hematology, University of Cambridge, Cambridge, United Kingdom
| | - Chengyao Li
- Department of Transfusion Medicine, Southern Medical University, Guangzhou, China
- * E-mail:
| |
Collapse
|
24
|
Shadrick WR, Ndjomou J, Kolli R, Mukherjee S, Hanson AM, Frick DN. Discovering new medicines targeting helicases: challenges and recent progress. ACTA ACUST UNITED AC 2013; 18:761-81. [PMID: 23536547 PMCID: PMC4427233 DOI: 10.1177/1087057113482586] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Helicases are ubiquitous motor proteins that separate and/or rearrange nucleic acid duplexes in reactions fueled by adenosine triphosphate (ATP) hydrolysis. Helicases encoded by bacteria, viruses, and human cells are widely studied targets for new antiviral, antibiotic, and anticancer drugs. This review summarizes the biochemistry of frequently targeted helicases. These proteins include viral enzymes from herpes simplex virus, papillomaviruses, polyomaviruses, coronaviruses, the hepatitis C virus, and various flaviviruses. Bacterial targets examined include DnaB-like and RecBCD-like helicases. The human DEAD-box protein DDX3 is the cellular antiviral target discussed, and cellular anticancer drug targets discussed are the human RecQ-like helicases and eIF4A. We also review assays used for helicase inhibitor discovery and the most promising and common helicase inhibitor chemotypes, such as nucleotide analogues, polyphenyls, metal ion chelators, flavones, polycyclic aromatic polymers, coumarins, and various DNA binding pharmacophores. Also discussed are common complications encountered while searching for potent helicase inhibitors and possible solutions for these problems.
Collapse
Affiliation(s)
- William R Shadrick
- Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | | | | | | | | | | |
Collapse
|
25
|
Schomburg D, Schomburg I. RNA helicase 3.6.4.13. CLASS 3.4–6 HYDROLASES, LYASES, ISOMERASES, LIGASES 2013. [PMCID: PMC7123474 DOI: 10.1007/978-3-642-36260-6_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
EC number 3.6.4.13 Systematic name ATP phosphohydrolase (RNA helix unwinding) Recommended name RNA helicase Synonyms 1a NTPase/helicase <16> [5] ATP/dATP-dependent RNA helicase <1,42> [32] ATPase <10,12> [1,36] ATPase/RNA helicase <1,42> [32] ATPase/helicase <10> [36,41] BMV 1a protein <16> [5] BmL3-helicase <1,42> [32] Brr2p <6> [50] DBP2 <24> [30] DDX17 <33> [12] DDX19 <43> [56] DDX25 <23,34,35> [12,21] DDX3 <25> [8] DDX3X <25> (<25> the gene is localized to the X chromosome [12]) [12] DDX3Y <29> (<29> the gene is localized to the Y chromosome [12]) [12] DDX4 <30> [12] DDX5 <32> [12] DEAD box RNA helicase <1,2,3> [32,45,52] DEAD box helicase <2> [45] DEAD-box RNA helicase <4,5,7,38,47,48> [9,14,16,25,53,55] DEAD-box protein DED1 <38> [11] DEAD-box rRNA helicase <5> [26] DEAH-box RNA helicase <24> [30] DEAH-box protein 2 <24> [30] DED1 <38> [11,14] DENV NS3H <10> [41] DEXD/H-box RNA helicase <43> [56] DEx(H/D)RNA helicase <12> [23] DHX9 <44> [58] DbpA <5> [10,25,26] Dhx9/RNA helicase A <13> [61] EhDEAD1 <7> [16] EhDEAD1 RNA helicase <7> [16] FRH <9> [54] FRQ-interacting RNA helicase <9> [54] GRTH <3> [57] GRTH/DDX25 <3,35> [21,51] HCV NS3 helicase <12> [48] KOKV helicase <27> [7] Mtr4p <31> [22] NPH-II <8> [18,28] NS3 <10,12,17,20,39,41> (<12,39> ambiguous [27,42,44]) [1,2,4,27,35,36,39, 42,44,46] NS3 ATPase/helicase <10> [41] NS3 NTPase/helicase <17> (<17> ambiguous [46]) [46] NS3 helicase <10,12,17> [15,44,46] NS3 protein <10,12,17,18> (<12> ambiguous [39]) [15,39,40,41,62] NTPase/helicase <12> (<12> ambiguous [37]) [37,39] RHA <6> [31,49] RNA helicase <2> [45] RNA helicase A <6,44> [31,49,58] RNA helicase CrhR <14> [59] RNA helicase DDX3 <25> [8] RNA helicase Ddx39 <47> [53] RNA helicase Hera <4> [9] RNA-dependent ATPase <37> [34] RNA-dependent NTPase/helicase <12> [1] RTPase <10> [36] RhlB <5> [43] SpolvlgA <48> [55] Supv3L1 <46> [64] TGBp1 NTPase/helicase domain <22,28> [24] Tk-DeaD <15> [47] VRH1 <26> [33] YxiN <2> [45] eIF4A <36> [20] eIF4A helicase <36> [20] eIF4AIII <37> [34] eukaryotic initiation factor eIF 4A <36> [20] gonadotropin-regulated testicular RNA helicase <3> [51,57] helicase <10> [41] helicase B <5> [43] helicase/nucleoside triphosphatase <10> [4] non structural protein 3 <12> (<12> ambiguous [37,38]) [37,38] non-structural 3 <10> [36] non-structural protein 3 <17> [46] non-structural protein 3 protein <18> [40] nonstructural protein 3 <12,17,20,39,40,41> (<12,17,39,40> ambiguous [6,27, 39,42,44,46]) [1,2,6,27,35,39,42,44,46] nucleoside 5’-triphosphatase <10> [4] nucleoside triphosphatase/RNA helicase and 5’-RNA triphosphatase <20> [2] nucleoside triphosphatase/helicase <16> [5] p54 RNA helicase <45> [60] p68 RNA helicase <3,6> [52,63] protein NS3 <12> (<12> ambiguous [38]) [38]
Collapse
|
26
|
Characterization of flavonol inhibition of DnaB helicase: real-time monitoring, structural modeling, and proposed mechanism. J Biomed Biotechnol 2012; 2012:735368. [PMID: 23091356 PMCID: PMC3468084 DOI: 10.1155/2012/735368] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 04/18/2012] [Accepted: 05/22/2012] [Indexed: 01/28/2023] Open
Abstract
DnaB helicases are motor proteins essential for DNA replication, repair, and recombination and may be a promising target for developing new drugs for antibiotic-resistant bacteria. Previously, we established that flavonols significantly decreased the binding ability of Klebsiella pneumoniae DnaB helicase (KpDnaB) to dNTP. Here, we further investigated the effect of flavonols on the inhibition of the ssDNA binding, ATPase activity, and dsDNA-unwinding activity of KpDnaB. The ssDNA-stimulated ATPase activity of KpDnaB was decreased to 59%, 75%, 65%, and 57%, in the presence of myricetin, quercetin, kaempferol, and galangin, respectively. The ssDNA-binding activity of KpDnaB was only slightly decreased by flavonols. We used a continuous fluorescence assay, based on fluorescence resonance energy transfer (FRET), for real-time monitoring of KpDnaB helicase activity in the absence and presence of flavonols. Using this assay, the flavonol-mediated inhibition of the dsDNA-unwinding activity of KpDnaB was observed. Modeled structures of bound and unbound DNA showed flavonols binding to KpDnaB with distinct poses. In addition, these structural models indicated that L214 is a key residue in binding any flavonol. On the basis of these results, we proposed mechanisms for flavonol inhibition of DNA helicase. The resulting information may be useful in designing compounds that target K. pneumoniae and other bacterial DnaB helicases.
Collapse
|
27
|
Abstract
Fluorescent sensors that make use of DNA structures have become widely useful in monitoring enzymatic activities. Early studies focused primarily on enzymes that naturally use DNA or RNA as the substrate. However, recent advances in molecular design have enabled the development of nucleic acid sensors for a wider range of functions, including enzymes that do not normally bind DNA or RNA. Nucleic acid sensors present some potential advantages over classical small-molecule sensors, including water solubility and ease of synthesis. An overview of the multiple strategies under recent development is presented in this critical review, and expected future developments in microarrays, single molecule analysis, and in vivo sensing are discussed (160 references).
Collapse
Affiliation(s)
- Nan Dai
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Eric T. Kool
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|