1
|
Dermal Lipogenesis Inhibits Adiponectin Production in Human Dermal Fibroblasts while Exogenous Adiponectin Administration Prevents against UVA-Induced Dermal Matrix Degradation in Human Skin. Int J Mol Sci 2016; 17:ijms17071129. [PMID: 27428951 PMCID: PMC4964503 DOI: 10.3390/ijms17071129] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/06/2016] [Accepted: 07/09/2016] [Indexed: 11/17/2022] Open
Abstract
Adiponectin is one of the most abundant adipokines from the subcutaneous fat, and regulates multiple activities through endocrine, paracrine, or autocrine mechanisms. However, its expression in adipogenic induced fibroblasts, and the potential role in photoaging has not been determined. Here, human dermal fibroblasts, Hs68, were presented as a cell model of dermal lipogenesis through stimulation of adipogenic differentiation medium (ADM). Similar to other studies in murine pre-adipocyte models (i.e., 3T3-L1), Hs68 fibroblasts showed a tendency to lipogenesis based on lipid accumulation, triglyceride formation, and the expressions of PPAR-γ, lipoprotein lipase (LPL), and FABP4 mRNA. As expected, ADM-treated fibroblasts displayed a reduction on adiponectin expression. Next, we emphasized the photoprotective effects of adiponectin against UVA-induced damage in Hs68 fibroblasts. UVA radiation can downregulate cell adhesion strength and elastic modulus of Hs68 fibroblasts. Moreover, UVA radiation could induce the mRNA expressions of epidermal growth factor receptor (EGFR), adiponectin receptor 1 (AdipoR1), matrix metalloproteinase-1 (MMP-1), MMP-3, and cyclooxygenase-2 (COX-2), but downregulate the mRNA expressions of type I and type III collagen. On the other hand, post-treatment of adiponectin can partially overcome UVA-induced reduction in the cell adhesion strength of Hs68 fibroblasts through the activation of AdipoR1 and the suppression of EGF-R. In addition, post-treatment of adiponectin indicated the increase of type III collagen and elastin mRNA expression and the decrease of MMP-1 and MMP-3 mRNA expression, but a limited degree of recovery of elastic modulus on UVA-irradiated Hs68 fibroblasts. Overall, these results suggest that dermal lipogenesis may inhibit the expression of adiponectin while exogenous adiponectin administration prevents against UVA-induced dermal matrix degradation in Hs68 fibroblasts.
Collapse
|
2
|
Guedes EC, França GS, Lino CA, Koyama FC, Moreira LDN, Alexandre JG, Barreto-Chaves MLM, Galante PAF, Diniz GP. MicroRNA Expression Signature Is Altered in the Cardiac Remodeling Induced by High Fat Diets. J Cell Physiol 2015; 231:1771-83. [PMID: 26638879 DOI: 10.1002/jcp.25280] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 12/04/2015] [Indexed: 12/28/2022]
Abstract
Recent studies have revealed the involvement of microRNAs (miRNAs) in the control of cardiac hypertrophy and myocardial function. In addition, several reports have demonstrated that high fat (HF) diet induces cardiac hypertrophy and remodeling. In the current study, we investigated the effect of diets containing different percentages of fat on the cardiac miRNA expression signature. To address this question, male C57Bl/6 mice were fed with a low fat (LF) diet or two HF diets, containing 45 kcal% fat (HF45%) and 60 kcal% fat (HF60%) for 10 and 20 weeks. HF60% diet promoted an increase on body weight, fasting glycemia, insulin, leptin, total cholesterol, triglycerides, and induced glucose intolerance. HF feeding promoted cardiac remodeling, as evidenced by increased cardiomyocyte transverse diameter and interstitial fibrosis. RNA sequencing analysis demonstrated that HF feeding induced distinct miRNA expression patterns in the heart. HF45% diet for 10 and 20 weeks changed the abundance of 64 and 26 miRNAs in the heart, respectively. On the other hand, HF60% diet for 10 and 20 weeks altered the abundance of 27 and 88 miRNAs in the heart, respectively. Bioinformatics analysis indicated that insulin signaling pathway was overrepresented in response to HF diet. An inverse correlation was observed between cardiac levels of GLUT4 and miRNA-29c. Similarly, we found an inverse correlation between expression of GSK3β and the expression of miRNA-21a-3p, miRNA-29c-3p, miRNA-144-3p, and miRNA-195a-3p. In addition, miRNA-1 overexpression prevented cardiomyocyte hypertrophy. Taken together, our results revealed differentially expressed miRNA signatures in the heart in response to different HF diets. J. Cell. Physiol. 231: 1771-1783, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Elaine Castilho Guedes
- Department of Anatomy, Laboratory of Cell Biology and Functional Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Gustavo Starvaggi França
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, Sao Paulo, Brazil.,Department of Biochemistry, Chemistry Institute, University of Sao Paulo, Sao Paulo, Brazil
| | - Caroline Antunes Lino
- Department of Anatomy, Laboratory of Cell Biology and Functional Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Luana do Nascimento Moreira
- Department of Anatomy, Laboratory of Cell Biology and Functional Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Juliana Gomes Alexandre
- Department of Anatomy, Laboratory of Cell Biology and Functional Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Maria Luiza M Barreto-Chaves
- Department of Anatomy, Laboratory of Cell Biology and Functional Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Gabriela Placoná Diniz
- Department of Anatomy, Laboratory of Cell Biology and Functional Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
3
|
Abstract
Cardiovascular disease, including heart failure, is a principal cause of death in individuals with obesity and diabetes. However, the mechanisms of obesity- and diabetes-induced heart disease are multifaceted and remain to be clearly defined. Of relevance to this review, there is currently great research and clinical interest in the endocrine effects of adipokines on the myocardium and their role in heart failure. We will discuss the potential significance of adipokines in the pathogenesis of heart failure via their ability to regulate remodeling events including metabolism, hypertrophy, fibrosis, and cell death. As an excellent example, we will first focus on adiponectin which is best known to confer numerous cardioprotective effects. However, we comprehensively discuss the existing literature that highlights it would be naive to assume that this was always the case. We also focus on lipocalin-2 which mediates pro-inflammatory and pro-apoptotic effects. It is important when studying actions of adipokines to integrate cellular and mechanistic analyses and translate these to physiologically relevant in vivo models and clinical studies. However, assimilating studies on numerous cardiac remodeling events which ultimately dictate cardiac dysfunction into a unifying conclusion is challenging. Nevertheless, there is undoubted potential for the use of adipokines as robust biomarkers and appropriate therapeutic targets in heart failure.
Collapse
Affiliation(s)
- Min Park
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada
| | | |
Collapse
|
4
|
Aslibekyan S, An P, Frazier-Wood AC, Kabagambe EK, Irvin MR, Straka RJ, Tiwari HK, Tsai MY, Hopkins PN, Borecki IB, Ordovas JM, Arnett DK. Preliminary evidence of genetic determinants of adiponectin response to fenofibrate in the Genetics of Lipid Lowering Drugs and Diet Network. Nutr Metab Cardiovasc Dis 2013; 23:987-994. [PMID: 23149075 PMCID: PMC3578131 DOI: 10.1016/j.numecd.2012.07.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Revised: 07/27/2012] [Accepted: 07/27/2012] [Indexed: 01/13/2023]
Abstract
BACKGROUND AND AIMS Adiponectin is an adipose-secreted protein that has been linked to changes in insulin sensitivity, high-density lipoprotein cholesterol levels, and inflammatory patterns. Although fenofibrate therapy can raise adiponectin levels, treatment response is heterogeneous and heritable, suggesting a role for genetic mediators. This is the first genome-wide association study of fenofibrate effects on circulating adiponectin. METHODS AND RESULTS Plasma adiponectin was measured in participants of the Genetics of Lipid Lowering Drugs and Diet Network (n = 793) before and after a 3-week daily treatment with 160 mg of fenofibrate. Associations between variants on the Affymetrix Genome-Wide Human SNP Array 6.0 and adiponectin were assessed using mixed linear models, adjusted for age, sex, site, and family. We observed a statistically significant (P = 5 × 10⁻⁸) association between rs2384207 in 12q24, a region previously linked to several metabolic traits, and the fenofibrate-induced change in circulating adiponectin. Additionally, our genome-wide analysis of baseline adiponectin levels replicated the previously reported association with CDH13 and suggested novel associations with markers near the PCK1, ZBP1, TMEM18, and SCUBE1 genes. The findings from the single marker tests were corroborated in gene-based analyses. Biological pathway analyses suggested a borderline significant association between the EGF receptor signaling pathway and baseline adiponectin levels. CONCLUSIONS We present preliminary evidence linking several biologically relevant genetic variants to adiponectin levels at baseline and in response to fenofibrate therapy. Our findings provide support for fine-mapping of the 12q24 region to investigate the shared biological mechanisms underlying levels of circulating adiponectin and susceptibility to metabolic disease.
Collapse
Affiliation(s)
- S Aslibekyan
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, RPHB 217G, Birmingham, AL 35294, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Lee Y, Kim BK, Lim YH, Kim MK, Choi BY, Shin J. The relationship between adiponectin and left ventricular mass index varies with the risk of left ventricular hypertrophy. PLoS One 2013; 8:e70246. [PMID: 23894624 PMCID: PMC3722139 DOI: 10.1371/journal.pone.0070246] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 06/18/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Adiponectin directly protects against cardiac remodeling. Despite this beneficial effect, most epidemiological studies have reported a negative relationship between adiponectin level and left ventricular mass index (LVMI). However, a positive relationship has also been reported in subjects at high risk of left ventricular hypertrophy (LVH). Based on these conflicting results, we hypothesized that the relationship between serum adiponectin level and LVMI varies with the risk of LVH. METHODS A community-based, cross-sectional study was performed on 1414 subjects. LVMI was measured by echocardiography. Log-transformed adiponectin levels (Log-ADPN) were used for the analysis. RESULTS Serum adiponectin level had a biphasic distribution (an increase after a decrease) with increasing LVMI. Although Log-ADPN did not correlate with LVMI, Log-ADPN was modestly associated with LVMI in the multivariate analysis (β = 0.079, p = 0.001). The relationship between adiponectin level and LVMI was bidirectional according to the risk of LVH. In normotensive subjects younger than 50 years, Log-ADPN negatively correlated with LVMI (r = -0.204, p = 0.005); however, Log-ADPN positively correlated with LVMI in ≥50-year-old obese subjects with high arterial stiffness (r = 0.189, p = 0.030). The correlation coefficient between Log-ADPN and LVMI gradually changed from negative to positive with increasing risk factors for LVH. The risk of LVH significantly interacted with the relationship between Log-ADPN and LVMI. In the multivariate analysis, Log-ADPN was associated with LVMI in the subjects at risk of LVH; however, Log-ADPN was either not associated or negatively associated with LVMI in subjects at low risk of LVH. CONCLUSION Adiponectin level and LVMI are negatively associated in subjects at low risk of LVH and are positively associated in subjects at high risk of LVH. Therefore, the relationship between adiponectin and LVMI varies with the risk of LVH.
Collapse
Affiliation(s)
- Yonggu Lee
- Department of Cardiology, Hanyang University Hospital, Seoul, Republic of Korea
- Cardiology Clinic, Myungji St. Mary’s Hospital, Seoul, Republic of Korea
| | - Bae Keun Kim
- Department of Cardiology, Hanyang University Hospital, Seoul, Republic of Korea
| | - Young-Hyo Lim
- Department of Cardiology, Hanyang University Hospital, Seoul, Republic of Korea
| | - Mi Kyung Kim
- Preventive Medicine, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Bo Youl Choi
- Preventive Medicine, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Jinho Shin
- Department of Cardiology, Hanyang University Hospital, Seoul, Republic of Korea
| |
Collapse
|
6
|
Gustafsson S, Lind L, Söderberg S, Zilmer M, Hulthe J, Ingelsson E. Oxidative stress and inflammatory markers in relation to circulating levels of adiponectin. Obesity (Silver Spring) 2013; 21:1467-73. [PMID: 23585283 DOI: 10.1002/oby.20097] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 08/29/2012] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Previous epidemiological studies together with animal studies have suggested an association between adiponectin and oxidative stress and inflammation, but community-based studies are lacking. Our objective was to investigate the relative importance of oxidative stress and inflammatory markers, representing different pathways in relation to adiponectin. DESIGN AND METHODS In a cross-sectional sample of 929 70-year-old individuals (50% women) of the Prospective Investigation of the Vasculature in Uppsala Seniors study, relations between serum adiponectin and oxidative stress [conjugated dienes (CD), homocysteine, total antioxidant capacity, oxidized low-density lipoprotein (OxLDL), OxLDL antibodies, baseline CD of LDL, glutathione (GSH), total glutathione (TGSH), glutathione disulfide], circulation interleukins (IL-6, IL-8), other cytokines [tumor necrosis factor α, monocyte chemotactic protein-1 (MCP-1), epidermal growth factor (EGF), vascular endothelial growth factor], cell adhesion molecules (vascular cell adhesion molecule-1, intercellular adhesion molecule-1, E-selectin, P-selectin, L-selectin), and systemic inflammatory markers [C-reactive protein (CRP), leukocyte count] in separate models were investigated. RESULTS In age- and sex-adjusted, as well as multivariable-adjusted models, adiponectin was significantly and positively associated with GSH, log TGSH, whereas an inverse association was observed for CD and log EGF. An inverse association between adiponectin and MCP-1, log E-selectin, and log CRP was significant in age- and sex-adjusted models, but not in multivariable-adjusted models. CONCLUSIONS Our results imply that higher levels of adiponectin are associated with a more beneficial oxidative stress profile, with higher levels of principal anti-oxidative GSH and total GSH together with lower levels of lipid peroxidation, possibly through shared pathways. Further studies are needed to investigate whether changes in the oxidative stress profile may be a mechanism linking adiponectin with type 2 diabetes and/or cardiovascular disease.
Collapse
Affiliation(s)
- Stefan Gustafsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
7
|
Caselli C, Lionetti V, Cabiati M, Prescimone T, Aquaro GD, Ottaviano V, Bernini F, Mattii L, Del Ry S, Giannessi D. Regional evidence of modulation of cardiac adiponectin level in dilated cardiomyopathy: pilot study in a porcine animal model. Cardiovasc Diabetol 2012; 11:143. [PMID: 23164042 PMCID: PMC3537584 DOI: 10.1186/1475-2840-11-143] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 11/07/2012] [Indexed: 12/30/2022] Open
Abstract
Background The role of systemic and myocardial adiponectin (ADN) in dilated cardiomyopathy is still debated. We tested the regulation of both systemic and myocardial ADN and the relationship with AMP-activated protein kinase (AMPK) activity in a swine model of non-ischemic dilated cardiomyopathy. Methods and results Cardiac tissue was collected from seven instrumented adult male minipigs by pacing the left ventricular (LV) free wall (180 beats/min, 3 weeks), both from pacing (PS) and opposite sites (OS), and from five controls. Circulating ADN levels were inversely related to global and regional cardiac function. Myocardial ADN in PS was down-regulated compared to control (p < 0.05), yet ADN receptor 1 was significantly up-regulated (p < 0.05). No modifications of AMPK were observed in either region of the failing heart. Similarly, myocardial mRNA levels of PPARγ, PPARα, TNFα, iNOS were unchanged compared to controls. Conclusions Paradoxically, circulating ADN did not show any cardioprotective effect, confirming its role as negative prognostic biomarker of heart failure. Myocardial ADN was reduced in PS compared to control in an AMPK-independent fashion, suggesting the occurrence of novel mechanisms by which reduced cardiac ADN levels may regionally mediate the decline of cardiac function.
Collapse
Affiliation(s)
- Chiara Caselli
- Consiglio Nazionale delle Ricerche (CNR), Institute of Clinical Physiology, Laboratory of Cardiovascular Biochemistry, Pisa, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Resveratrol improves myocardial ischemia and ischemic heart failure in mice by antagonizing the detrimental effects of fractalkine*. Crit Care Med 2012; 40:3026-33. [DOI: 10.1097/ccm.0b013e31825fd7da] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Xuan W, Liao Y, Chen B, Huang Q, Xu D, Liu Y, Bin J, Kitakaze M. Detrimental effect of fractalkine on myocardial ischaemia and heart failure. Cardiovasc Res 2011; 92:385-93. [DOI: 10.1093/cvr/cvr221] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|