1
|
Lemieux P, Birot O. Altitude, Exercise, and Skeletal Muscle Angio-Adaptive Responses to Hypoxia: A Complex Story. Front Physiol 2021; 12:735557. [PMID: 34552509 PMCID: PMC8450406 DOI: 10.3389/fphys.2021.735557] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/16/2021] [Indexed: 12/18/2022] Open
Abstract
Hypoxia, defined as a reduced oxygen availability, can be observed in many tissues in response to various physiological and pathological conditions. As a hallmark of the altitude environment, ambient hypoxia results from a drop in the oxygen pressure in the atmosphere with elevation. A hypoxic stress can also occur at the cellular level when the oxygen supply through the local microcirculation cannot match the cells’ metabolic needs. This has been suggested in contracting skeletal myofibers during physical exercise. Regardless of its origin, ambient or exercise-induced, muscle hypoxia triggers complex angio-adaptive responses in the skeletal muscle tissue. These can result in the expression of a plethora of angio-adaptive molecules, ultimately leading to the growth, stabilization, or regression of muscle capillaries. This remarkable plasticity of the capillary network is referred to as angio-adaptation. It can alter the capillary-to-myofiber interface, which represent an important determinant of skeletal muscle function. These angio-adaptive molecules can also be released in the circulation as myokines to act on distant tissues. This review addresses the respective and combined potency of ambient hypoxia and exercise to generate a cellular hypoxic stress in skeletal muscle. The major skeletal muscle angio-adaptive responses to hypoxia so far described in this context will be discussed, including existing controversies in the field. Finally, this review will highlight the molecular complexity of the skeletal muscle angio-adaptive response to hypoxia and identify current gaps of knowledges in this field of exercise and environmental physiology.
Collapse
Affiliation(s)
- Pierre Lemieux
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Olivier Birot
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| |
Collapse
|
2
|
Ishiuchi-Sato Y, Hiraiwa E, Shinozaki A, Nedachi T. The effects of glucose and fatty acids on CXCL10 expression in skeletal muscle cells. Biosci Biotechnol Biochem 2020; 84:2448-2457. [PMID: 32877316 DOI: 10.1080/09168451.2020.1814127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Skeletal muscles produce secretory factors termed as myokines, which alter physiological functions of target tissues. We recently identified C-X-C chemokine ligand 10 (CXCL10) as a novel myokine, which is downregulated in response to exercise. In the present study, we investigated whether the nutritional changes affect CXCL10 expression in mouse skeletal muscle. Expression of CXCL10 was evaluated in mice fed a normal diet or a high fat diet for 10 weeks. In animals fed on HFD, Cxcl10 expression was significantly induced in fast-twitched muscles, and was accompanied by increased blood glucose and free fatty acid levels. In vitro experiments using C2C12 myotubes suggested that the increased levels of glucose and palmitic acids directly enhanced CXCL10 expression. Interestingly, the effect of palmitic acids was attenuated by palmitoleic acids. Considering its potent angiostatic activity, induction of CXCL10 by nutritional changes may contribute to the impairment of microvascular networks in skeletal muscles.
Collapse
Affiliation(s)
| | - Erika Hiraiwa
- Faculty of Life Sciences, Toyo University , Gunma, Japan
| | | | - Taku Nedachi
- Graduate School of Life Sciences, Toyo University , Gunma, Japan.,Faculty of Life Sciences, Toyo University , Gunma, Japan
| |
Collapse
|
3
|
Hantelys F, Godet AC, David F, Tatin F, Renaud-Gabardos E, Pujol F, Diallo LH, Ader I, Ligat L, Henras AK, Sato Y, Parini A, Lacazette E, Garmy-Susini B, Prats AC. Vasohibin1, a new mouse cardiomyocyte IRES trans-acting factor that regulates translation in early hypoxia. eLife 2019; 8:50094. [PMID: 31815666 PMCID: PMC6946400 DOI: 10.7554/elife.50094] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 12/09/2019] [Indexed: 12/16/2022] Open
Abstract
Hypoxia, a major inducer of angiogenesis, triggers major changes in gene expression at the transcriptional level. Furthermore, under hypoxia, global protein synthesis is blocked while internal ribosome entry sites (IRES) allow specific mRNAs to be translated. Here, we report the transcriptome and translatome signatures of (lymph)angiogenic genes in hypoxic HL-1 mouse cardiomyocytes: most genes are induced at the translatome level, including all IRES-containing mRNAs. Our data reveal activation of (lymph)angiogenic factor mRNA IRESs in early hypoxia. We identify vasohibin1 (VASH1) as an IRES trans-acting factor (ITAF) that is able to bind RNA and to activate the FGF1 IRES in hypoxia, but which tends to inhibit several IRESs in normoxia. VASH1 depletion has a wide impact on the translatome of (lymph)angiogenesis genes, suggesting that this protein can regulate translation positively or negatively in early hypoxia. Translational control thus appears as a pivotal process triggering new vessel formation in ischemic heart.
Collapse
Affiliation(s)
- Fransky Hantelys
- UMR 1048-I2MC, Inserm, Université de Toulouse, UPS, Toulouse, France
| | - Anne-Claire Godet
- UMR 1048-I2MC, Inserm, Université de Toulouse, UPS, Toulouse, France
| | - Florian David
- UMR 1048-I2MC, Inserm, Université de Toulouse, UPS, Toulouse, France
| | - Florence Tatin
- UMR 1048-I2MC, Inserm, Université de Toulouse, UPS, Toulouse, France
| | | | - Françoise Pujol
- UMR 1048-I2MC, Inserm, Université de Toulouse, UPS, Toulouse, France
| | - Leila H Diallo
- UMR 1048-I2MC, Inserm, Université de Toulouse, UPS, Toulouse, France
| | - Isabelle Ader
- UMR 1031-STROMALAB, Inserm, CNRS ERL5311, Etablissement Français du Sang-Occitanie (EFS), National Veterinary School of Toulouse (ENVT), Université de Toulouse, UPS, Toulouse, France
| | - Laetitia Ligat
- UMR 1037-CRCT, Inserm, CNRS, Université de Toulouse, UPS, Pôle Technologique-Plateau Protéomique, Toulouse, France
| | - Anthony K Henras
- UMR 5099-LBME, CBI, CNRS, Université de Toulouse, UPS, Toulouse, France
| | - Yasufumi Sato
- Department of Vascular Biology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Angelo Parini
- UMR 1048-I2MC, Inserm, Université de Toulouse, UPS, Toulouse, France
| | - Eric Lacazette
- UMR 1048-I2MC, Inserm, Université de Toulouse, UPS, Toulouse, France
| | | | | |
Collapse
|
4
|
Tang XW, Qin QX. miR-335-5p induces insulin resistance and pancreatic islet β-cell secretion in gestational diabetes mellitus mice through VASH1-mediated TGF-β signaling pathway. J Cell Physiol 2018; 234:6654-6666. [PMID: 30341900 DOI: 10.1002/jcp.27406] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 08/21/2018] [Indexed: 12/25/2022]
Abstract
Multiple studies have reported different methods in treating gestational diabetes mellitus (GDM); however, the relationship between miR-335-5p and GDM still remains unclear. Here, this study explores the effect of miR-335-5p on insulin resistance and pancreatic islet β-cell secretion via activation of the TGFβ signaling pathway by downregulating VASH1 expression in GDM mice. The GDM mouse model was established and mainly treated with miR-335-5p mimic, miR-335-5p inhibitor, si-VASH1, and miR-335-5p inhibitor + si-VASH1. Oral glucose tolerance test (OGTT) was conducted to detect fasting blood glucose (FBG) fasting insulin (FINS). The OGTT was also used to calculate a homeostasis model assessment of insulin resistance (HOMA-IR). A hyperglycemic clamp was performed to measure the glucose infusion rate (GIR), which estimated β-cell function. Expressions of miR-335-5p, VASH1, TGF-β1, and c-Myc in pancreatic islet β-cells were determined by RT-qPCR, western blot analysis, and insulin release by ELISA. The miR-335-5p mimic and si-VASH1 groups showed elevated blood glucose levels, glucose area under the curve (GAUC), and HOMA-IR, but a reduced GIR and positive expression of VASH1. Overexpression of miR-335-5p and inhibition of VASH1 contributed to activated TGFβ1 pathway, higher c-Myc, and lower VASH1 expressions, in addition to downregulated insulin and insulin release levels. These findings provided evidence that miR-335-5p enhanced insulin resistance and suppressed pancreatic islet β-cell secretion by inhibiting VASH1, eventually activating the TGF-β pathway in GDM mice, which provides more clinical insight on the GDM treatment.
Collapse
Affiliation(s)
- Xu-Wen Tang
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center Affiliated to, Guangzhou Medical University, Guangzhou, China
| | - Qing-Xin Qin
- Department of Endocrinology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
5
|
Du H, Zhao J, Hai L, Wu J, Yi H, Shi Y. The roles of vasohibin and its family members: Beyond angiogenesis modulators. Cancer Biol Ther 2017; 18:827-832. [PMID: 28886304 PMCID: PMC5710674 DOI: 10.1080/15384047.2017.1373217] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Vasohibin-1 is an intrinsic angiogenesis inhibitor, and is expressed in endothelial cells via induction by pro-angiogenesis factors. It is known to inhibit several processes of angiogenesis, with different mechanisms from extrinsic angiogenesis inhibitors. Vasohibin-2 is mainly expressed by mononuclear cells which have been mobilized from bone marrow. It not only promotes angiogenesis, but also modulates the releases of FGF-2 and VEGF, which are the two major inducers for vasohibin1. Hypoxic environment induces the expression of hypoxia-inducible Factor 1α with a result of VEGF release nearly in all tumor cell lines and tissues. However, it has been observed that hypoxia reduces the inducible effects of VEGF on vasohibin, which indicates that a complicated mechanism exists in the angiogenesis. Vasohibin and its family members play important roles in both the physiological and pathological procedures, in contrary but complementary patterns. Furthermore, human aortic smooth muscle cells and fibroblast have also been detected to express vasohibin on a moderate to weak scale range. Recently, the results of an increasing number of studies in vivo have shown that vasohibin can also be detected in several cancers, and is associated with micro-vessel densities, histology grades, invasions, poor clinical features, metastasis, and dissemination in abdominal cavities, as well as EMT. In more recent reports, it has been confirmed that, along with being angiogenesis regulators, a variety of other roles have been associated with this family. The focus of this study was the upstream regulatory mechanisms of vasohibin expressions, and their role in regard to the downstream target proteins of vasohibin, especially in carcinoma. Vasohibin is considered to be an original angiogenesis inhibitor, and has a much broader significance in pathological processes. It can be taken as an independent prognostic factor, as well as a potential strategy for cancer therapy programs.
Collapse
Affiliation(s)
- Hua Du
- a The Department of Pathology Affiliated Hospital , Inner Mongolia Medical University Hohhot City, Inner Mongolia Autonomous Region , R. P. of China
| | - Jing Zhao
- a The Department of Pathology Affiliated Hospital , Inner Mongolia Medical University Hohhot City, Inner Mongolia Autonomous Region , R. P. of China
| | - Ling Hai
- a The Department of Pathology Affiliated Hospital , Inner Mongolia Medical University Hohhot City, Inner Mongolia Autonomous Region , R. P. of China
| | - Jing Wu
- a The Department of Pathology Affiliated Hospital , Inner Mongolia Medical University Hohhot City, Inner Mongolia Autonomous Region , R. P. of China
| | - Hua Yi
- a The Department of Pathology Affiliated Hospital , Inner Mongolia Medical University Hohhot City, Inner Mongolia Autonomous Region , R. P. of China
| | - Yonghong Shi
- a The Department of Pathology Affiliated Hospital , Inner Mongolia Medical University Hohhot City, Inner Mongolia Autonomous Region , R. P. of China
| |
Collapse
|
6
|
Olfert IM, Baum O, Hellsten Y, Egginton S. Advances and challenges in skeletal muscle angiogenesis. Am J Physiol Heart Circ Physiol 2015; 310:H326-36. [PMID: 26608338 PMCID: PMC4796623 DOI: 10.1152/ajpheart.00635.2015] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/18/2015] [Indexed: 12/25/2022]
Abstract
The role of capillaries is to serve as the interface for delivery of oxygen and removal of metabolites to/from tissues. During the past decade there has been a proliferation of studies that have advanced our understanding of angiogenesis, demonstrating that tissue capillary supply is under strict control during health but poorly controlled in disease, resulting in either excessive capillary growth (pathological angiogenesis) or losses in capillarity (rarefaction). Given that skeletal muscle comprises nearly 40% of body mass in humans, skeletal muscle capillary density has a significant impact on metabolism, endocrine function, and locomotion and is tightly regulated at many different levels. Skeletal muscle is also high adaptable and thus one of the few organ systems that can be experimentally manipulated (e.g., by exercise) to study physiological regulation of angiogenesis. This review will focus on the methodological concerns that have arisen in determining skeletal muscle capillarity and highlight the concepts that are reshaping our understanding of the angio-adaptation process. We also summarize selected new findings (physical influences, molecular changes, and ultrastructural rearrangement of capillaries) that identify areas of future research with the greatest potential to expand our understanding of how angiogenesis is normally regulated, and that may also help to better understand conditions of uncontrolled (pathological) angiogenesis.
Collapse
Affiliation(s)
- I Mark Olfert
- Center for Cardiovascular and Respiratory Sciences and Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia;
| | - Oliver Baum
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Ylva Hellsten
- Integrative Physiology Group, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark; and
| | - Stuart Egginton
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
7
|
Camerino GM, Pierno S, Liantonio A, De Bellis M, Cannone M, Sblendorio V, Conte E, Mele A, Tricarico D, Tavella S, Ruggiu A, Cancedda R, Ohira Y, Danieli-Betto D, Ciciliot S, Germinario E, Sandonà D, Betto R, Camerino DC, Desaphy JF. Effects of pleiotrophin overexpression on mouse skeletal muscles in normal loading and in actual and simulated microgravity. PLoS One 2013; 8:e72028. [PMID: 24015201 PMCID: PMC3756024 DOI: 10.1371/journal.pone.0072028] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 07/03/2013] [Indexed: 11/19/2022] Open
Abstract
Pleiotrophin (PTN) is a widespread cytokine involved in bone formation, neurite outgrowth, and angiogenesis. In skeletal muscle, PTN is upregulated during myogenesis, post-synaptic induction, and regeneration after crushing, but little is known regarding its effects on muscle function. Here, we describe the effects of PTN on the slow-twitch soleus and fast-twitch extensor digitorum longus (EDL) muscles in mice over-expressing PTN under the control of a bone promoter. The mice were maintained in normal loading or disuse condition, induced by hindlimb unloading (HU) for 14 days. Effects of exposition to near-zero gravity during a 3-months spaceflight (SF) into the Mice Drawer System are also reported. In normal loading, PTN overexpression had no effect on muscle fiber cross-sectional area, but shifted soleus muscle toward a slower phenotype, as shown by an increased number of oxidative type 1 fibers, and increased gene expression of cytochrome c oxidase subunit IV and citrate synthase. The cytokine increased soleus and EDL capillary-to-fiber ratio. PTN overexpression did not prevent soleus muscle atrophy, slow-to-fast transition, and capillary regression induced by SF and HU. Nevertheless, PTN exerted various effects on sarcolemma ion channel expression/function and resting cytosolic Ca(2+) concentration in soleus and EDL muscles, in normal loading and after HU. In conclusion, the results show very similar effects of HU and SF on mouse soleus muscle, including activation of specific gene programs. The EDL muscle is able to counterbalance this latter, probably by activating compensatory mechanisms. The numerous effects of PTN on muscle gene expression and functional parameters demonstrate the sensitivity of muscle fibers to the cytokine. Although little benefit was found in HU muscle disuse, PTN may emerge useful in various muscle diseases, because it exerts synergetic actions on muscle fibers and vessels, which could enforce oxidative metabolism and ameliorate muscle performance.
Collapse
Affiliation(s)
- Giulia Maria Camerino
- Section of Pharmacology, Department of Pharmacy & Drug Sciences, University of Bari – Aldo Moro, Bari, Italy
| | - Sabata Pierno
- Section of Pharmacology, Department of Pharmacy & Drug Sciences, University of Bari – Aldo Moro, Bari, Italy
| | - Antonella Liantonio
- Section of Pharmacology, Department of Pharmacy & Drug Sciences, University of Bari – Aldo Moro, Bari, Italy
| | - Michela De Bellis
- Section of Pharmacology, Department of Pharmacy & Drug Sciences, University of Bari – Aldo Moro, Bari, Italy
| | - Maria Cannone
- Section of Pharmacology, Department of Pharmacy & Drug Sciences, University of Bari – Aldo Moro, Bari, Italy
| | - Valeriana Sblendorio
- Section of Pharmacology, Department of Pharmacy & Drug Sciences, University of Bari – Aldo Moro, Bari, Italy
| | - Elena Conte
- Section of Pharmacology, Department of Pharmacy & Drug Sciences, University of Bari – Aldo Moro, Bari, Italy
| | - Antonietta Mele
- Section of Pharmacology, Department of Pharmacy & Drug Sciences, University of Bari – Aldo Moro, Bari, Italy
| | - Domenico Tricarico
- Section of Pharmacology, Department of Pharmacy & Drug Sciences, University of Bari – Aldo Moro, Bari, Italy
| | - Sara Tavella
- Department of Oncology, Biology, and Genetics, University of Genova, Genova, Italy
| | - Alessandra Ruggiu
- Department of Oncology, Biology, and Genetics, University of Genova, Genova, Italy
| | - Ranieri Cancedda
- Department of Oncology, Biology, and Genetics, University of Genova, Genova, Italy
| | - Yoshinobu Ohira
- Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka, Japan
| | | | - Stefano Ciciliot
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Elena Germinario
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Dorianna Sandonà
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Romeo Betto
- Institute of Neuroscience, National Research Council, Padova, Italy
| | - Diana Conte Camerino
- Section of Pharmacology, Department of Pharmacy & Drug Sciences, University of Bari – Aldo Moro, Bari, Italy
| | - Jean-François Desaphy
- Section of Pharmacology, Department of Pharmacy & Drug Sciences, University of Bari – Aldo Moro, Bari, Italy
- * E-mail:
| |
Collapse
|
8
|
Abstract
Angiogenesis, a formation of neovessels, is regulated by the local balance between angiogenesis stimulators and inhibitors. A number of such endogenous regulators of angiogenesis have been found in the body. Recently, vasohibin-1 (VASH1) was isolated as a negative feedback regulator of angiogenesis produced by endothelial cells (ECs) and subsequently vasohibin-2 (VASH2) as a homologue of VASH1. It was then explored that VASH1 is expressed in ECs to terminate angiogenesis, whereas VASH2 is expressed in cells other than ECs to promote angiogenesis in the mouse model of angiogenesis. This review will focus on the vasohibin family members, which are novel regulators of angiogenesis.
Collapse
Affiliation(s)
- Yasufumi Sato
- Department of Vascular Biology, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Sendai 980-8575, Japan.
| |
Collapse
|
9
|
Abstract
Peripheral arterial disease (PAD) is a common vascular disease that reduces blood flow capacity to the legs of patients. PAD leads to exercise intolerance that can progress in severity to greatly limit mobility, and in advanced cases leads to frank ischemia with pain at rest. It is estimated that 12 to 15 million people in the United States are diagnosed with PAD, with a much larger population that is undiagnosed. The presence of PAD predicts a 50% to 1500% increase in morbidity and mortality, depending on severity. Treatment of patients with PAD is limited to modification of cardiovascular disease risk factors, pharmacological intervention, surgery, and exercise therapy. Extended exercise programs that involve walking approximately five times per week, at a significant intensity that requires frequent rest periods, are most significant. Preclinical studies and virtually all clinical trials demonstrate the benefits of exercise therapy, including improved walking tolerance, modified inflammatory/hemostatic markers, enhanced vasoresponsiveness, adaptations within the limb (angiogenesis, arteriogenesis, and mitochondrial synthesis) that enhance oxygen delivery and metabolic responses, potentially delayed progression of the disease, enhanced quality of life indices, and extended longevity. A synthesis is provided as to how these adaptations can develop in the context of our current state of knowledge and events known to be orchestrated by exercise. The benefits are so compelling that exercise prescription should be an essential option presented to patients with PAD in the absence of contraindications. Obviously, selecting for a lifestyle pattern that includes enhanced physical activity prior to the advance of PAD limitations is the most desirable and beneficial.
Collapse
Affiliation(s)
- Tara L Haas
- Angiogenesis Research Group, Muscle Health Research Centre, Faculty of Health, York University, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
10
|
OLFERT IMARK, BIROT OLIVIER. Importance of Anti-angiogenic Factors in the Regulation of Skeletal Muscle Angiogenesis. Microcirculation 2011; 18:316-30. [DOI: 10.1111/j.1549-8719.2011.00092.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
|