1
|
Tota M, Jonderko L, Witek J, Novickij V, Kulbacka J. Cellular and Molecular Effects of Magnetic Fields. Int J Mol Sci 2024; 25:8973. [PMID: 39201657 PMCID: PMC11354277 DOI: 10.3390/ijms25168973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
Recently, magnetic fields (MFs) have received major attention due to their potential therapeutic applications and biological effects. This review provides a comprehensive analysis of the cellular and molecular impacts of MFs, with a focus on both in vitro and in vivo studies. We investigate the mechanisms by which MFs influence cell behavior, including modifications in gene expression, protein synthesis, and cellular signaling pathways. The interaction of MFs with cellular components such as ion channels, membranes, and the cytoskeleton is analyzed, along with their effects on cellular processes like proliferation, differentiation, and apoptosis. Molecular insights are offered into how MFs modulate oxidative stress and inflammatory responses, which are pivotal in various pathological conditions. Furthermore, we explore the therapeutic potential of MFs in regenerative medicine, cancer treatment, and neurodegenerative diseases. By synthesizing current findings, this article aims to elucidate the complex bioeffects of MFs, thereby facilitating their optimized application in medical and biotechnological fields.
Collapse
Affiliation(s)
- Maciej Tota
- Student Research Group № K148, Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland;
| | - Laura Jonderko
- Student Research Group № K148, Faculty of Pharmacy, Wroclaw Medical University, 50-367 Wroclaw, Poland; (L.J.); (J.W.)
| | - Julia Witek
- Student Research Group № K148, Faculty of Pharmacy, Wroclaw Medical University, 50-367 Wroclaw, Poland; (L.J.); (J.W.)
| | - Vitalij Novickij
- Institute of High Magnetic Fields, Vilnius Gediminas Technical University, LT-03227 Vilnius, Lithuania;
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Santariškių 5, LT-08410 Vilnius, Lithuania
| | - Julita Kulbacka
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Santariškių 5, LT-08410 Vilnius, Lithuania
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, 50-367 Wrocław, Poland
| |
Collapse
|
2
|
Yang Z, Liu S, Pan X. Research progress on mitochondrial damage and repairing in oocytes: A review. Mitochondrion 2024; 75:101845. [PMID: 38237648 DOI: 10.1016/j.mito.2024.101845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 01/04/2024] [Accepted: 01/14/2024] [Indexed: 01/26/2024]
Abstract
Oocytes are the female germ cells, which are susceptible to stress stimuli. The development of oocytes in the ovary is affected by many environmental and metabolic factors, food toxins, aging, and pathological factors. Mitochondria are the main target organelles of these factors, and the damage to mitochondrial structure and function can affect the production of ATP, the regulation of redox reactions, and apoptosis in oocytes. Mitochondrial damage is closely related to the decrease in oocyte quality and is the main factor leading to female infertility. Antioxidant foods or drugs have been used to prevent mitochondrial damage from some stressors or to repair damaged mitochondria, thereby improving oocyte development and female reproductive outcomes. In this paper, the damage of mitochondria during oocyte development by the above factors has been reviewed, and the relevant measures to alleviate the damage of mitochondria in oocytes have been discussed. Our findings may provide a theoretical basis and experimental basis for improving female fertility.
Collapse
Affiliation(s)
- Zheqing Yang
- Center for Reproductive Medicine, Jilin Medical University, Jilin 132013, Jilin, China
| | - Sitong Liu
- Department of Anatomy, Jilin Medical University, Jilin 132013, Jilin, China
| | - Xiaoyan Pan
- Center for Reproductive Medicine, Jilin Medical University, Jilin 132013, Jilin, China.
| |
Collapse
|
3
|
Tuszynski JA, Costa F. Low-energy amplitude-modulated radiofrequency electromagnetic fields as a systemic treatment for cancer: Review and proposed mechanisms of action. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 4:869155. [PMID: 36157082 PMCID: PMC9498185 DOI: 10.3389/fmedt.2022.869155] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Exposure to Low-Energy Amplitude-Modulated Radiofrequency Electromagnetic Fields (LEAMRFEMF) represents a new treatment option for patients with advanced hepatocellular carcinoma (AHCC). We focus on two medical devices that modulate the amplitude of a 27.12 MHz carrier wave to generate envelope waves in the low Hz to kHz range. Each provides systemic exposure to LEAMRFEMF via an intrabuccal antenna. This technology differs from so-called Tumour Treating Fields because it uses different frequency ranges, uses electromagnetic rather than electric fields, and delivers energy systemically rather than locally. The AutemDev also deploys patient-specific frequencies. LEAMRFEMF devices use 100-fold less power than mobile phones and have no thermal effects on tissue. Tumour type-specific or patient-specific treatment frequencies can be derived by measuring haemodynamic changes induced by exposure to LEAMRFEMF. These specific frequencies inhibited growth of human cancer cell lines in vitro and in mouse xenograft models. In uncontrolled prospective clinical trials in patients with AHCC, minorities of patients experienced complete or partial tumour responses. Pooled comparisons showed enhanced overall survival in treated patients compared to historical controls. Mild transient somnolence was the only notable treatment-related adverse event. We hypothesize that intracellular oscillations of charged macromolecules and ion flows couple resonantly with LEAMRFEMF. This resonant coupling appears to disrupt cell division and subcellular trafficking of mitochondria. We provide an estimate of the contribution of the electromagnetic effects to the overall energy balance of an exposed cell by calculating the power delivered to the cell, and the energy dissipated through the cell due to EMF induction of ionic flows along microtubules. We then compare this with total cellular metabolic energy production and conclude that energy delivered by LEAMRFEMF may provide a beneficial shift in cancer cell metabolism away from aberrant glycolysis. Further clinical research may confirm that LEAMRFEMF has therapeutic value in AHCC.
Collapse
Affiliation(s)
- Jack A. Tuszynski
- Division of Experimental Oncology, Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada
- Dipartimento di Ingegneria Meccanica e Aerospaziale, Politecnico di Torino, Turin, Italy
- Autem Therapeutics, Hanover, NH, United States
| | - Frederico Costa
- Autem Therapeutics, Hanover, NH, United States
- Oncology Department, Hospital Sírio-Libanês, São Paulo, Brazil
| |
Collapse
|
4
|
Jagetia GC. Genotoxic effects of electromagnetic field radiations from mobile phones. ENVIRONMENTAL RESEARCH 2022; 212:113321. [PMID: 35508219 DOI: 10.1016/j.envres.2022.113321] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/18/2021] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
The use of wireless communication technology in mobile phones has revolutionized modern telecommunication and mobile phones have become so popular that their number exceeds the global population. Electromagnetic field radiations (EMR) are an integral part of wireless technology, which are emitted by mobile phones, mobile tower antennas, electric power stations, transmission lines, radars, microwave ovens, television sets, refrigerators, diagnostic, therapeutic, and other electronic devices. Manmade EMR sources have added to the existing burden of natural EMR human exposure arising from the Sun, cosmos, atmospheric discharges, and thunder storms. EMR including radiofrequency waves (RF) and extremely low-frequency radiation (ELF) has generated great interest as their short-term exposure causes headache, fatigue, tinnitus, concentration problems, depression, memory loss, skin irritation, sleep disorders, nausea, cardiovascular effects, chest pain, immunity, and hormonal disorders in humans, whereas long-term exposure to EMR leads to the development of cancer. The review has been written by collecting the information using various search engines including google scholar, PubMed, SciFinder, Science direct, EMF-portal, saferemr, and other websites from the internet. The main focus of this review is to delineate the mutagenic and genotoxic effects of EMR in humans and mammals. Numerous investigations revealed that exposure in the range of 0-300 GHz EMR is harmless as it did not increase micronuclei and chromosome aberrations. On the contrary, several other studies have demonstrated that exposure to EMR is genotoxic and mutagenic as it increases the frequency of micronuclei, chromosome aberrations, DNA adducts, DNA single and double strand breaks at the molecular level in vitro and in vivo. The EMR exposure induces reactive oxygen species and changes the fidelity of genes involved in signal transduction, cytoskeleton formation, and cellular metabolism.
Collapse
|
5
|
Differential biological responses of adherent and non-adherent (cancer and non-cancerous) cells to variable extremely low frequency magnetic fields. Sci Rep 2022; 12:14225. [PMID: 35987807 PMCID: PMC9392794 DOI: 10.1038/s41598-022-18210-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 08/08/2022] [Indexed: 11/08/2022] Open
Abstract
Extremely low-frequency electromagnetic field (ELF-EMF) induces biological effects on different cells through various signaling pathways. To study the impact of the ELF-EMF on living cells under an optimal physiological condition, we have designed and constructed a novel system that eliminates several limitations of other ELF-EMF systems. Apoptosis and cell number were assessed by flow cytometry and the Trypan Blue dye exclusion method, respectively. In vitro cell survival was evaluated by colony formation assay. The distribution of cells in the cell cycle, intracellular ROS level, and autophagy were analyzed by flow cytometer. Suspended cells differentiation was assessed by phagocytosis of latex particles and NBT reduction assay. Our results showed that response to the exposure to ELF-EMF is specific and depends on the biological state of the cell. For DU145, HUVEC, and K562 cell lines the optimum results were obtained at the frequency of 0.01 Hz, while for MDA-MB-231, the optimum response was obtained at 1 Hz. Long-term exposure to ELF-EMF in adherent cells effectively inhibited proliferation by arresting the cell population at the cell cycle G2/M phase and increased intracellular ROS level, leading to morphological changes and cell death. The K562 cells exposed to the ELF-EMF differentiate via induction of autophagy and decreasing the cell number. Our novel ELF-EMF instrument could change morphological and cell behaviors, including proliferation, differentiation, and cell death.
Collapse
|
6
|
Mercado-Sáenz S, López-Díaz B, Burgos-Molina AM, Sendra-Portero F, González-Vidal A, Ruiz-Gómez MJ. Exposure of S. cerevisiae to pulsed magnetic field during chronological aging could induce genomic DNA damage. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:1756-1767. [PMID: 33797308 DOI: 10.1080/09603123.2021.1910212] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
This study evaluates the DNA damage induced by pulsed magnetic field (MF) on S. cerevisiae cells exposed during chronological aging. Samples were exposed to 25 Hz pulsed MF (1.5mT, 8 h/day) while cells were aging chronologically. Clonogenic drop test was used to study cellular survival and the mutation frequency was evaluated by scoring the spontaneous revertant mutants. DNA damage analysis was performed after aging by electrophoresis and image analysis. Yeast cells aged during 40 days of exposure showing that pulsed MF exposure induced a premature aging. In addition, a gradual increase in spontaneous mutants was found in pulsed MF samples in relation to unexposed controls. An increase in DNA degradation, over the background level in relation to controls, was observed at the end of the exposure period. In conclusion, exposure of S. cerevisiae cells to pulsed MF during chronological aging could induce genomic DNA damage.
Collapse
Affiliation(s)
- Silvia Mercado-Sáenz
- Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Málaga, Málaga, España
| | - Beatriz López-Díaz
- Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Málaga, Málaga, España
| | - Antonio M Burgos-Molina
- Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Málaga, Málaga, España
| | - Francisco Sendra-Portero
- Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Málaga, Málaga, España
| | - Alejandro González-Vidal
- Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Málaga, Málaga, España
| | - Miguel J Ruiz-Gómez
- Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Málaga, Málaga, España
| |
Collapse
|
7
|
Gholipour Hamedani B, Goliaei B, Shariatpanahi SP, Nezamtaheri M. An overview of the biological effects of extremely low frequency electromagnetic fields combined with ionizing radiation. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 172:50-59. [PMID: 35513112 DOI: 10.1016/j.pbiomolbio.2022.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 04/09/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
By growing the electrical power networks and electronic devices, electromagnetic fields (EMF) have become an inseparable part of the modern world. Considering the inevitable exposure to a various range of EMFs, especially at extremely low frequencies (ELF-EMF), investigating the biological effects of ELF-EMFs on biological systems became a global issue. The possible adverse consequences of these exposures were studied, along with their potential therapeutic capabilities. Also, their biological impacts in combination with other chemical and physical agents, specifically ionizing radiation (IR), as a co-carcinogen or as adjuvant therapy in combination with radiotherapy were explored. Here, we review the results of several in-vitro and in-vivo studies and discuss some proposed possible mechanisms of ELF-EMFs' actions in combination with IR. The results of these experiments could be fruitful to develop more precise safety standards for environmental ELF-EMFs exposures. Furthermore, it could evaluate the therapeutic capacities of ELF-EMFs alone or as an improver of radiotherapy.
Collapse
Affiliation(s)
- Bahareh Gholipour Hamedani
- Laboratory of Biophysics and Molecular Biology, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Bahram Goliaei
- Laboratory of Biophysics and Molecular Biology, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran.
| | - Seyed Peyman Shariatpanahi
- Laboratory of Biophysics and Molecular Biology, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Maryamsadat Nezamtaheri
- Laboratory of Biophysics and Molecular Biology, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| |
Collapse
|
8
|
Abstract
The potential therapeutic uses of electromagnetic fields (EMF), part of the nonionizing radiation spectrum, increase with time. Among them, those considering the potential antitumor effects exerted by the Magnetic Fields (MFs), part of the EMF entity, have gained more and more interest. A recent review on this subject reports the MFs' effect on apoptosis of tumor cells as one of the most important breakthroughs. Apoptosis is considered a key mechanism regulating the genetic stability of cells and as such is considered of fundamental importance in cancer initiation and development. According to an atomic/sub-atomic analysis, based on quantum physics, of the complexity of biological life and the role played by oxygen and its radicals in cancer biology, a possible biophysical mechanism is described. The mechanism considers the influence of MFs on apoptosis through an effect on electron spin that is able to increase reactive oxygen species (ROS) concentration. Impacting on the delicate balance between ROS production and ROS elimination in tumor cells is considered a promising cancer therapy, affecting different biological processes, such as apoptosis and metastasis. An analysis in the literature, which allows correlation between MFs exposure characteristics and their influence on apoptosis and ROS concentration, supports the validity of the mechanism.
Collapse
Affiliation(s)
- Santi Tofani
- Department of Medical Physics, Ivrea Hospital - ASL Torino Nord-Ovest TO4, Ivrea Torino, Italy.,Department of Public Health Science, School of Medicine, University of Turin, Ivrea Torino, Italy
| |
Collapse
|
9
|
Ye AF, Liu XC, Chen LJ, Xia YP, Yang XB, Sun WJ. Endogenous Ca 2+ release was involved in 50-Hz MF-induced proliferation via Akt-SK1 signal cascade in human amniotic epithelial cells. Electromagn Biol Med 2022; 41:142-151. [PMID: 35129008 DOI: 10.1080/15368378.2022.2031211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The mechanism underlying the biological effects caused by an extremely low-frequency electromagnetic field (ELF-EMF) is still unclear. Previously, we found that L-type calcium channel and sphingosine kinase 1 (SK1) were involved in 50-Hz MF exposure-induced cell proliferation. In the present study, the role of intracellular Ca2+ and signal molecules related to SK1 in cell proliferation induced by 50-Hz MF was investigated in human amniotic epithelial (FL) cells. Results showed that the intracellular Ca2+ chelator, BAPTA, could completely inhibit 50-Hz MF-induced cell proliferation, whereas NIF, the inhibitor of L-type calcium channel, only partly blocked it. When cells were cultured in calcium-free medium, MF exposure also increased intracellular Ca2+, activated SK1 and promoted cell proliferation although all of those increasing levels were lower than those in complete medium. Moreover, MF-activated SK1 could be completely inhibited by BAPTA, and MF-induced cell proliferation was abolished by SKI II, the specific inhibitor of SK1. Additionally, a 50-Hz MF exposure did not affect the activation of ERK and PKCα under the condition of calcium-free medium, but activated the Akt, which could be precluded entirely by BAPTA, but not be inhibited by NIF. Treatment of FL cells with LY294002, the inhibitor of Akt, could delete the MF-induced SK1 activation under the condition of calcium-free medium. Based on the data from the present experiment, it is concluded that endogenous Ca2+ release was involved in 50-Hz MF-induced cell proliferation via Akt-SK1 signal cascade.
Collapse
Affiliation(s)
- An-Fang Ye
- The First Affiliated Hospital, School of Public Health, Zhejiang University School of Medicine, Hangzhou, ZJ, China
| | - Xiao-Chen Liu
- The First Affiliated Hospital, School of Public Health, Zhejiang University School of Medicine, Hangzhou, ZJ, China
| | - Liang-Jing Chen
- Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, ZJ, China.,Bioelectromagnetics Key Laboratory, Zhejiang University School of Medicine, Hangzhou, ZJ, China
| | - Yong-Peng Xia
- Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, ZJ, China.,Shaoxing Shangyu Area Center for Disease Control and Prevention, Shaoxing, ZJ, China
| | - Xiao-Bo Yang
- Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, ZJ, China.,Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Wen-Jun Sun
- The First Affiliated Hospital, School of Public Health, Zhejiang University School of Medicine, Hangzhou, ZJ, China.,Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, ZJ, China.,Bioelectromagnetics Key Laboratory, Zhejiang University School of Medicine, Hangzhou, ZJ, China
| |
Collapse
|
10
|
Maffei ME. Magnetic Fields and Cancer: Epidemiology, Cellular Biology, and Theranostics. Int J Mol Sci 2022; 23:1339. [PMID: 35163262 PMCID: PMC8835851 DOI: 10.3390/ijms23031339] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/22/2022] [Accepted: 01/22/2022] [Indexed: 02/08/2023] Open
Abstract
Humans are exposed to a complex mix of man-made electric and magnetic fields (MFs) at many different frequencies, at home and at work. Epidemiological studies indicate that there is a positive relationship between residential/domestic and occupational exposure to extremely low frequency electromagnetic fields and some types of cancer, although some other studies indicate no relationship. In this review, after an introduction on the MF definition and a description of natural/anthropogenic sources, the epidemiology of residential/domestic and occupational exposure to MFs and cancer is reviewed, with reference to leukemia, brain, and breast cancer. The in vivo and in vitro effects of MFs on cancer are reviewed considering both human and animal cells, with particular reference to the involvement of reactive oxygen species (ROS). MF application on cancer diagnostic and therapy (theranostic) are also reviewed by describing the use of different magnetic resonance imaging (MRI) applications for the detection of several cancers. Finally, the use of magnetic nanoparticles is described in terms of treatment of cancer by nanomedical applications for the precise delivery of anticancer drugs, nanosurgery by magnetomechanic methods, and selective killing of cancer cells by magnetic hyperthermia. The supplementary tables provide quantitative data and methodologies in epidemiological and cell biology studies. Although scientists do not generally agree that there is a cause-effect relationship between exposure to MF and cancer, MFs might not be the direct cause of cancer but may contribute to produce ROS and generate oxidative stress, which could trigger or enhance the expression of oncogenes.
Collapse
Affiliation(s)
- Massimo E Maffei
- Department Life Sciences and Systems Biology, University of Turin, Via Quarello 15/a, 10135 Turin, Italy
| |
Collapse
|
11
|
Chen JS, Tsai LK, Yeh TY, Li TS, Li CH, Wei ZH, Lo NW, Ju JC. Effects of electromagnetic waves on oocyte maturation and embryonic development in pigs. J Reprod Dev 2021; 67:392-401. [PMID: 34690215 PMCID: PMC8668371 DOI: 10.1262/jrd.2021-074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Our living environment has been full of electromagnetic radiation (EMR) due to the prevailing electronic devices and equipment. Intermediate frequency electromagnetic field (IF-EMF) or waves constitute a significant part of EMR; therefore, an increasing number of household electrical appliances have become a source of IF-EMF, and concerns about IF-EMF on health are gaining more attention. However, little information is available about its impact on female reproductive traits, such as germ cell viability and early embryonic development, particularly at the cellular and molecular levels. In this study, we used porcine oocytes as a model system to explore the effect of IF-EMF at various intensities on the in vitro maturation (IVM) of oocytes and their subsequent embryonic development. Our results showed that no difference in oocyte maturation rates was detected among groups, but the cleavage and blastocyst rates of parthenotes derived from EMF-treated oocytes decreased with the weaker IF-EMF intensity (25 and 50 Gauss, G) groups compared to the control group (P < 0.05). For cytoplasmic maturation, the weaker IF-EMF intensity groups also showed a peripheral pattern of mitochondrial distribution resembling that of immature oocytes and increased autophagy activity. No obvious differences in cytoskeletal distribution and total cell numbers of blastocysts were investigated in the four IF-EMF treatments compared to those in the control group. Although the underlying mechanism associated with EMF effects on oocytes and embryos is still elusive, we have demonstrated that low intensity IF-EMF exerts harmful effects on porcine oocytes during the maturation stage, carrying over such effects to their subsequent embryonic development.
Collapse
Affiliation(s)
- Jia-Si Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| | - Li-Kuang Tsai
- Institute of Biotechnology, National Taiwan University, Taipei 10617, Taiwan
| | - Ting-Yu Yeh
- Ph.D. Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung 40227, Taiwan
| | - Tzai-Shiuan Li
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| | - Cheng-Han Li
- Department of Bio-Industrial Mechatronics Engineering, National Chung Hsing University, Taichung 40227, Taiwan
| | - Zung-Hang Wei
- Department of Research and Development, Weistron Co., Ltd., Hsinchu 30013, Taiwan
| | - Neng-Wen Lo
- Department of Animal Science and Biotechnology, Tunghai University, Taichung 40704, Taiwan
| | - Jyh-Cherng Ju
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan.,Translational Medicine Research Center, China Medical University Hospital, Taichung 40402, Taiwan.,Department of Animal Science, National Chung Hsing University, Taichung 40227, Taiwan.,Department of Bioinformatics and Medical Engineering, Asia University, Taichung 41354, Taiwan
| |
Collapse
|
12
|
Xu A, Wang Q, Lv X, Lin T. Progressive Study on the Non-thermal Effects of Magnetic Field Therapy in Oncology. Front Oncol 2021; 11:638146. [PMID: 33816280 PMCID: PMC8010190 DOI: 10.3389/fonc.2021.638146] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 02/08/2021] [Indexed: 12/16/2022] Open
Abstract
Cancer is one of the most common causes of death worldwide. Although the existing therapies have made great progress and significantly improved the prognosis of patients, it is undeniable that these treatment measures still cause some serious side effects. In this context, a new treatment method is needed to address these shortcomings. In recent years, the magnetic fields have been proposed as a novel treatment method with the advantages of less side effects, high efficiency, wide applications, and low costs without forming scars. Previous studies reported that static magnetic fields (SMFs) and low-frequency magnetic fields (LF-MFs, frequency below 300 Hz) exert anti-tumor function, independent of thermal effects. Magnetic fields (MFs) could inhibit cell growth and proliferation; induce cell cycle arrest, apoptosis, autophagy, and differentiation; regulate the immune system; and suppress angiogenesis and metastasis via various signaling pathways. In addition, they are effective in combination therapies: MFs not only promote the absorption of chemotherapy drugs by producing small holes on the surface of cell membrane but also enhance the inhibitory effects by regulating apoptosis and cell cycle related proteins. At present, MFs can be used as drug delivery systems to target magnetic nanoparticles (MNPs) to tumors. This review aims to summarize and analyze the current knowledge of the pre-clinical studies of anti-tumor effects and their underlying mechanisms and discuss the prospects of the application of MF therapy in cancer prevention and treatment.
Collapse
Affiliation(s)
- Aoshu Xu
- College of Instrumentation and Electrical Engineering, Jilin University, Changchun, China
- Key Laboratory of Geophysics Exploration Equipment, Ministry of Education of China, Changchun, China
| | - Qian Wang
- College of Instrumentation and Electrical Engineering, Jilin University, Changchun, China
- Key Laboratory of Geophysics Exploration Equipment, Ministry of Education of China, Changchun, China
| | - Xin Lv
- College of Instrumentation and Electrical Engineering, Jilin University, Changchun, China
- Key Laboratory of Geophysics Exploration Equipment, Ministry of Education of China, Changchun, China
| | - Tingting Lin
- College of Instrumentation and Electrical Engineering, Jilin University, Changchun, China
- Key Laboratory of Geophysics Exploration Equipment, Ministry of Education of China, Changchun, China
| |
Collapse
|
13
|
Exposure to 50 Hz Extremely-Low-Frequency Magnetic Fields Induces No DNA Damage in Cells by Gamma H2AX Technology. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8510315. [PMID: 33628815 PMCID: PMC7899753 DOI: 10.1155/2021/8510315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 01/15/2021] [Accepted: 02/06/2021] [Indexed: 12/26/2022]
Abstract
The current results for extremely-low-frequency magnetic fields (ELF-MF) on DNA damage are still debated. A sensitive indicator and systematic research are needed to assess the effects of ELF-MF. In this study, we used γH2AX as an early and sensitive molecular marker to evaluate the DNA damage effects of ELF-MF in vitro. Human amnion epithelial cells (FLs), human skin fibroblast cells (HSFs), and human umbilical vein endothelial cells (HUVECs) were exposed to 50 Hz ELF-MF at 0.4, 1, and 2 mT for 15 min, 1 h, and 24 h, respectively. After exposure, cells were subjected to γH2AX immunofluorescence and western blot. The results showed no significant difference in the average number of foci per cell, the percentage of γH2AX foci-positive cells, or the expression of γH2AX between the sham and 50 Hz ELF-MF exposure groups (P > 0.05). In conclusion, 50 Hz ELF-MF did not induce DNA damage in FLs, HSFs, or HUVECs, which was independent of the intensity or duration of the exposure.
Collapse
|
14
|
Kladko DV, Zakharzhevskii MA, Vinogradov VV. Magnetic Field-Mediated Control of Whole-Cell Biocatalysis. J Phys Chem Lett 2020; 11:8989-8996. [PMID: 33035064 DOI: 10.1021/acs.jpclett.0c02564] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
For decades, scientists have been looking for a way to control catalytic and biocatalytic processes through external physical stimuli. In this Letter, for the first time, we demonstrate the 150 ± 8% increase of the conversion of glucose to ethanol by Saccharomyces cerevisiae due to the application of a low-frequency magnetic field (100 Hz). This effect was achieved by the specially developed magnetic urchin-like particles, consisting of micrometer-sized core coated nanoneedles with high density, which could provide a biosafe permeabilization of cell membranes in a selected frequency and concentration range. We propose an acceleration mechanism based on magnetic field-induced cell membrane permeabilization. The ability to control cell metabolism without affecting their viability is a promising way for industrial biosynthesis to obtain a beneficial product with genetically engineered cells and subsequent improvement of biotechnological processes.
Collapse
Affiliation(s)
- Daniil V Kladko
- International Institute "Solution Chemistry of Advanced Materials and Technologies", ITMO University, 197101 Saint-Petersburg, Russia
| | - Maxim A Zakharzhevskii
- International Institute "Solution Chemistry of Advanced Materials and Technologies", ITMO University, 197101 Saint-Petersburg, Russia
| | - Vladimir V Vinogradov
- International Institute "Solution Chemistry of Advanced Materials and Technologies", ITMO University, 197101 Saint-Petersburg, Russia
| |
Collapse
|
15
|
Possible Physical Basis of Mirror Symmetry Effect in Racemic Mixtures of Enantiomers: From Wallach’s Rule, Nonlinear Effects, B–Z DNA Transition, and Similar Phenomena to Mirror Symmetry Effects of Chiral Objects. Symmetry (Basel) 2020. [DOI: 10.3390/sym12060889] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Effects associated with mirror symmetry may be underlying for a number of phenomena in chemistry and physics. Increase in the density and melting point of the 50%L/50%D collection of enantiomers of a different sign (Wallach’s rule) is probably based on a physical effect of the mirror image. The catalytic activity of metal complexes with racemic ligands differs from the corresponding complexes with enantiomers as well (nonlinear effect). A similar difference in the physical properties of enantiomers and racemate underlies L/D inversion points of linear helical macromolecules, helical nanocrystals of magnetite and boron nitride etc., B–Z DNA transition and phenomenon of mirror neurons may have a similar nature. Here we propose an explanation of the Wallach effect along with some similar chemical, physical, and biological phenomena related to mirror image.
Collapse
|
16
|
Mercado-Sáenz S, Burgos-Molina AM, López-Díaz B, Sendra-Portero F, Ruiz-Gómez MJ. Effect of sinusoidal and pulsed magnetic field exposure on the chronological aging and cellular stability of S. cerevisiae. Int J Radiat Biol 2019; 95:1588-1596. [DOI: 10.1080/09553002.2019.1643050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Silvia Mercado-Sáenz
- Facultad de Medicina, Departamento de Radiología y Medicina Física, Universidad de Málaga, Málaga, Spain
| | - Antonio M. Burgos-Molina
- Facultad de Medicina, Departamento de Radiología y Medicina Física, Universidad de Málaga, Málaga, Spain
| | - Beatriz López-Díaz
- Facultad de Medicina, Departamento de Radiología y Medicina Física, Universidad de Málaga, Málaga, Spain
| | - Francisco Sendra-Portero
- Facultad de Medicina, Departamento de Radiología y Medicina Física, Universidad de Málaga, Málaga, Spain
| | - Miguel J. Ruiz-Gómez
- Facultad de Medicina, Departamento de Radiología y Medicina Física, Universidad de Málaga, Málaga, Spain
| |
Collapse
|
17
|
Salinas-Asensio MM, Ríos-Arrabal S, Artacho-Cordón F, Olivares-Urbano MA, Calvente I, León J, Núñez MI. Exploring the radiosensitizing potential of magnetotherapy: a pilot study in breast cancer cells. Int J Radiat Biol 2019; 95:1337-1345. [PMID: 31140889 DOI: 10.1080/09553002.2019.1619951] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Aim: To explore the influence of electromagnetic fields (EMFs) on the cell cycle progression of MDA-MB-231 and MCF-7 breast cancer cell lines and to evaluate the radiosensitizing effect of magnetotherapy during therapeutic co-exposure to EMFs and radiotherapy. Material and methods: Cells were exposed to EMFs (25, 50 and 100 Hz; 8 and 10 mT). In the co-treatment, cells were first exposed to EMFs (50 Hz/10 mT) for 30 min and then to ionizing radiation (IR) (2 Gy) 4 h later. Cell cycle progression and free radical production were evaluated by flow cytometry, while radiosensitivity was explored by colony formation assay. Results: Generalized G1-phase arrest was found in both cell lines several hours after EMF exposure. Interestingly, a marked G1-phase delay was observed at 4 h after exposure to 50 Hz/10 mT EMFs. No cell cycle perturbation was observed after repeated exposure to EMFs. IR-derived ROS production was enhanced in EMF-exposed MCF-7 cells at 24 h post-exposure. EMF-exposed cells were more radiosensitive in comparison to sham-exposed cells. Conclusions: These results highlight the potential benefits of concomitant treatment with magnetotherapy before radiotherapy sessions to enhance the effectiveness of breast cancer therapy. Further studies are warranted to identify the subset(s) of patients who would benefit from this multimodal treatment.
Collapse
Affiliation(s)
| | - S Ríos-Arrabal
- Radiology and Physical Medicine Department, University of Granada , Granada , Spain.,Biosanitary Research Institute of Granada ibs.GRANADA , Granada , Spain
| | - F Artacho-Cordón
- Radiology and Physical Medicine Department, University of Granada , Granada , Spain.,Biosanitary Research Institute of Granada ibs.GRANADA , Granada , Spain
| | - M A Olivares-Urbano
- Radiology and Physical Medicine Department, University of Granada , Granada , Spain.,Biosanitary Research Institute of Granada ibs.GRANADA , Granada , Spain
| | - I Calvente
- Radiology and Physical Medicine Department, University of Granada , Granada , Spain.,Biosanitary Research Institute of Granada ibs.GRANADA , Granada , Spain
| | - J León
- Biosanitary Research Institute of Granada ibs.GRANADA , Granada , Spain.,Digestive Unit, San Cecilio University Hospital , Granada , Spain.,CIBER of Hepatic and Digestive Diseases (CIBEREHD) , Madrid , Spain
| | - M I Núñez
- Radiology and Physical Medicine Department, University of Granada , Granada , Spain.,Biosanitary Research Institute of Granada ibs.GRANADA , Granada , Spain.,CIBER of Epidemiology and Public Health (CIBERESP) , Madrid , Spain.,Biopathology and Regenerative Medicine Institute (IBIMER) , University of Granada, Granada , Spain
| |
Collapse
|
18
|
Сhiral and Racemic Fields Concept for Understanding of the Homochirality Origin, Asymmetric Catalysis, Chiral Superstructure Formation from Achiral Molecules, and B-Z DNA Conformational Transition. Symmetry (Basel) 2019. [DOI: 10.3390/sym11050649] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The four most important and well-studied phenomena of mirror symmetry breaking of molecules were analyzed for the first time in terms of available common features and regularities. Mirror symmetry breaking of the primary origin of biological homochirality requires the involvement of an external chiral inductor (environmental chirality). All reviewed mirror symmetry breaking phenomena were considered from that standpoint. A concept of chiral and racemic fields was highly helpful in this analysis. A chiral gravitational field in combination with a static magnetic field (Earth’s environmental conditions) may be regarded as a hypothetical long-term chiral inductor. Experimental evidences suggest a possible effect of the environmental chiral inductor as a chiral trigger on the mirror symmetry breaking effect. Also, this effect explains a conformational transition of the right-handed double DNA helix to the left-handed double DNA helix (B-Z DNA transition) as possible DNA damage.
Collapse
|
19
|
Song K, Im SH, Yoon YJ, Kim HM, Lee HJ, Park GS. A 60 Hz uniform electromagnetic field promotes human cell proliferation by decreasing intracellular reactive oxygen species levels. PLoS One 2018; 13:e0199753. [PMID: 30011321 PMCID: PMC6047776 DOI: 10.1371/journal.pone.0199753] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 06/13/2018] [Indexed: 12/27/2022] Open
Abstract
Previously, we showed that exposure of human normal and cancer cells to a 6 mT, 60 Hz gradient electromagnetic field (EMF) induced genotoxicity. Here, we investigated the cellular effects of a uniform EMF. Single or repetitive exposure to a 6 mT, 60 Hz uniform EMF neither induced DNA damage nor affected cell viability in HeLa and primary IMR-90 fibroblasts. However, continuous exposure of these cells to an EMF promoted cell proliferation. Cell viability increased 24.4% for HeLa and 15.2% for IMR-90 cells after a total 168 h exposure by subculture. This increase in cell proliferation was directly correlated with EMF strength and exposure time. When further incubated without EMF, cell proliferation slowed down to that of unexposed cells, suggesting that the proliferative effect is reversible. The expression of cell cycle markers increased in cells continuously exposed to an EMF as expected, but the distribution of cells in each stage of the cell cycle did not change. Notably, intracellular reactive oxygen species levels decreased and phosphorylation of Akt and Erk1/2 increased in cells exposed to an EMF, suggesting that reduced levels of intracellular reactive oxygen species play a role in increased proliferation. These results demonstrate that EMF uniformity at an extremely low frequency (ELF) is an important factor in the cellular effects of ELF-EMF.
Collapse
Affiliation(s)
- Kiwon Song
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul, Korea
- * E-mail: (KS); (GSP)
| | - Sang Hyeon Im
- Department of Electrical Engineering, Pusan National University, Pusan, Korea
| | - Yeo Jun Yoon
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul, Korea
| | - Hui Min Kim
- Department of Electrical Engineering, Pusan National University, Pusan, Korea
| | - Hae June Lee
- Department of Electrical Engineering, Pusan National University, Pusan, Korea
| | - Gwan Soo Park
- Department of Electrical Engineering, Pusan National University, Pusan, Korea
- * E-mail: (KS); (GSP)
| |
Collapse
|
20
|
Comparative study of the efficacy of pulsed electromagnetic field and low level laser therapy on mitogen-activated protein kinases. Biochem Biophys Rep 2017; 9:316-321. [PMID: 28956019 PMCID: PMC5614620 DOI: 10.1016/j.bbrep.2017.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/22/2017] [Accepted: 01/24/2017] [Indexed: 12/11/2022] Open
Abstract
Mitogen-Activated Protein Kinases (MAPKs) consist of three major signaling members: extracellular signal-regulated kinase (ERK), p38 and C-JUN N-terminal kinase (JNK). We investigated physiological effects of Pulsed Electromagnetic Field Therapy (PEMFT) and Low Level Laser Therapy (LLLT) on human body, adopting the expression level of mitogen-activated protein kinases as an indicator via assessment of the activation levels of three major families of MAPKS, ERK, p38 and JNK in the peripheral lymphocytes of patients before and after the therapies. Assessment for the expression levels of MAPKs families' were done, in the peripheral lymphocytes of patients recently have appendectomy, using flow cytometric analysis of multiple signaling pathways, pre and post LLLT and PEMFT application (twice daily for 6 successive days) on the appendectomy wound. There were non-significant differences in the expression levels of MAPKs families' pre- therapies application. But there were significant increase in the ERK expression levels post application of LLLT compared to its pre application (p<0.01). Also, there was significant increase in the ERK, p38 and C-Jun N terminal expression level values post application of PEMFT compared to its pre application expression levels (p<0.01 for each). The present study demonstrates that PEMFT has a powerful healing effect more than LLLT as it increase the activation of ERK, P38 and C-Jun-N Terminal while LLLT only increase the activation of ERK. LLLT has more potent pain decreasing effect than PEMFT as it does not activate P38 pathway like PEMFT. PEMFT stimulates all pathways of MAPKs including ERK, P38 and C-Jun-terminal. LLLT stimulates only the ERK pathway in MAPKS activation pathways. PEMFT has a powerful healing effect more than LLLT as it increase the activation of ERK, P38 and C-Jun-N Terminal. LLLT has more potent pain decreasing effect than PEMFT as it does not activate p38 pathway. PEMFT should not be used as pain killer modality in acute pain but it's very useful to be used in chronic pain management with hypothalamic –ve Ingram due to its stimulatory effect on P38.
Collapse
|
21
|
Restrepo AF, Tobar VE, Camargo RJ, Franco E, Pinedo CR, Gutierrez O. Effects of extremely low frequency electromagnetic fields on in-vitro cellular cultures HeLa and CHO. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2016:4193-4196. [PMID: 28269207 DOI: 10.1109/embc.2016.7591651] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This paper presents the cellular proliferation effects of the exposure to extremely low frequency electromagnetic fields (ELF-EMF) on in-vitro cellular cultures HeLa and CHO. Through the magnetic stimulation system (MSS) the cells were exposed to magnetic fields with sinusoidal waveform at 50 Hz; initially for 40 minutes at intensities of 0.4 mT, 1.4 mT, 2.13 mT, 2.49 mT and 2.53 mT in parallel and perpendicular directions to the culture plates. Subsequently, the repetitive electromagnetic field (rEMF) was applied to 2.49 mT in parallel direction (for 40 minutes every twelve hours during 4 days) with which the highest cellular proliferation rate was obtained at 66.6 %. The results show a greater effect on proliferation in radiated cell lines, particularly in the application of rEMF a greater effect of ELF-EMF was observed in the proliferation rate of HeLa cells than in CHO cells, in contrast to the respective control cells. These results supported by other studies serve as a reference in the search for alternatives for the treatment of cervical cancer and the maintenance and preservation of cell lines.
Collapse
|
22
|
Pulsed or continuous electromagnetic field induce p53/p21-mediated apoptotic signaling pathway in mouse spermatogenic cells in vitro and thus may affect male fertility. Toxicology 2017; 382:84-92. [PMID: 28323003 DOI: 10.1016/j.tox.2017.03.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/24/2017] [Accepted: 03/14/2017] [Indexed: 11/22/2022]
Abstract
The impact of electromagnetic field (EMF) on the human health and surrounding environment is a common topic investigated over the years. A significant increase in the electromagnetic field concentration arouses public concern about the long-term effects of EMF on living organisms associated with many aspects. In the present study, we investigated the effects of pulsed and continuous electromagnetic field (PEMF/CEMF) on mouse spermatogenic cell lines (GC-1 spg and GC-2 spd) in terms of cellular and biochemical features in vitro. We evaluated the effect of EMF on mitochondrial metabolism, morphology, proliferation rate, viability, cell cycle progression, oxidative stress balance and regulatory proteins. Our results strongly suggest that EMF induces oxidative and nitrosative stress-mediated DNA damage, resulting in p53/p21-dependent cell cycle arrest and apoptosis. Therefore, spermatogenic cells due to the lack of antioxidant enzymes undergo oxidative and nitrosative stress-mediated cytotoxic and genotoxic events, which contribute to infertility by reduction in healthy sperm cells pool. In conclusion, electromagnetic field present in surrounding environment impairs male fertility by inducing p53/p21-mediated cell cycle arrest and apoptosis.
Collapse
|
23
|
Storch K, Dickreuter E, Artati A, Adamski J, Cordes N. BEMER Electromagnetic Field Therapy Reduces Cancer Cell Radioresistance by Enhanced ROS Formation and Induced DNA Damage. PLoS One 2016; 11:e0167931. [PMID: 27959944 PMCID: PMC5154536 DOI: 10.1371/journal.pone.0167931] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/22/2016] [Indexed: 11/19/2022] Open
Abstract
Each year more than 450,000 Germans are expected to be diagnosed with cancer subsequently receiving standard multimodal therapies including surgery, chemotherapy and radiotherapy. On top, molecular-targeted agents are increasingly administered. Owing to intrinsic and acquired resistance to these therapeutic approaches, both the better molecular understanding of tumor biology and the consideration of alternative and complementary therapeutic support are warranted and open up broader and novel possibilities for therapy personalization. Particularly the latter is underpinned by the increasing utilization of non-invasive complementary and alternative medicine by the population. One investigated approach is the application of low-dose electromagnetic fields (EMF) to modulate cellular processes. A particular system is the BEMER therapy as a Physical Vascular Therapy for which a normalization of the microcirculation has been demonstrated by a low-frequency, pulsed EMF pattern. Open remains whether this EMF pattern impacts on cancer cell survival upon treatment with radiotherapy, chemotherapy and the molecular-targeted agent Cetuximab inhibiting the epidermal growth factor receptor. Using more physiological, three-dimensional, matrix-based cell culture models and cancer cell lines originating from lung, head and neck, colorectal and pancreas, we show significant changes in distinct intermediates of the glycolysis and tricarboxylic acid cycle pathways and enhanced cancer cell radiosensitization associated with increased DNA double strand break numbers and higher levels of reactive oxygen species upon BEMER treatment relative to controls. Intriguingly, exposure of cells to the BEMER EMF pattern failed to result in sensitization to chemotherapy and Cetuximab. Further studies are necessary to better understand the mechanisms underlying the cellular alterations induced by the BEMER EMF pattern and to clarify the application areas for human disease.
Collapse
Affiliation(s)
- Katja Storch
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology, Dresden, Germany
| | - Ellen Dickreuter
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology, Dresden, Germany
| | - Anna Artati
- Institute of Experimental Genetics, Genome Analysis Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Jerzy Adamski
- Institute of Experimental Genetics, Genome Analysis Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Lehrstuhl für Experimentelle Genetik, Technische Universität München, Freising-Weihenstephan, Germany
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
| | - Nils Cordes
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology, Dresden, Germany
- Department of Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- * E-mail:
| |
Collapse
|
24
|
Goldschmidt Lins P, Aparecida Silva A, Marina Piccoli Pugine S, Ivan Cespedes Arce A, José Xavier Costa E, Pires De Melo M. Effect of Exposure to Pulsed Magnetic Field on Microbiological Quality, Color and Oxidative Stability of Fresh Ground Beef. J FOOD PROCESS ENG 2016. [DOI: 10.1111/jfpe.12405] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Patricia Goldschmidt Lins
- Department of Basic Sciences (ZAB); Faculty of Animal Science and Food Engineering (FZEA); University of São Paulo (USP); Av. Duque de Caxias Norte 225, Campus Fernando Costa USP, CEP 13635-900 Pirassununga, São Paulo Brazil
| | - Alessandra Aparecida Silva
- Department of Basic Sciences (ZAB); Faculty of Animal Science and Food Engineering (FZEA); University of São Paulo (USP); Av. Duque de Caxias Norte 225, Campus Fernando Costa USP, CEP 13635-900 Pirassununga, São Paulo Brazil
| | - Silvana Marina Piccoli Pugine
- Department of Basic Sciences (ZAB); Faculty of Animal Science and Food Engineering (FZEA); University of São Paulo (USP); Av. Duque de Caxias Norte 225, Campus Fernando Costa USP, CEP 13635-900 Pirassununga, São Paulo Brazil
| | - Aldo Ivan Cespedes Arce
- Department of Basic Sciences (ZAB); Faculty of Animal Science and Food Engineering (FZEA); University of São Paulo (USP); Av. Duque de Caxias Norte 225, Campus Fernando Costa USP, CEP 13635-900 Pirassununga, São Paulo Brazil
| | - Ernane José Xavier Costa
- Department of Basic Sciences (ZAB); Faculty of Animal Science and Food Engineering (FZEA); University of São Paulo (USP); Av. Duque de Caxias Norte 225, Campus Fernando Costa USP, CEP 13635-900 Pirassununga, São Paulo Brazil
| | - Mariza Pires De Melo
- Department of Basic Sciences (ZAB); Faculty of Animal Science and Food Engineering (FZEA); University of São Paulo (USP); Av. Duque de Caxias Norte 225, Campus Fernando Costa USP, CEP 13635-900 Pirassununga, São Paulo Brazil
| |
Collapse
|
25
|
Shen Y, Xia R, Jiang H, Chen Y, Hong L, Yu Y, Xu Z, Zeng Q. Exposure to 50Hz-sinusoidal electromagnetic field induces DNA damage-independent autophagy. Int J Biochem Cell Biol 2016; 77:72-79. [PMID: 27177844 DOI: 10.1016/j.biocel.2016.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 04/21/2016] [Accepted: 05/08/2016] [Indexed: 01/22/2023]
Abstract
As electromagnetic field (EMF) is commonly encountered within our daily lives, the biological effects of EMF are of great concern. Autophagy is a key process for maintaining cellular homeostasis, and it can also reveal cellular responses to environmental stimuli. In this study, we aim to investigate the biological effects of a 50Hz-sinusoidal electromagnetic field on autophagy and we identified its mechanism of action in Chinese Hamster Lung (CHL) cells. CHL cells were exposed to a 50Hz sinusoidal EMF at 0.4mT for 30min or 24h. In this study, we found that a 0.4mT EMF resulted in: (i) an increase in LC3-II expression and increased autophagosome formation; (ii) no significant difference in the incidence of γH2AX foci between the sham and exposure groups; (iii) reorganized actin filaments and increased pseudopodial extensions without promoting cell migration; and (iv) enhanced cell apoptosis when autophagy was blocked by Bafilomycin A1. These results implied that DNA damage was not directly involved in the autophagy induced by a 0.4mT 50Hz EMF. In addition, an EMF induced autophagy balanced the cellular homeostasis to protect the cells from severe adverse biological consequences.
Collapse
Affiliation(s)
- Yunyun Shen
- Bioelectromagnetics Laboratory, Department of Occupational and Environmental Health, School of Public Health, School of Medicine, Zhejiang University, Hangzhou 310058, PR China
| | - Ruohong Xia
- Physics Department, East China Normal University, Shanghai 200241, PR China
| | - Hengjun Jiang
- Bioelectromagnetics Laboratory, Department of Occupational and Environmental Health, School of Public Health, School of Medicine, Zhejiang University, Hangzhou 310058, PR China
| | - Yanfeng Chen
- Bioelectromagnetics Laboratory, Department of Occupational and Environmental Health, School of Public Health, School of Medicine, Zhejiang University, Hangzhou 310058, PR China
| | - Ling Hong
- Bioelectromagnetics Laboratory, Department of Occupational and Environmental Health, School of Public Health, School of Medicine, Zhejiang University, Hangzhou 310058, PR China
| | - Yunxian Yu
- Department of Epidemiology and Health Statistics, School of Public Health, School of Medicine, Zhejiang University, Hangzhou 310058, PR China
| | - Zhengping Xu
- Bioelectromagnetics Laboratory, Department of Occupational and Environmental Health, School of Public Health, School of Medicine, Zhejiang University, Hangzhou 310058, PR China.
| | - Qunli Zeng
- Bioelectromagnetics Laboratory, Department of Occupational and Environmental Health, School of Public Health, School of Medicine, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
26
|
Martínez MA, Úbeda A, Moreno J, Trillo MÁ. Power Frequency Magnetic Fields Affect the p38 MAPK-Mediated Regulation of NB69 Cell Proliferation Implication of Free Radicals. Int J Mol Sci 2016; 17:510. [PMID: 27058530 PMCID: PMC4848966 DOI: 10.3390/ijms17040510] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/21/2016] [Accepted: 03/31/2016] [Indexed: 12/13/2022] Open
Abstract
The proliferative response of the neuroblastoma line NB69 to a 100 µT, 50 Hz magnetic field (MF) has been shown mediated by activation of the MAPK-ERK1/2 pathway. This work investigates the MF effect on the cell cycle of NB69, the participation of p38 and c-Jun N-terminal (JNK) kinases in the field-induced proliferative response and the potential involvement of reactive oxygen species (ROS) in the activation of the MAPK-ERK1/2 and -p38 signaling pathways. NB69 cultures were exposed to the 100 µT MF, either intermittently for 24, 42 or 63 h, or continuously for periods of 15 to 120 min, in the presence or absence of p38 or JNK inhibitors: SB203580 and SP600125, respectively. Antioxidant N-acetylcysteine (NAC) was used as ROS scavenger. Field exposure induced transient activation of p38, JNK and ERK1/2. The MF proliferative effect, which was mediated by changes in the cell cycle, was blocked by the p38 inhibitor, but not by the JNK inhibitor. NAC blocked the field effects on cell proliferation and p38 activation, but not those on ERK1/2 activation. The MF-induced proliferative effects are exerted through sequential upregulation of MAPK-p38 and -ERK1/2 activation, and they are likely mediated by a ROS-dependent activation of p38.
Collapse
Affiliation(s)
- María Antonia Martínez
- Servicio de Investigación-BEM, University Hospital Ramón y Cajal-IRYCIS, 28034 Madrid, Spain.
| | - Alejandro Úbeda
- Servicio de Investigación-BEM, University Hospital Ramón y Cajal-IRYCIS, 28034 Madrid, Spain.
| | - Jorge Moreno
- Departamento de Ingeniería Eléctrica, Electrónica y de Automatización y Física Aplicada, Technical School of Engineering and Industrial Design (ETSID), UPM, 28012 Madrid, Spain.
| | - María Ángeles Trillo
- Servicio de Investigación-BEM, University Hospital Ramón y Cajal-IRYCIS, 28034 Madrid, Spain.
| |
Collapse
|
27
|
Zafari J, Javani Jouni F, Abdolmaleki P, Jalali A, Khodayar MJ. Investigation on the effect of static magnetic field up to 30 mT on viability percent, proliferation rate and IC50of HeLa and fibroblast cells. Electromagn Biol Med 2015; 34:216-20. [DOI: 10.3109/15368378.2015.1076452] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
28
|
Duan W, Liu C, Zhang L, He M, Xu S, Chen C, Pi H, Gao P, Zhang Y, Zhong M, Yu Z, Zhou Z. Comparison of the genotoxic effects induced by 50 Hz extremely low-frequency electromagnetic fields and 1800 MHz radiofrequency electromagnetic fields in GC-2 cells. Radiat Res 2015; 183:305-14. [PMID: 25688995 DOI: 10.1667/rr13851.1] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Extremely low-frequency electromagnetic fields (ELF-EMF) and radiofrequency electromagnetic fields (RF-EMF) have been considered to be possibly carcinogenic to humans. However, their genotoxic effects remain controversial. To make experiments controllable and results comparable, we standardized exposure conditions and explored the potential genotoxicity of 50 Hz ELF-EMF and 1800 MHz RF-EMF. A mouse spermatocyte-derived GC-2 cell line was intermittently (5 min on and 10 min off) exposed to 50 Hz ELF-EMF at an intensity of 1, 2 or 3 mT or to RF-EMF in GSM-Talk mode at the specific absorption rates (SAR) of 1, 2 or 4 W/kg. After exposure for 24 h, we found that neither ELF-EMF nor RF-EMF affected cell viability using Cell Counting Kit-8. Through the use of an alkaline comet assay and immunofluorescence against γ-H2AX foci, we found that ELF-EMF exposure resulted in a significant increase of DNA strand breaks at 3 mT, whereas RF-EMF exposure had insufficient energy to induce such effects. Using a formamidopyrimidine DNA glycosylase (FPG)-modified alkaline comet assay, we observed that RF-EMF exposure significantly induced oxidative DNA base damage at a SAR value of 4 W/kg, whereas ELF-EMF exposure did not. Our results suggest that both ELF-EMF and RF-EMF under the same experimental conditions may produce genotoxicity at relative high intensities, but they create different patterns of DNA damage. Therefore, the potential mechanisms underlying the genotoxicity of different frequency electromagnetic fields may be different.
Collapse
Affiliation(s)
- Weixia Duan
- Department of Occupational Health, Third Military Medical University, Chongqing 400038, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Power frequency magnetic fields induced reactive oxygen species-related autophagy in mouse embryonic fibroblasts. Int J Biochem Cell Biol 2014; 57:108-14. [PMID: 25450462 DOI: 10.1016/j.biocel.2014.10.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 09/30/2014] [Accepted: 10/08/2014] [Indexed: 11/23/2022]
Abstract
Power frequency magnetic fields (PFMF) have been reported to affect several cellular functions, such as cell proliferation and apoptosis. In this study, we investigated the effects of PFMF on mouse embryonic fibroblasts (MEF) autophagy. After cells were exposed to 50 Hz PFMF at 2 mT for 0.5 h, 2 h, 6 h, 12 h, and 24 h, we observed a significant increase in autophagic markers at 6 h, including (i) higher microtubule-associated protein 1 light chain 3-II (LC3-II), (ii) the increased formation of GFP-LC3 puncta, and (iii) increased numbers of autophagic vacuoles under transmission electron microscope. Moreover, we provide convincing evidence using chloroquine (CQ) that the increase of autophagic markers was the result of enhanced autophagic flux and not the suppression of lysosomal function. In a search for molecular mechanisms underlying PFMF-mediated autophagy, we observe that the autophagic process involved reactive oxygen species (ROS) and was independent of the mammalian target of rapamycin (mTOR) signaling pathway.
Collapse
|
30
|
Shi D, Zhu C, Lu R, Mao S, Qi Y. Intermediate frequency magnetic field generated by a wireless power transmission device does not cause genotoxicity in vitro. Bioelectromagnetics 2014; 35:512-8. [PMID: 25196478 DOI: 10.1002/bem.21872] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 07/17/2014] [Indexed: 01/23/2023]
Abstract
The aim of this study was to evaluate effects of intermediate frequency magnetic fields (IFMF) generated by a wireless power transmission (WPT) based on magnetic resonance from the perspective of cellular genotoxicity on cultured human lens epithelial cells (HLECs). We evaluated the effects of exposure to 90 kHz magnetic fields at 93.36 µT on cellular genotoxicity in vitro for 2 and 4 h. The magnetic flux density is approximately 3.5 times higher than the reference level recommended by the International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines. For assessment of genotoxicity, we studied cellular proliferation, apoptosis and DNA damage by Cell Counting Kit-8 (CCK-8) assay, flow cytometry analysis, alkaline comet assay and phosphorylated histone H2AX (γH2AX) foci formation test. We did not detect any effect of a 90 kHz IFMF generated by WPT based on magnetic resonance on cell proliferation, apoptosis, comet assay, and γH2AX foci formation test. Our results indicated that exposure to 90 kHz IFMF generated by WPT based on magnetic resonance at 93.36 µT for 2 and 4 h does not cause detectable cellular genotoxicity.
Collapse
Affiliation(s)
- Dejing Shi
- Department of Ophthalmology, Forth Affiliated Hospital of Harbin Medical University, Harbin, P.R. China
| | | | | | | | | |
Collapse
|
31
|
Brisdelli F, Bennato F, Bozzi A, Cinque B, Mancini F, Iorio R. ELF-MF attenuates quercetin-induced apoptosis in K562 cells through modulating the expression of Bcl-2 family proteins. Mol Cell Biochem 2014; 397:33-43. [DOI: 10.1007/s11010-014-2169-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 07/24/2014] [Indexed: 11/24/2022]
|
32
|
Non-thermal atmospheric pressure plasma preferentially induces apoptosis in p53-mutated cancer cells by activating ROS stress-response pathways. PLoS One 2014; 9:e91947. [PMID: 24759730 PMCID: PMC3997341 DOI: 10.1371/journal.pone.0091947] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 02/18/2014] [Indexed: 01/26/2023] Open
Abstract
Non-thermal atmospheric pressure plasma (NTAPP) is an ionized gas at room temperature and has potential as a new apoptosis-promoting cancer therapy that acts by generating reactive oxygen species (ROS). However, it is imperative to determine its selectivity and standardize the components and composition of NTAPP. Here, we designed an NTAPP-generating apparatus combined with a He gas feeding system and demonstrated its high selectivity toward p53-mutated cancer cells. We first determined the proper conditions for NTAPP exposure to selectively induce apoptosis in cancer cells. The apoptotic effect of NTAPP was greater for p53-mutated cancer cells; artificial p53 expression in p53-negative HT29 cells decreased the pro-apoptotic effect of NTAPP. We also examined extra- and intracellular ROS levels in NTAPP-treated cells to deduce the mechanism of NTAPP action. While NTAPP-mediated increases in extracellular nitric oxide (NO) did not affect cell viability, intracellular ROS increased under NTAPP exposure and induced apoptotic cell death. This effect was dose-dependently reduced following treatment with ROS scavengers. NTAPP induced apoptosis even in doxorubicin-resistant cancer cell lines, demonstrating the feasibility of NTAPP as a potent cancer therapy. Collectively, these results strongly support the potential of NTAPP as a selective anticancer treatment, especially for p53-mutated cancer cells.
Collapse
|
33
|
Nie Y, Du L, Mou Y, Xu Z, Weng L, Du Y, Zhu Y, Hou Y, Wang T. Effect of low frequency magnetic fields on melanoma: tumor inhibition and immune modulation. BMC Cancer 2013; 13:582. [PMID: 24314291 PMCID: PMC4029221 DOI: 10.1186/1471-2407-13-582] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 12/02/2013] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND We previously found that the low frequency magnetic fields (LF-MF) inhibited gastric and lung cancer cell growth. We suppose that exposure to LF-MF may modulate immune function so as to inhibit tumor. We here investigated whether LF-MF can inhibit the proliferation and metastasis of melanoma and influence immune function. METHODS The effect of MF on the proliferation, cell cycle and ultrastracture of B16-F10 in vitro was detected by cell counting Kit-8 assay, flow cytometry, and transmission electron microscopy. Lung metastasis mice were prepared by injection of 2 × 105 B16-F10 melanoma cells into the tail vein in C57BL/6 mice. The mice were then exposed to an LF-MF (0.4 T, 7.5 Hz) for 43 days. Survival rate, tumor markers and the innate and adaptive immune parameters were measured. RESULTS The growth of B16-F10 cells was inhibited after exposure to the LF-MF. The inhibition was related to induction of cell cycle arrest and decomposition of chromatins. Moreover, the LF-MF prolonged the mouse survival rate and inhibited the proliferation of B16-F10 in melanoma metastasis mice model. Furthermore, the LF-MF modulated the immune response via regulation of immune cells and cytokine production. In addition, the number of Treg cells was decreased in mice with the LF-MF exposure, while the numbers of T cells as well as dendritic cells were significantly increased. CONCLUSION LF-MF inhibited the growth and metastasis of melanoma cancer cells and improved immune function of tumor-bearing mice. This suggests that the inhibition may be attributed to modulation of LF-MF on immune function and LF-MF may be a potential therapy for treatment of melanoma.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yayi Hou
- Immunology and Reproduction Biology Lab, Medical School & State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, 210093 Nanjing, China.
| | | |
Collapse
|
34
|
Mahna A, Firoozabadi SMP, Shankayi Z. The Effect of ELF Magnetic Field on Tumor Growth after Electrochemotherapy. J Membr Biol 2013; 247:9-15. [DOI: 10.1007/s00232-013-9605-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 10/14/2013] [Indexed: 12/11/2022]
|
35
|
Could radiotherapy effectiveness be enhanced by electromagnetic field treatment? Int J Mol Sci 2013; 14:14974-95. [PMID: 23867611 PMCID: PMC3742283 DOI: 10.3390/ijms140714974] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 06/25/2013] [Accepted: 07/01/2013] [Indexed: 12/19/2022] Open
Abstract
One of the main goals in radiobiology research is to enhance radiotherapy effectiveness without provoking any increase in toxicity. In this context, it has been proposed that electromagnetic fields (EMFs), known to be modulators of proliferation rate, enhancers of apoptosis and inductors of genotoxicity, might control tumor recruitment and, thus, provide therapeutic benefits. Scientific evidence shows that the effects of ionizing radiation on cellular compartments and functions are strengthened by EMF. Although little is known about the potential role of EMFs in radiotherapy (RT), the radiosensitizing effect of EMFs described in the literature could support their use to improve radiation effectiveness. Thus, we hypothesized that EMF exposure might enhance the ionizing radiation effect on tumor cells, improving the effects of RT. The aim of this paper is to review reports of the effects of EMFs in biological systems and their potential therapeutic benefits in radiotherapy.
Collapse
|
36
|
López-Díaz B, Mercado-Sáenz S, Martínez-Morillo M, Sendra-Portero F, Ruiz-Gómez MJ. Long-term exposure to a pulsed magnetic field (1.5 mT, 25 Hz) increases genomic DNA spontaneous degradation. Electromagn Biol Med 2013; 33:228-35. [DOI: 10.3109/15368378.2013.802245] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Beatriz López-Díaz
- Laboratory of Radiobiology, Department of Radiology and Physical Medicine, Faculty of Medicine, University of Malaga
MalagaSpain
| | - Silvia Mercado-Sáenz
- Laboratory of Radiobiology, Department of Radiology and Physical Medicine, Faculty of Medicine, University of Malaga
MalagaSpain
| | - Manuel Martínez-Morillo
- Laboratory of Radiobiology, Department of Radiology and Physical Medicine, Faculty of Medicine, University of Malaga
MalagaSpain
| | - Francisco Sendra-Portero
- Laboratory of Radiobiology, Department of Radiology and Physical Medicine, Faculty of Medicine, University of Malaga
MalagaSpain
| | - Miguel J. Ruiz-Gómez
- Laboratory of Radiobiology, Department of Radiology and Physical Medicine, Faculty of Medicine, University of Malaga
MalagaSpain
| |
Collapse
|
37
|
Ahmadianpour MR, Abdolmaleki P, Mowla SJ, Hosseinkhani S. Static magnetic field of 6 mT induces apoptosis and alters cell cycle in p53 mutant Jurkat cells. Electromagn Biol Med 2013; 32:9-19. [DOI: 10.3109/15368378.2012.692748] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
38
|
Del Re B, Marcantonio P, Gavoçi E, Bersani F, Giorgi G. Assessing LINE-1 retrotransposition activity in neuroblastoma cells exposed to extremely low-frequency pulsed magnetic fields. Mutat Res 2012; 749:76-81. [PMID: 22981769 DOI: 10.1016/j.mrgentox.2012.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 06/05/2012] [Accepted: 07/25/2012] [Indexed: 06/01/2023]
Abstract
Mobile genetic elements represent an important source of mutation and genomic instability, and their activity can be influenced by several chemical and physical agents. In this research we address the question whether exposure to extremely low-frequency pulsed magnetic fields (EMF-PMF) could affect the mobility of the human LINE-1(RP) retrotransposon. To this purpose, an in vitro retrotransposition assay was used on human neuroblastoma BE(2) cells exposed for 48h to 1mT, 50Hz PMF, or sham-exposed. Moreover, since it is well known that retrotransposition causes DNA double-strand breaks (DSB), an estimation of γ-H2AX foci, which is a marker of DNA DSB, was carried out on PMF- and sham-exposed samples. The results show that PMF-exposed cells had a lower number of both retrotransposition events and DNA DSB compared with sham-exposed samples. These results suggest that exposure to PMF can interfere with retrotransposition activity by inducing a decrease of retrotransposition events.
Collapse
Affiliation(s)
- Brunella Del Re
- Department of Experimental Evolutionary Biology, University of Bologna, Bologna, Italy.
| | | | | | | | | |
Collapse
|
39
|
Park WH, Chae YJ, Soh KS, Lee BC, Pyo MY. Inhibition of pentylenetetrazole-induced seizure in mice by using a 4 Hz magnetic field: a comparative study with a 60 Hz magnetic field. Electromagn Biol Med 2012; 31:293-8. [DOI: 10.3109/15368378.2012.662191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Won-Hee Park
- Pharmaceutical Analysis Team, Seoul Metropolitan Government Research Institute of Public Health & Environment, Seoul, Korea
| | - Young-Joo Chae
- Pharmaceutical Analysis Team, Seoul Metropolitan Government Research Institute of Public Health & Environment, Seoul, Korea
| | - Kwang-Sup Soh
- Nano Primo Research Center, Advanced Institute of Convergence Technology, Seoul National University,
Suwon, Korea
| | - Byung-Cheon Lee
- Ki Primo Research Laboratory, KI for Information Technology Convergence, Division of Electrical Engineering, Korea Advanced Institute of Science and Technology,
Daejeon, Korea
- Pharmacopuncture Medical Research Institute, Korean Pharmacopuncture Institute,
Seoul, Korea
| | - Myoung-Yun Pyo
- Laboratory of Hygienic Pharmacy, College of Pharmacy, Sookmyung Women's University,
Seoul, Korea
| |
Collapse
|
40
|
Kim J, Yoon Y, Yun S, Park GS, Lee HJ, Song K. Time-varying magnetic fields of 60 Hz at 7 mT induce DNA double-strand breaks and activate DNA damage checkpoints without apoptosis. Bioelectromagnetics 2011; 33:383-93. [DOI: 10.1002/bem.21697] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 11/08/2011] [Indexed: 01/15/2023]
|
41
|
Lee HJ, Jin YB, Lee JS, Choi JI, Lee JW, Myung SH, Lee YS. Combined effects of 60 Hz electromagnetic field exposure with various stress factors on cellular transformation in NIH3T3 cells. Bioelectromagnetics 2011; 33:207-14. [PMID: 21898471 DOI: 10.1002/bem.20700] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 07/26/2011] [Indexed: 11/07/2022]
Abstract
Epidemiological studies have suggested that extremely low-frequency magnetic fields (ELF-MF) are associated with an increased incidence of cancer. Studies using in vitro systems have reported mixed results for the effects of ELF-MF alone, and the World Health Organization (WHO) Research Agenda published in 2007 suggested that high priority research should include an evaluation of the co-carcinogenic effects of ELF-MF exposure using in vitro models. Here, the carcinogenic potential of ELF-MF exposure alone and in combination with various stress factors was investigated in NIH3T3 mouse fibroblasts using an in vitro cellular transformation assay. NIH3T3 cells were exposed to a 60 Hz ELF-MF (1 mT) alone or in combination with ionizing radiation (IR), hydrogen peroxide (H₂O₂), or c-Myc overexpression, and the resulting number of anchorage-independent colonies was counted. A 4 h exposure of NIH3T3 cells to ELF-MF alone produced no cell transformation. Moreover, ELF exposure did not influence the transformation activity of IR, H₂O₂, or activated c-Myc in our in vitro assay system, suggesting that 1 mT ELF-MF did not affect any additive or synergistic transformation activities in combination with stress factors such as IR, H₂O₂, or activated c-Myc in NIH3T3 cells.
Collapse
Affiliation(s)
- Hae-June Lee
- Division of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|