1
|
Potential Roles of Anti-Inflammatory Plant-Derived Bioactive Compounds Targeting Inflammation in Microvascular Complications of Diabetes. Molecules 2022; 27:molecules27217352. [PMID: 36364178 PMCID: PMC9657994 DOI: 10.3390/molecules27217352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 12/15/2022] Open
Abstract
Diabetes mellitus (DM) is a group of metabolic disorders, the characteristics of which include chronic hyperglycemia owing to defects in insulin function, insulin secretion, or both. Inflammation plays a crucial role in DM pathogenesis and innate immunity in the development of microvascular complications of diabetes. In addition, hyperglycemia and DM mediate a proinflammatory microenvironment that can result in various microvascular complications, including diabetic nephropathy (DNP), diabetic neuropathy (DN), and diabetic retinopathy (DR). DNP is a major cause of end-stage renal disease. DNP can lead to albuminuria, decreased filtration, mesangium expansion, thickening of the basement membrane, and eventually renal failure. Furthermore, inflammatory cells can accumulate in the interstitium and glomeruli to deteriorate DNP. DN is another most prevalent microvascular complication of DM and the main cause of high mortality, disability, and a poor quality of life. DNs have a wide range of clinical manifestations because of the types of fiber dysfunctions and complex structures of the peripheral nervous system. DR is also a microvascular and multifactorial disease, as well as a major cause of visual impairment globally. Pathogenesis of DR is yet to be fully revealed, however, numerous studies have already confirmed the role of inflammation in the onset and advancement of DR. Despite evidence, and better knowledge regarding the pathogenesis of these microvascular complications of diabetes, there is still a deficiency of effective therapies. Bioactive compounds are mainly derived from plants, and these molecules have promising therapeutic potential. In this review, evidence and molecular mechanisms regarding the role of inflammation in various microvascular complications of diabetes including DNP, DN, and DR, have been summarized. The therapeutic potential of several bioactive compounds derived from plants in the treatment of these microvascular complications of diabetes has also been discussed.
Collapse
|
2
|
Glycated albumin (GA) and inflammation: role of GA as a potential marker of inflammation. Inflamm Res 2017; 67:21-30. [PMID: 29022053 DOI: 10.1007/s00011-017-1089-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 08/22/2017] [Accepted: 08/27/2017] [Indexed: 12/12/2022] Open
Abstract
AIMS Abnormal levels of glycated albumin (GA) are associated with the onset of both diabetes and inflammation. Although inflammation has long been associated with diabetes, this article aims to explore the underlying mechanisms of this relationship as it pertains to the role of GA. METHODS We have reviewed 52 research articles since the year 2000. Common search terms used were "(inflammatory mediator) and GA" or "inflammation and GA". The findings have been organized according to diabetic complications with respect to the interactions of GA and inflammatory mediators. Glycated albumin and specific inflammatory mediators have been reported to play various roles in the pathogenesis of insulin resistance, atherosclerosis, coronary artery disease, retinopathy, and nephropathy. In the case of nephropathy and recently retinopathy, there is considerable evidence for GA in concert with inflammation playing a direct role in organ pathology. There is copious literature detailing GA's involvement in stimulating inflammatory markers and certain pro-inflammatory cytokines. A recent clinical study has shown GA to be a marker for inflammation in non-diabetic rheumatoid arthritis patients with the significance of standard inflammatory markers. CONCLUSIONS The clinical utility of GA measurement may likely reside in its versatility as both a mediator of inflammation as well as a marker to track hyperglycemia and other diabetes complications. Further understanding of the role GA plays in glycemic and inflammatory diseases could lead to its acceptance as an independent bio-inflammatory marker.
Collapse
|
3
|
Qiu YY, Tang LQ. Roles of the NLRP3 inflammasome in the pathogenesis of diabetic nephropathy. Pharmacol Res 2016; 114:251-264. [PMID: 27826011 DOI: 10.1016/j.phrs.2016.11.004] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 10/10/2016] [Accepted: 11/03/2016] [Indexed: 12/22/2022]
Abstract
Diabetic nephropathy (DN) is a serious complication of diabetes mellitus, and persistent inflammation in circulatory and renal tissues is an important pathophysiological basis for DN. The essence of the microinflammatory state is the innate immune response, which is central to the occurrence and development of DN. Members of the inflammasome family, including both "receptors" and "regulators", are key to the inflammatory immune response. Nucleotide binding and oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) and other inflammasome components are able to detect endogenous danger signals, resulting in activation of caspase-1 as well as interleukin (IL)-1β, IL-18 and other cytokines; these events stimulate the inflammatory cascade reaction, which is crucial for DN. Hyperglycaemia, hyperlipidaemia and hyperuricaemia can activate the NLRP3 inflammasome, which then mediates the occurrence and development of DN through the K+ channel model, the lysosomal damage model and the active oxygen cluster model. In this review, we survey the involvement of the NLRP3 inflammasome in various signalling pathways and highlight different aspects of their influence on DN. We also explore the important effects of the NLRP3 inflammasome on kidney function and structural changes that occur during DN development and progression. It is becoming more evident that NLRP3 inflammasome targeting has therapeutic potential for the treatment of DN.
Collapse
Affiliation(s)
- Yuan-Ye Qiu
- Anhui Provincial Hospital, Anhui Medical University, 17# Lu-jiang Road, Hefei 230001, Anhui, China.
| | - Li-Qin Tang
- Anhui Provincial Hospital, Anhui Medical University, 17# Lu-jiang Road, Hefei 230001, Anhui, China.
| |
Collapse
|
4
|
Franko B, Benhamou PY, Genty C, Jouve T, Nasse L, Rzeoecki V, Semeraro P, Stasia MJ, Zaoui P. RAGE and CYBA polymorphisms are associated with microalbuminuria and end-stage renal disease onset in a cohort of type 1 diabetes mellitus patients over a 20-year follow-up. Acta Diabetol 2016; 53:469-75. [PMID: 26607824 DOI: 10.1007/s00592-015-0820-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 11/09/2015] [Indexed: 11/30/2022]
Abstract
AIMS We investigated the association of polymorphisms of three genes implicated in oxidative stress: CYBA C242T, RAGE -374T/A and -429T/C, and ALOX12 Arg261Gln, with the delay of microalbuminuria onset in patients with type 1 diabetes mellitus (DT1). METHODS A total of 162 T1D patients presenting with diabetes for 32.9 ± 9 years were included in the study; 53 had persistent microalbuminuria (>30 mg/l) and 109 did not. Onset of diabetes, microalbuminuria and end-stage renal disease (ESRD) were recorded as bio-clinical data. We determined polymorphism association of microalbuminuria with a Cox regression model. RESULTS All polymorphisms respected the Hardy-Weinberg equilibrium. The Cox regression model validated four significant variables associated with microalbuminuria: RAGE 374AA (HR 4.19 [1.84-9.58] (p = 0.001)), CYBA TT+TC (HR 2.1 [1.16-3.80], p = 0.015), male sex (HR 1.92 [1.07-3.43], p = 0.028) and diabetes diagnosis at the pediatric stage (HR 1.85 [1.03-3.32], p = 0.039). The same association was found with ESRD (p = 0.028 and p = 0.033 for CYBA TC+TT and RAGE 374AA, respectively). CYBA C242T and RAGE 374T/A were not significantly associated with diabetic retinopathy. CONCLUSIONS CYBA C242T and RAGE -374T/A correlate with microalbuminuria onset in the French DT1 cohort. The same correlation with ESRD onset supports the argument for the involvement of a genetic predisposition involving kidney-specific oxidative stress for diabetic nephropathy.
Collapse
Affiliation(s)
- Benoit Franko
- Department of Nephrology, Nephrology Clinic, Grenoble University Hospital, Grenoble, 38043, France.
- Chronic Granulomatous Disease Diagnosis and Research Centre, Therex-TIMC/Imag, UMR CNRS 5525, UJF-Grenoble 1, Université Grenoble Alpes, Grenoble, 38041, France.
| | - Pierre-Yves Benhamou
- Department of Endocrinology, Grenoble University Hospital, Grenoble, 38043, France
| | - Céline Genty
- UJF-Grenoble 1/CNRS/Clinical Research Centre-Inserm CIC03/TIMC-IMAG UMR 5525/Themas, Grenoble University Hospital, Grenoble, France
| | - Thomas Jouve
- Department of Nephrology, Nephrology Clinic, Grenoble University Hospital, Grenoble, 38043, France
| | - Laure Nasse
- Department of Endocrinology, Grenoble University Hospital, Grenoble, 38043, France
| | - Vincent Rzeoecki
- Chronic Granulomatous Disease Diagnosis and Research Centre, Therex-TIMC/Imag, UMR CNRS 5525, UJF-Grenoble 1, Université Grenoble Alpes, Grenoble, 38041, France
| | - Paul Semeraro
- Chronic Granulomatous Disease Diagnosis and Research Centre, Therex-TIMC/Imag, UMR CNRS 5525, UJF-Grenoble 1, Université Grenoble Alpes, Grenoble, 38041, France
| | - Marie José Stasia
- Chronic Granulomatous Disease Diagnosis and Research Centre, Therex-TIMC/Imag, UMR CNRS 5525, UJF-Grenoble 1, Université Grenoble Alpes, Grenoble, 38041, France
- CGD Centre, BEP/DBTP/Pôle Biologie, CHU de Grenoble, Grenoble, 38043, France
| | - Philippe Zaoui
- Department of Nephrology, Nephrology Clinic, Grenoble University Hospital, Grenoble, 38043, France
| |
Collapse
|
5
|
Winiarska K, Dzik JM, Labudda M, Focht D, Sierakowski B, Owczarek A, Komorowski L, Bielecki W. Melatonin nephroprotective action in Zucker diabetic fatty rats involves its inhibitory effect on NADPH oxidase. J Pineal Res 2016; 60:109-17. [PMID: 26514550 DOI: 10.1111/jpi.12296] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/26/2015] [Indexed: 12/26/2022]
Abstract
Excessive activity of NADPH oxidase (Nox) is considered to be of importance for the progress of diabetic nephropathy. The aim of the study was to elucidate the effect of melatonin, known for its nephroprotective properties, on Nox activity under diabetic conditions. The experiments were performed on three groups of animals: (i) untreated lean (?/+) Zucker diabetic fatty (ZDF) rats; (ii) untreated obese diabetic (fa/fa) ZDF rats; and (iii) ZDF fa/fa rats treated with melatonin (20 mg/L) in drinking water. Urinary albumin excretion was measured weekly. After 4 wk of the treatment, the following parameters were determined in kidney cortex: Nox activity, expression of subunits of the enzyme, their phosphorylation and subcellular distribution. Histological studies were also performed. Compared to ?/+ controls, ZDF fa/fa rats exhibited increased renal Nox activity, augmented expression of Nox4 and p47(phox) subunits, elevated level of p47(phox) phosphorylation, and enlarged phospho-p47(phox) and p67(phox) content in membrane. Melatonin administration to ZDF fa/fa rats resulted in the improvement of renal functions, as manifested by considerable attenuation of albuminuria and some amelioration of structural abnormalities. The treatment turned out to nearly normalize Nox activity, which was accompanied by considerably lowered expression and diminished membrane distribution of regulatory subunits, that is, phospho-p47(phox) and p67(phox) . Thus, it is concluded that: (i) melatonin beneficial action against diabetic nephropathy involves attenuation of the excessive activity of Nox; and (ii) the mechanism of melatonin inhibitory effect on Nox is based on the mitigation of expression and membrane translocation of its regulatory subunits.
Collapse
Affiliation(s)
- Katarzyna Winiarska
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Jolanta M Dzik
- Department of Biochemistry, Faculty of Agriculture and Biology, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Mateusz Labudda
- Department of Biochemistry, Faculty of Agriculture and Biology, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Dorota Focht
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Bartosz Sierakowski
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Aleksandra Owczarek
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Lukasz Komorowski
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Wojciech Bielecki
- Department of Exotic, Laboratory and Non-domesticated Animals Pathology, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| |
Collapse
|
6
|
Qi W, Niu J, Qin Q, Qiao Z, Gu Y. Glycated albumin triggers fibrosis and apoptosis via an NADPH oxidase/Nox4-MAPK pathway-dependent mechanism in renal proximal tubular cells. Mol Cell Endocrinol 2015; 405:74-83. [PMID: 25681565 DOI: 10.1016/j.mce.2015.02.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 02/05/2015] [Accepted: 02/06/2015] [Indexed: 01/13/2023]
Abstract
Glycated albumin (GA), an Amadori product used as a marker of hyperglycemia and the early-stage glycation products compared to AGEs, might further promote kidney lesions in diabetic nephropathy (DN). However, the mechanisms how GA cause proximal tubular cells damage remain poorly understood. In this study, we investigated the effects of GA on fibrosis and apoptosis of renal proximal tubular cells (NRK-52E) in vitro experiments. Our results showed that GA promoted α-SMA, fibronectin (FN) and TGF-β expressions in NRK-52E cells. GA also increased cell apoptosis and stimulated the expressions of pro-caspase 3/cleaved-caspase 3. GA overloading enhanced the phosphorylation of MAPK pathway. GA-induced α-SMA, FN, TGF-β and caspase 3 expressions were completely suppressed by the NADPH oxidase inhibitor apocynin (Apo), the reactive oxygen species (ROS) scavenger N-acetylcysteine (NAC) and the latent antioxidant Astragaloside IV (AS-IV). Real-time PCR showed that GA increased Nox1, Nox2 and Nox4 mRNA expressions, especially the Nox4 expression. Furthermore, Nox4 siRNA blocked GA-induced tubular damages and the MAPK pathway activation. These results demonstrate that GA increases the permissiveness of proximal tubular cells to fibrosis and apoptosis in vitro by triggering a pathway that involves NADPH oxidase/Nox4-MAPK signaling pathway. This event may represent a key cellular effect in increasing the susceptibility of tubular cells to fibrosis and apoptosis when the tubules cope with a high GA load. This effect is instrumental to renal damage and disease progression in patients with DN.
Collapse
Affiliation(s)
- Weiwei Qi
- Nephrology Department, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| | - Jianying Niu
- Nephrology Department, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| | - Qiaojing Qin
- Nephrology Department, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| | - Zhongdong Qiao
- School of Life Science and Biotechnology, Shanghai Jiaotong University, Shanghai 200240, China
| | - Yong Gu
- Nephrology Department, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China; Nephrology Department, Huashan Hospital, Fudan University, Shanghai 200240, China.
| |
Collapse
|
7
|
Beck KF, Euler J, Eisel F, Beck M, Köhler Y, Sha LK, von Knethen A, Longen S, Pfeilschifter J. Cytokines induce protein kinase A-mediated signalling by a redox-dependent mechanism in rat renal mesangial cells. Biochem Pharmacol 2014; 93:362-9. [PMID: 25437456 DOI: 10.1016/j.bcp.2014.11.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 11/20/2014] [Accepted: 11/21/2014] [Indexed: 01/10/2023]
Abstract
Glomerular mesangial cells are smooth muscle cell-like pericytes and are regarded as key players in kidney diseases. In an inflammatory setting, these cells produce high amounts of inflammatory cytokines, chemokines and redox mediators such as reactive oxygen species or nitric oxide (NO). The temporal production of ROS, NO and other redox mediators markedly contributes to the final outcome of inflammatory diseases. Recently, we reported that platelet-derived growth factor forced mesangial cells to activate the regulatory subunit of protein kinase A (PKA RI) by a redox-dependent mechanism but independent from changes in cyclic AMP. This prompted us to further analyze the dimerization of PKA RI and activation of PKA-driven signalling in an inflammatory context. Stimulation of rat mesangial cells with interleukin-1β and tumour necrosis factor-α [2 nM] induced the formation of PKA RI heterodimers in a time-dependent manner. PKA RI dimerization was accompanied with the formation of ROS, NO and peroxynitrite as well as a depletion of reduced glutathione. Furthermore, dimerization of PKA RI was paralleled by enhanced activity of PKA as shown by the phosphorylation of vasodilator-stimulated phosphoprotein (VASP) at serine 157 that was independent of the formation of cyclic AMP. Remarkably, exogenously administered peroxynitrite potently induced dimerization of PKA RI, whereas pharmacologic inhibition of inducible NO synthase (iNOS) and scavenging of peroxynitrite reduced PKA RI dimerization and VASP phosphorylation to control levels thus clearly indicating a causal role for endogenously formed peroxynitrite on PKA signalling. Consequently, the treatment of inflammatory diseases with anti-oxidants or NOS inhibitors may alter PKA activity.
Collapse
Affiliation(s)
- Karl-Friedrich Beck
- Pharmazentrum Frankfurt/ZAFES, Klinikum der Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany.
| | - Johannes Euler
- Pharmazentrum Frankfurt/ZAFES, Klinikum der Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany
| | - Florian Eisel
- Pharmazentrum Frankfurt/ZAFES, Klinikum der Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany
| | - Martina Beck
- Pharmazentrum Frankfurt/ZAFES, Klinikum der Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany
| | - Yvette Köhler
- Pharmazentrum Frankfurt/ZAFES, Klinikum der Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany
| | - Lisa Katharina Sha
- Institut für Biochemie, Pathobiochemie, Klinikum der Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany
| | - Andreas von Knethen
- Institut für Biochemie, Pathobiochemie, Klinikum der Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany
| | - Sebastian Longen
- Pharmazentrum Frankfurt/ZAFES, Klinikum der Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany
| | - Josef Pfeilschifter
- Pharmazentrum Frankfurt/ZAFES, Klinikum der Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany
| |
Collapse
|
8
|
Qi W, Niu J, Qin Q, Qiao Z, Gu Y. Astragaloside IV attenuates glycated albumin-induced epithelial-to-mesenchymal transition by inhibiting oxidative stress in renal proximal tubular cells. Cell Stress Chaperones 2014; 19:105-14. [PMID: 23719694 PMCID: PMC3857426 DOI: 10.1007/s12192-013-0438-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 05/13/2013] [Accepted: 05/14/2013] [Indexed: 12/14/2022] Open
Abstract
In diabetic kidney disease (DKD), epithelial-to-mesenchymal transition (EMT) is a classic pathological process in tubular damage. Oxidative stress is considered to play an important role in DKD. Astragaloside IV (A-IV), one of the main active ingredients of Astragalus membranaceus, exhibits a wide range of biological activities. However, the effect of A-IV on regulating EMT in tubular cells is unclear. This study aims to determine whether A-IV could attenuate glycated albumin (GA)-induced EMT in the NRK-52E cell line by inhibiting oxidative stress. GA and A-IV-induced cytotoxicity were assayed by CCK-8. The intercellular reactive oxygen species (ROS) level was detected by H2DCFDA. The activity of NADPH oxidase was assayed by adding exogenous NADPH oxidase, and the superoxide dismutase (SOD) units were observed by NBT. We used a microscope to examine the morphology of the NRK-52E cell line. We conducted a wound healing assay to measure cell mobility. To determine mRNA and protein expressions of α-SMA and E-cadherin, we used real-time polymerase chain reaction (real-time PCR), immunofluorescence, and western blot analysis. A-IV significantly attenuated GA-induced amplification of ROS, lowered the increased level of NADPH oxidase activity, and elevated the decreased level of SOD units. The GA-induced NRK-52E cell line showed increased expression of α-SMA and decreased expression of E-cadherin in mRNA and protein levels, whereas A-IV alleviated the expression of α-SMA and increased the expression of E-cadherin. Our data demonstrate that GA could induce NRK-52E cell line EMT through oxidative stress. This effect could be attenuated by A-IV via regulation of the impaired redox balance.
Collapse
Affiliation(s)
- Weiwei Qi
- />Nephrology Department, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, 200240 China
| | - Jianying Niu
- />Nephrology Department, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, 200240 China
| | - Qiaojing Qin
- />Nephrology Department, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, 200240 China
| | - Zhongdong Qiao
- />School of Life Science and Biotechnology, Shanghai Jiaotong University, Shanghai, 200240 China
| | - Yong Gu
- />Nephrology Department, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, 200240 China
- />Nephrology Department, Huashan Hospital, Fudan University, Shanghai, 200240 China
| |
Collapse
|
9
|
Hasslacher C, Kulozik F, Platten I, Lorenzo Bermejo J. Glycated albumin and HbA1c as predictors of mortality and vascular complications in type 2 diabetes patients with normal and moderately impaired renal function: 5-year results from a 380 patient cohort. ACTA ACUST UNITED AC 2014. [DOI: 10.7243/2050-0866-3-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
10
|
Lee DY, Wauquier F, Eid AA, Roman LJ, Ghosh-Choudhury G, Khazim K, Block K, Gorin Y. Nox4 NADPH oxidase mediates peroxynitrite-dependent uncoupling of endothelial nitric-oxide synthase and fibronectin expression in response to angiotensin II: role of mitochondrial reactive oxygen species. J Biol Chem 2013; 288:28668-86. [PMID: 23940049 DOI: 10.1074/jbc.m113.470971] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Activation of glomerular mesangial cells (MCs) by angiotensin II (Ang II) leads to extracellular matrix accumulation. Here, we demonstrate that, in MCs, Ang II induces endothelial nitric-oxide synthase (eNOS) uncoupling with enhanced generation of reactive oxygen species (ROS) and decreased production of NO. Ang II promotes a rapid increase in 3-nitrotyrosine formation, and uric acid attenuates Ang II-induced decrease in NO bioavailability, demonstrating that peroxynitrite mediates the effects of Ang II on eNOS dysfunction. Ang II rapidly up-regulates Nox4 protein. Inhibition of Nox4 abolishes the increase in ROS and peroxynitrite generation as well as eNOS uncoupling triggered by Ang II, indicating that Nox4 is upstream of eNOS. This pathway contributes to Ang II-mediated fibronectin accumulation in MCs. Ang II also elicits an increase in mitochondrial abundance of Nox4 protein, and the oxidase contributes to ROS production in mitochondria. Overexpression of mitochondrial manganese superoxide dismutase prevents the stimulatory effects of Ang II on mitochondrial ROS production, loss of NO availability, and MC fibronectin accumulation, whereas manganese superoxide dismutase depletion increases mitochondrial ROS, NO deficiency, and fibronectin synthesis basally and in cells exposed to Ang II. This work provides the first evidence that uncoupled eNOS is responsible for Ang II-induced MC fibronectin accumulation and identifies Nox4 and mitochondrial ROS as mediators of eNOS dysfunction. These data shed light on molecular processes underlying the oxidative signaling cascade engaged by Ang II and identify potential targets for intervention to prevent renal fibrosis.
Collapse
|
11
|
Massey KJ, Hong NJ, Garvin JL. Angiotensin II stimulates superoxide production in the thick ascending limb by activating NOX4. Am J Physiol Cell Physiol 2012; 303:C781-9. [PMID: 22875785 DOI: 10.1152/ajpcell.00457.2011] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Angiotensin II (ANG II) stimulates production of superoxide (O(2)(-)) by NADPH oxidase (NOX) in medullary thick ascending limbs (TALs). There are three isoforms of the catalytic subunit (NOX1, 2, and 4) known to be expressed in the kidney. We hypothesized that NOX2 mediates ANG II-induced O(2)(-) production by TALs. To test this, we measured NOX1, 2, and 4 mRNA and protein by RT-PCR and Western blot in TAL suspensions from rats and found three catalytic subunits expressed in the TAL. We measured O(2)(-) production using a lucigenin-based assay. To assess the contribution of NOX2, we measured ANG II-induced O(2)(-) production in wild-type and NOX2 knockout mice (KO). ANG II increased O(2)(-) production by 346 relative light units (RLU)/mg protein in the wild-type mice (n = 9; P < 0.0007 vs. control). In the knockout mice, ANG II increased O(2)(-) production by 290 RLU/mg protein (n = 9; P < 0.007 vs. control). This suggests that NOX2 does not contribute to ANG II-induced O(2)(-) production (P < 0.6 WT vs. KO). To test whether NOX4 mediates the effect of ANG II, we selectively decreased NOX4 expression in rats using an adenovirus that expresses NOX4 short hairpin (sh)RNA. Six to seven days after in vivo transduction of the kidney outer medulla, NOX4 mRNA was reduced by 77%, while NOX1 and NOX2 mRNA was unaffected. In control TALs, ANG II stimulated O(2)(-) production by 96%. In TALs transduced with NOX4 shRNA, ANG II-stimulated O(2)(-) production was not significantly different from the baseline. We concluded that NOX4 is the main catalytic isoform of NADPH oxidase that contributes to ANG II-stimulated O(2)(-) production by TALs.
Collapse
Affiliation(s)
- Katherine J Massey
- Hypertension and Vascular Research Division, Dept. of Internal Medicine, Henry Ford Hospital, Detroit, MI 48202, USA.
| | | | | |
Collapse
|
12
|
Zhang L, Pang S, Deng B, Qian L, Chen J, Zou J, Zheng J, Yang L, Zhang C, Chen X, Liu Z, Le Y. High glucose induces renal mesangial cell proliferation and fibronectin expression through JNK/NF-κB/NADPH oxidase/ROS pathway, which is inhibited by resveratrol. Int J Biochem Cell Biol 2012; 44:629-38. [DOI: 10.1016/j.biocel.2012.01.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 12/02/2011] [Accepted: 01/01/2012] [Indexed: 11/26/2022]
|
13
|
Abstract
The conventional glycemic indices used in management of diabetic patients includes A1c, fructosamine, 1,5-anhydroglucitol, and glycated albumin (GA). Among these indices, A1c is currently used as the gold standard. However, A1c cannot reflect the glycemic change over a relatively short period of time, and its accuracy is known to decrease when abnormalities in hemoglobin metabolism, such as anemia, coexist. When considering these weaknesses, there have been needs for finding a novel glycemic index for diagnosing and managing diabetes, as well as for predicting diabetic complications properly. Recently, several studies have suggested the potential of GA as an intermediate-term glycation index in covering the short-term effect of treatment. Furthermore, its role as a pathogenic protein affecting the worsening of diabetes and occurrence of diabetic complications is receiving attention as well. Therefore, in this article, we wanted to review the recent status of GA as a glycemic index and as a pathogenic protein.
Collapse
Affiliation(s)
- Kwang Joon Kim
- Severance Executive Healthcare Clinic, Yonsei University Health System, Seoul, Korea
- Division of Endocrinology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Byung-Wan Lee
- Division of Endocrinology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
14
|
Tyrosine kinase inhibitor, genistein, reduces renal inflammation and injury in streptozotocin-induced diabetic mice. Vascul Pharmacol 2011; 55:149-56. [PMID: 21807121 DOI: 10.1016/j.vph.2011.07.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 07/07/2011] [Accepted: 07/08/2011] [Indexed: 12/24/2022]
Abstract
Tyrosine kinase inhibition is known to reduce diabetes-induced end-organ damage but the mechanisms remain elusive. We hypothesized that inhibition of tyrosine kinase reduces renal inflammation and injury in streptozotocin-induced diabetes. Male C57BL/6 mice were given daily injections of streptozotocin (45 mg/kg/day, i.p. for 5 days); control animals received the vehicle (citrate buffer). Thereafter, streptozotocin-treated mice were treated with genistein (10 mg/kg, i.p three times a week for 10 weeks, n=8-10/group) or the vehicle (5% DMSO). The streptozotocin-treated mice displayed significant elevation in blood glucose level and decrease in plasma insulin level compared to their vehicle-treated controls. Treatment with genistein reduced blood glucose level (~15%; p<0.05) without a significant effect on plasma insulin level; however, blood glucose remained significantly higher than the control group. The development of diabetes was associated with significant increases in total protein, albumin, nephrin and collagen excretions compared to their controls. In addition, the diabetic mice displayed increased urinary MCP-1 excretion in association with increased renal ICAM-1 expression and apoptotic cells. Furthermore, renal gp91 expression levels and urinary Thio-Barbituric Acid Reactive Substances (TBARs) excretion, indices of oxidative stress, were also elevated in diabetic mice. These changes were associated with increased renal phospho-tyrosine expression and renal phospho-ERK/ERK ratio. Importantly, treatment with genistein reduced all these parameters towards control values. Collectively, the results suggest that the reno-protective effect of genistein likely relates to reduced renal inflammation, oxidative stress and apoptosis in diabetic mice.
Collapse
|
15
|
Inhibition of renal gluconeogenesis contributes to hypoglycaemic action of NADPH oxidase inhibitor, apocynin. Chem Biol Interact 2011; 189:119-26. [DOI: 10.1016/j.cbi.2010.09.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Accepted: 09/30/2010] [Indexed: 12/14/2022]
|
16
|
Ibrahim AS, El-Shishtawy MM, Peña A, Liou GI. Genistein attenuates retinal inflammation associated with diabetes by targeting of microglial activation. Mol Vis 2010; 16:2033-42. [PMID: 21042558 PMCID: PMC2965567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Accepted: 10/05/2010] [Indexed: 11/22/2022] Open
Abstract
PURPOSE Diabetic retinopathy (DR) is associated with microglial activation and increased levels of inflammatory cytokines. Genistein, a tyrosine kinase inhibitor, has been shown to possess anti-inflammatory potential that so far untested in animal models of diabetes. The aims of this study are to evaluate the efficacy of genistein for alleviation of diabetes-induced retinal inflammation and also to gain insight into the molecular mechanisms involved therein by analyzing the effect of genistein on concomitant microglia activation in the diabetic retina and in isolated cells. METHODS Streptozotocin (STZ)-induced diabetic Sprague Dawley rats were used. After diabetes was established for two weeks a single intravitreal injection of genistein or vehicle was performed. Forty-eight hours later, rats were killed, their retinal and vitreal samples were processed for Quantitative Real Time-PCR (qRT-PCR) and Enzyme-linked immunosorbent assay (ELISA) analyses, respectively. For the in vitro study, isolated microglial cells from retinas of newborn rats were used. RESULTS mRNA as well as protein levels for tumor necrosis factor α (TNF-α), a robust marker of inflammation, were increased in the retina early in the course of diabetes. Moreover, diabetes resulted in elevation of ionized calcium binding adaptor molecule-1 (Iba1) mRNA, known to be upregulated in activated microglia. These effects of diabetes in retina were all reduced by intervention treatment with genistein. Using an in vitro bioassay, we demonstrated the release of TNF-α from microglia activated by glycated albumin, a risk factor for diabetic disorders. This inflammatory signal involves the activation of tyrosine kinase and its subsequent events, ERK and P38 MAPKs. Genistein represses the release of TNF-α and significantly inhibits ERK and P38 phosphorylation in activated microglial cells by acting as a tyrosine kinase inhibitor. CONCLUSIONS These findings show genistein to be effective in dampening diabetes-induced retinal inflammation by interfering with inflammatory signaling (ERK and P38 MAPKs) that occurs in activated microglia. This beneficial effect of genistein may represent a new intervention therapy to modulate early pathological pathways long before the occurrence of vision loss among diabetics.
Collapse
Affiliation(s)
- Ahmed S. Ibrahim
- Department of Ophthalmology, Medical College of Georgia, Augusta, GA,Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | | | - Alejandro Peña
- Department of Medicine, Medical College of Georgia, Augusta, GA
| | - Gregory I. Liou
- Department of Ophthalmology, Medical College of Georgia, Augusta, GA
| |
Collapse
|