1
|
Zhang Z, Ran Y, Shaw TS, Peng Y. MicroRNAs 10a and 10b Regulate the Expression of Human Platelet Glycoprotein Ibα for Normal Megakaryopoiesis. Int J Mol Sci 2016; 17:ijms17111873. [PMID: 27834869 PMCID: PMC5133873 DOI: 10.3390/ijms17111873] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/03/2016] [Accepted: 11/03/2016] [Indexed: 11/27/2022] Open
Abstract
MicroRNAs are a class of small non-coding RNAs that bind to the three prime untranslated region (3′-UTR) of target mRNAs. They cause a cleavage or an inhibition of the translation of target mRNAs, thus regulating gene expression. Here, we employed three prediction tools to search for potential miRNA target sites in the 3′-UTR of the human platelet glycoprotein (GP) 1BA gene. A luciferase reporter assay shows that miR-10a and -10b sites are functional. When miR-10a or -10b mimics were transfected into the GP Ibβ/GP IX-expressing cells, along with a DNA construct harboring both the coding and 3′-UTR sequences of the human GP1BA gene, we found that they inhibit the transient expression of GP Ibα on the cell surface. When the miR-10a or -10b mimics were introduced into murine progenitor cells, upon megakaryocyte differentiation, we found that GP Ibα mRNA expression was markedly reduced, suggesting that a miRNA-induced mRNA degradation is at work. Thus, our study identifies GP Ibα as a novel target of miR-10a and -10b, suggesting that a drastic reduction in the levels of miR-10a and -10b in the late stage of megakaryopoiesis is required to allow the expression of human GP Ibα and the formation of the GP Ib-IX-V complex.
Collapse
Affiliation(s)
- Zuping Zhang
- School of Basic Medicine, Central South University, Changsha 410013, China.
- Cardiovascular Research Section, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Yali Ran
- Cardiovascular Research Section, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Tanner S Shaw
- Cardiovascular Research Section, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Yuandong Peng
- Cardiovascular Research Section, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
2
|
Zhong Y, Dong S, Strattan E, Ren L, Butchar JP, Thornton K, Mishra A, Porcu P, Bradshaw JM, Bisconte A, Owens TD, Verner E, Brameld KA, Funk JO, Hill RJ, Johnson AJ, Dubovsky JA. Targeting interleukin-2-inducible T-cell kinase (ITK) and resting lymphocyte kinase (RLK) using a novel covalent inhibitor PRN694. J Biol Chem 2015; 290:5960-78. [PMID: 25593320 DOI: 10.1074/jbc.m114.614891] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Interleukin-2-inducible T-cell kinase (ITK) and resting lymphocyte kinase (RLK or TXK) are essential mediators of intracellular signaling in both normal and neoplastic T-cells and natural killer (NK) cells. Thus, ITK and RLK inhibitors have therapeutic potential in a number of human autoimmune, inflammatory, and malignant diseases. Here we describe a novel ITK/RLK inhibitor, PRN694, which covalently binds to cysteine residues 442 of ITK and 350 of RLK and blocks kinase activity. Molecular modeling was utilized to design molecules that interact with cysteine while binding to the ATP binding site in the kinase domain. PRN694 exhibits extended target residence time on ITK and RLK and is highly selective for a subset of the TEC kinase family. In vitro cellular assays confirm that PRN694 prevents T-cell receptor- and Fc receptor-induced cellular and molecular activation, inhibits T-cell receptor-induced T-cell proliferation, and blocks proinflammatory cytokine release as well as activation of Th17 cells. Ex vivo assays demonstrate inhibitory activity against T-cell prolymphocytic leukemia cells, and in vivo assays demonstrate durable pharmacodynamic effects on ITK, which reduces an oxazolone-induced delayed type hypersensitivity reaction. These data indicate that PRN694 is a highly selective and potent covalent inhibitor of ITK and RLK, and its extended target residence time enables durable attenuation of effector cells in vitro and in vivo. The results from this study highlight potential applications of this dual inhibitor for the treatment of T-cell- or NK cell-mediated inflammatory, autoimmune, and malignant diseases.
Collapse
Affiliation(s)
- Yiming Zhong
- From the Division of Hematology, College of Medicine, Ohio State University, Columbus, Ohio 43210
| | - Shuai Dong
- the Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, Ohio State University, Columbus, Ohio 43210, and
| | - Ethan Strattan
- From the Division of Hematology, College of Medicine, Ohio State University, Columbus, Ohio 43210
| | - Li Ren
- From the Division of Hematology, College of Medicine, Ohio State University, Columbus, Ohio 43210
| | - Jonathan P Butchar
- From the Division of Hematology, College of Medicine, Ohio State University, Columbus, Ohio 43210
| | - Kelsey Thornton
- From the Division of Hematology, College of Medicine, Ohio State University, Columbus, Ohio 43210
| | - Anjali Mishra
- From the Division of Hematology, College of Medicine, Ohio State University, Columbus, Ohio 43210
| | - Pierluigi Porcu
- From the Division of Hematology, College of Medicine, Ohio State University, Columbus, Ohio 43210
| | | | | | | | - Erik Verner
- Principia Biopharma, South San Francisco, California 94080
| | - Ken A Brameld
- Principia Biopharma, South San Francisco, California 94080
| | | | - Ronald J Hill
- Principia Biopharma, South San Francisco, California 94080
| | - Amy J Johnson
- From the Division of Hematology, College of Medicine, Ohio State University, Columbus, Ohio 43210
| | - Jason A Dubovsky
- From the Division of Hematology, College of Medicine, Ohio State University, Columbus, Ohio 43210,
| |
Collapse
|
3
|
SCL/TAL1-mediated transcriptional network enhances megakaryocytic specification of human embryonic stem cells. Mol Ther 2014; 23:158-70. [PMID: 25292191 DOI: 10.1038/mt.2014.196] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 09/26/2014] [Indexed: 12/22/2022] Open
Abstract
Human embryonic stem cells (hESCs) are a unique in vitro model for studying human developmental biology and represent a potential source for cell replacement strategies. Platelets can be generated from cord blood progenitors and hESCs; however, the molecular mechanisms and determinants controlling the in vitro megakaryocytic specification of hESCs remain elusive. We have recently shown that stem cell leukemia (SCL) overexpression accelerates the emergence of hemato-endothelial progenitors from hESCs and promotes their subsequent differentiation into blood cells with higher clonogenic potential. Given that SCL participates in megakaryocytic commitment, we hypothesized that it may potentiate megakaryopoiesis from hESCs. We show that ectopic SCL expression enhances the emergence of megakaryocytic precursors, mature megakaryocytes (MKs), and platelets in vitro. SCL-overexpressing MKs and platelets respond to different activating stimuli similar to their control counterparts. Gene expression profiling of megakaryocytic precursors shows that SCL overexpression renders a megakaryopoietic molecular signature. Connectivity Map analysis reveals that trichostatin A (TSA) and suberoylanilide hydroxamic acid (SAHA), both histone deacetylase (HDAC) inhibitors, functionally mimic SCL-induced effects. Finally, we confirm that both TSA and SAHA treatment promote the emergence of CD34(+) progenitors, whereas valproic acid, another HDAC inhibitor, potentiates MK and platelet production. We demonstrate that SCL and HDAC inhibitors are megakaryopoiesis regulators in hESCs.
Collapse
|
4
|
Xiao Y, Zheng Y, Tan P, Xu P, Zhang Q. Overexpression of nuclear distribution protein (hNUDC) causes pro-apoptosis and differentiation in Dami megakaryocytes. Cell Prolif 2013; 46:576-85. [PMID: 24010816 DOI: 10.1111/cpr.12055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Accepted: 05/01/2013] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVES Overexpression of hNUDC, a member of the nuclear distribution protein family, reduces cell population growth in prostate cancer cell lines, concurrent with induced morphological change and enhanced polyploidization. These phenomena are also closely associated with terminal phases of megakaryocyte maturation. MATERIALS AND METHODS In Dami cells, MTT and trypan blue assays were used to investigate cell viability and proliferation effects of hNUDC, and flow cytometry was used to analyse cell cycle and DNA content. Real-time RT-PCR was employed to detect mRNA expression. Activations of caspase-3, ERK, Akt and Stat-5 were determined by immunoblotting. May-Grünwald-Giemsa staining was performed to reveal cell morphology. RESULTS AND CONCLUSION Functional studies using adenovirus-mediated hNUDC overexpression led to inhibition of megakaryocyte proliferation via cell cycle arrest in G2/M transition phase. This process could have been be mediated by upregulation of p21 and downregulation of its downstream targets, including cyclin B1, cyclin B2 and c-myc. Enhanced apoptosis in turn ensued, characterized by increased caspase-3 activation, upregulation of pro-apoptotic Bax and downregulation of anti-apoptotic Bcl-2. Furthermore, hNUDC overexpression elevated the level of megakaryocyte maturation, associated with increased polyploidy, cell morphological changes and increased expression of cell surface differentiation markers, including CD10, CD44, CD41 and CD61. Our results further suggest that the ERK signalling pathway was involved in hNUDC overexpression-induced apoptosis. Taken together, this study provides experimental evidence for overexpression of hNUDC in Dami cells and suggests that activation of apoptotic machinery may be involved in megakaryocytic differentiation.
Collapse
Affiliation(s)
- Y Xiao
- Key Laboratory of Gene Engineering of Education Ministry, School of Life Sciences, Zhongshan University, Guangzhou, 510275, China
| | | | | | | | | |
Collapse
|
5
|
Rapid expansion of human hematopoietic stem cells by automated control of inhibitory feedback signaling. Cell Stem Cell 2012; 10:218-29. [PMID: 22305571 DOI: 10.1016/j.stem.2012.01.003] [Citation(s) in RCA: 194] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 12/15/2011] [Accepted: 01/06/2012] [Indexed: 12/28/2022]
Abstract
Clinical hematopoietic transplantation outcomes are strongly correlated with the numbers of cells infused. Anticipated novel therapeutic implementations of hematopoietic stem cells (HSCs) and their derivatives further increase interest in strategies to expand HSCs ex vivo. A fundamental limitation in all HSC-driven culture systems is the rapid generation of differentiating cells and their secreted inhibitory feedback signals. Herein we describe an integrated computational and experimental strategy that enables a tunable reduction in the global levels and impact of paracrine signaling factors in an automated closed-system process by employing a controlled fed-batch media dilution approach. Application of this system to human cord blood cells yielded a rapid (12-day) 11-fold increase of HSCs with self-renewing, multilineage repopulating ability. These results highlight the marked improvements that control of feedback signaling can offer primary stem cell culture and demonstrate a clinically relevant rapid and relatively low culture volume strategy for ex vivo HSC expansion.
Collapse
|