1
|
Tedesco B, Cristofani R, Ferrari V, Cozzi M, Rusmini P, Casarotto E, Chierichetti M, Mina F, Galbiati M, Piccolella M, Crippa V, Poletti A. Insights on Human Small Heat Shock Proteins and Their Alterations in Diseases. Front Mol Biosci 2022; 9:842149. [PMID: 35281256 PMCID: PMC8913478 DOI: 10.3389/fmolb.2022.842149] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
The family of the human small Heat Shock Proteins (HSPBs) consists of ten members of chaperones (HSPB1-HSPB10), characterized by a low molecular weight and capable of dimerization and oligomerization forming large homo- or hetero-complexes. All HSPBs possess a highly conserved centrally located α-crystallin domain and poorly conserved N- and C-terminal domains. The main feature of HSPBs is to exert cytoprotective functions by preserving proteostasis, assuring the structural maintenance of the cytoskeleton and acting in response to cellular stresses and apoptosis. HSPBs take part in cell homeostasis by acting as holdases, which is the ability to interact with a substrate preventing its aggregation. In addition, HSPBs cooperate in substrates refolding driven by other chaperones or, alternatively, promote substrate routing to degradation. Notably, while some HSPBs are ubiquitously expressed, others show peculiar tissue-specific expression. Cardiac muscle, skeletal muscle and neurons show high expression levels for a wide variety of HSPBs. Indeed, most of the mutations identified in HSPBs are associated to cardiomyopathies, myopathies, and motor neuropathies. Instead, mutations in HSPB4 and HSPB5, which are also expressed in lens, have been associated with cataract. Mutations of HSPBs family members encompass base substitutions, insertions, and deletions, resulting in single amino acid substitutions or in the generation of truncated or elongated proteins. This review will provide an updated overview of disease-related mutations in HSPBs focusing on the structural and biochemical effects of mutations and their functional consequences.
Collapse
Affiliation(s)
- B. Tedesco
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - R. Cristofani
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - V. Ferrari
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - M. Cozzi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - P. Rusmini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - E. Casarotto
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - M. Chierichetti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - F. Mina
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - M. Galbiati
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - M. Piccolella
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - V. Crippa
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - A. Poletti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
- *Correspondence: A. Poletti,
| |
Collapse
|
2
|
Dave A, Craig JE, Alamein M, Skrzypiec K, Beltz J, Pfaff A, Burdon KP, Ercal N, de Iongh RU, Sharma S. Genotype, Age, Genetic Background, and Sex Influence Epha2-Related Cataract Development in Mice. Invest Ophthalmol Vis Sci 2021; 62:3. [PMID: 34495288 PMCID: PMC8431977 DOI: 10.1167/iovs.62.12.3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Purpose Age-related cataract is the leading cause of blindness worldwide. Variants in the EPHA2 gene increase the disease risk, and its knockout in mice causes cataract. We investigated whether age, sex, and genetic background, risk factors for age-related cataract, and Epha2 genotype influence Epha2-related cataract development in mice. Methods Cataract development was monitored in Epha2+/+, Epha2+/-, and Epha2-/- mice (Epha2Gt(KST085)Byg) on C57BL/6J and FVB:C57BL/6J (50:50) backgrounds. Cellular architecture of lenses, endoplasmic reticulum (ER) stress, and redox state were determined using histological, molecular, and analytical techniques. Results Epha2-/- and Epha2+/- mice on C57BL/6J background developed severe cortical cataracts by 18 and 38 weeks of age, respectively, compared to development of similar cataract significantly later in Epha2-/- mice and no cataract in Epha2+/- mice in this strain on FVB background, which was previously reported. On FVB:C57BL/6J background, Epha2-/- mice developed severe cortical cataract by 38 weeks and Epha2+/- mice exhibited mild cortical cataract up to 64 weeks of age. Progression of cataract in Epha2-/- and Epha2+/- female mice on C57BL/6J and mixed background, respectively, was slower than in matched male mice. N-cadherin and β-catenin immunolabeling showed disorganized lens fiber cells and disruption of lens architecture in Epha2-/- and Epha2+/- lenses, coinciding with development of severe cataracts. EPHA2 immunolabeling showed intracellular accumulation of the mutant EPHA2-β-galactosidase fusion protein that induced a cytoprotective ER stress response and in Epha2+/- lenses was also accompanied by glutathione redox imbalance. Conclusions Both, Epha2-/- and Epha2+/- mice develop age-related cortical cataract; age as a function of Epha2 genotype, sex, and genetic background influence Epha2-related cataractogenesis in mice.
Collapse
Affiliation(s)
- Alpana Dave
- Department of Ophthalmology, Flinders University, Bedford Park, South Australia, Australia
| | - Jamie E Craig
- Department of Ophthalmology, Flinders University, Bedford Park, South Australia, Australia
| | - Mohammad Alamein
- Department of Ophthalmology, Flinders University, Bedford Park, South Australia, Australia
| | - Karina Skrzypiec
- Department of Ophthalmology, Flinders University, Bedford Park, South Australia, Australia
| | - Justin Beltz
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri, United States
| | - Annalise Pfaff
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri, United States
| | - Kathryn P Burdon
- Department of Ophthalmology, Flinders University, Bedford Park, South Australia, Australia.,Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Nuran Ercal
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri, United States
| | - Robb U de Iongh
- Ocular Development Laboratory, Anatomy & Neuroscience, University of Melbourne, Parkville, Australia
| | - Shiwani Sharma
- Department of Ophthalmology, Flinders University, Bedford Park, South Australia, Australia
| |
Collapse
|
3
|
Hamilton PD, Bozeman SL, Andley UP. Creatine kinase/α-crystallin interaction functions in cataract development. Biochem Biophys Rep 2020; 22:100748. [PMID: 32154391 PMCID: PMC7052508 DOI: 10.1016/j.bbrep.2020.100748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 01/31/2020] [Accepted: 02/06/2020] [Indexed: 11/17/2022] Open
Abstract
Creatine kinase (CK) is an energy storage enzyme that plays an important role in energy metabolism. CK/phosphocreatine functions as an energy buffer and links ATP production sites with ATP utilization sites. Several key mutations in the αA-crystallin (cryaa) and αB-crystallin (cryab) genes have been linked with autosomal-dominant, hereditary human cataracts. The cryaa-R49C mutation was identified in a four-generation Caucasian family. We previously identified an increase in the quantity of CK complexed with α-crystallin in the lenses of knock-in mice expressing the cryaa-R49C mutation using proteomic analyses. Increased levels of CK in postnatal cataractous lenses may indicate increased ATP requirements during early cataract development. To gain a further understanding of the relationship between CK and α-crystallin, we investigated whether α-crystallin interacts with and forms complexes with CK, in vitro. Isothermal titration calorimetry (ITC) showed that each CK dimer bound to 28 α-crystallin subunits, with a Kd of 3.3 × 10−7 M, and that the interaction between α-crystallin and CK was endothermic, thermodynamically favorable, and entropy-driven. High-salt concentrations did not affect the interaction between CK and α-crystallin, suggesting that the interaction between CK and α-crystallin is primarily hydrophobic. Gel permeation chromatography (GPC) detected water-soluble α-crystallin and CK complexes, as determined by increased light scattering after complex formation. In addition, CK and α-crystallin formed partially-water-insoluble, high-molecular-mass complexes. Enzyme-linked immunosorbent assay (ELISA)-based enzymatic activity analyses of lens homogenates showed a 17-fold increase in CK activity in the postnatal lenses of cryaa-R49C knock-in mice. These studies indicate that the interaction between α-crystallin and CK is functionally important and that increased CK levels may be necessary to meet the increased ATP demands of ATP-dependent functions in cataractous lenses. Cataract model α-crystallin mutant mice exhibit upregulated creatine kinase. Isothermal titration calorimetry detected creatine kinase/α-crystallin interaction. The protein-protein interaction is thermodynamically favorable and entropy driven.
Collapse
Key Words
- CK, creatine kinase
- CKB, creatine kinase B
- CKM, creatine kinase M
- Cataract
- Complex formation
- Creatine kinase
- ELISA, enzyme-linked immunosorbent assay
- GPC, gel permeation chromatography
- ITC, isothermal titration calorimetry
- Mouse model
- PBS, phosphate-buffered saline
- RALS, right angle light scattering
- RI, refractive index
- WT, wild-type
- cryaa-R49C, αA-crystallin R49C mutant
- α-Crystallin
Collapse
Affiliation(s)
- Paul D Hamilton
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Stephanie L Bozeman
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Usha P Andley
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
| |
Collapse
|
4
|
Li L, Fan DB, Zhao YT, Li Y, Yang ZB, Zheng GY. GJA8 missense mutation disrupts hemichannels and induces cell apoptosis in human lens epithelial cells. Sci Rep 2019; 9:19157. [PMID: 31844091 PMCID: PMC6915756 DOI: 10.1038/s41598-019-55549-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 11/29/2019] [Indexed: 12/16/2022] Open
Abstract
Autosomal dominant congenital cataract (ADCC), the most common hereditary disease, is a major cause of eye disease in children. Due to its high genetic and clinical heterogeneity, the identification of ADCC-associated gene mutations is essential for the development of molecular therapies. In this study, we examined a four-generation Chinese pedigree with ADCC and identified putative mutations in ADCC candidate genes via next-generation sequencing (NGS) followed by Sanger sequencing. A novel missense mutation in GJA8 (c.T217C) in ADCC patients causes a serine-to-proline substitution at residue 73 of connexin 50 (Cx50); no mutation was found in unaffected family members and unrelated healthy individuals. Functional analysis revealed that this missense mutation disrupts protein function in human lens epithelial cells (HLEpiCs), which fails to form calcium-sensitive hemichannels. Furthermore, mutant Cx50 leads to decreased ROS scavenging by inhibiting G6PD expression and thus induces cell apoptosis via aberrant activation of the unfolded protein response (UPR). In conclusion, we report a novel GJA8 heterozygous mutation in a Chinese family with a vital role in ADCC, broadening the genetic spectrum of this disease.
Collapse
Affiliation(s)
- Li Li
- Ophthalmologic Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Da-Bei Fan
- Endocrine Department, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Ya-Ting Zhao
- Ophthalmologic Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yun Li
- Ophthalmologic Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zi-Bing Yang
- Ophthalmologic Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Guang-Ying Zheng
- Ophthalmologic Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
5
|
Minogue PJ, Beyer EC, Berthoud VM. CHOP is dispensable for lens transparency in wild-type and connexin50 mutant mice. Mol Vis 2019; 25:535-545. [PMID: 31908399 PMCID: PMC6925666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/03/2019] [Indexed: 11/29/2022] Open
Abstract
PURPOSE CCAAT/enhancer-binding homologous protein (CHOP), a transcription factor that has been implicated in differentiation, apoptosis, and autophagy, is greatly elevated in lenses with cataracts due to mutations of several different lens proteins. To test the possible role of CHOP in the cataractous lens, we studied the effect of knocking out Chop in mice that were homozygous for the Cx50D47A mutation of the lens fiber gap junction protein connexin50 (Cx50). METHODS Mouse lenses were examined by dark-field microscopy. Lens equatorial diameters and intensities of the opacities were quantified using ImageJ. Transcript levels were assessed by real-time quantitative PCR. Protein levels were determined by immunoblotting. RESULTS Homozygous Chop knockout lenses were transparent. Deletion of Chop in Cx50D47A mice did not improve lens transparency and had no effect on lens size. In Chop null-Cx50D47A lenses, the protein kinase R-like endoplasmic reticulum kinase (PERK)-dependent pathway was activated similarly to Cx50D47A lenses. In Cx50D47A mice, Chop deletion did not improve connexin levels or lens fiber cell differentiation, and it did not decrease the levels of Trib3 or Irs2 transcripts to wild-type values. However, homozygous Chop knockout significantly diminished the increased levels of Cebpb transcripts of Cx50D47A lenses. CONCLUSIONS The results show that CHOP is not required for lens transparency. They also suggest that CHOP is not the critical etiological factor for the cataracts observed in homozygous Cx50D47A lenses, further supporting a major role for connexins in the disease.
Collapse
|
6
|
Andley UP, Tycksen E, McGlasson-Naumann BN, Hamilton PD. Probing the changes in gene expression due to α-crystallin mutations in mouse models of hereditary human cataract. PLoS One 2018; 13:e0190817. [PMID: 29338044 PMCID: PMC5770019 DOI: 10.1371/journal.pone.0190817] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 12/20/2017] [Indexed: 11/30/2022] Open
Abstract
The mammalian eye lens expresses a high concentration of crystallins (α, β and γ-crystallins) to maintain the refractive index essential for lens transparency. Crystallins are long-lived proteins that do not turnover throughout life. The structural destabilization of crystallins by UV exposure, glycation, oxidative stress and mutations in crystallin genes leads to protein aggregation and development of cataracts. Several destabilizing mutations in crystallin genes are linked with human autosomal dominant hereditary cataracts. To investigate the mechanism by which the α-crystallin mutations Cryaa-R49C and Cryab-R120G lead to cataract formation, we determined whether these mutations cause an altered expression of specific transcripts in the lens at an early postnatal age by RNA-seq analysis. Using knock-in mouse models previously generated in our laboratory, in the present work, we identified genes that exhibited altered abundance in the mutant lenses, including decreased transcripts for Clic5, an intracellular water channel in Cryaa-R49C heterozygous mutant lenses, and increased transcripts for Eno1b in Cryab-R120G heterozygous mutant lenses. In addition, RNA-seq analysis revealed increased histones H2B, H2A, and H4 gene expression in Cryaa-R49C mutant lenses, suggesting that the αA-crystallin mutation regulates histone expression via a transcriptional mechanism. Additionally, these studies confirmed the increased expression of histones H2B, H2A, and H4 by proteomic analysis of Cryaa-R49C knock-in and Cryaa;Cryab gene knockout lenses reported previously. Taken together, these findings offer additional insight into the early transcriptional changes caused by Cryaa and Cryab mutations associated with autosomal dominant human cataracts, and indicate that the transcript levels of certain genes are affected by the expression of mutant α-crystallin in vivo.
Collapse
Affiliation(s)
- Usha P. Andley
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| | - Eric Tycksen
- Genome Technology Access Center, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Brittney N. McGlasson-Naumann
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Paul D. Hamilton
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
7
|
De-qian K, Yue L, Li L, Guangying Z. Downregulation of Smac attenuates H2O2-induced apoptosis via endoplasmic reticulum stress in human lens epithelial cells. Medicine (Baltimore) 2017; 96:e7419. [PMID: 28682901 PMCID: PMC5502174 DOI: 10.1097/md.0000000000007419] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Second mitochondria-derived activator of caspases (Smac) is reported to promote apoptosis. Given the important role of apoptosis in cataract development, the aim of this study was to investigate whether Smac induces human lens epithelial cell (HLEC) apoptosis via endoplasmic reticulum stress (ERS). METHODS Smac expression was examined by immunohistochemistry in anterior lens capsules from 157 patients with age-related cataracts and 5 normal controls. The role of Smac in hydrogen peroxide (H2O2)-induced ERS and apoptosis was further evaluated using small interfering RNA knockdown in an HLEC line. RESULTS Notably, Smac expression was significantly higher in patients with cataracts than in controls, but showed no association with cataract severity. Cell survival was inversely correlated with H2O2 concentration, and was most significantly affected at 200 μmol/L. Moreover, flow cytometry revealed that Smac knockdown attenuated H2O2-induced apoptosis and enhanced apoptotic- and endoplasmic reticulum-related marker expression-including that of glucose-regulated protein 78, C/EBP homologous protein, caspase 3, B-cell chronic lymphocytic leukemia/lymphoma 2-associated X, and BCL2-at the gene and protein level. CONCLUSION Collectively, these results indicate that Smac plays an important role in ERS-induced apoptosis in HLECs, suggesting its close association with cataract development.
Collapse
Affiliation(s)
- Kong De-qian
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University
- The Key Discipline Open Laboratory of Clinical Medicine for Institutions of Higher Learning in Henan Province, Zhengzhou, China
| | - Liu Yue
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University
- The Key Discipline Open Laboratory of Clinical Medicine for Institutions of Higher Learning in Henan Province, Zhengzhou, China
| | - Li Li
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University
- The Key Discipline Open Laboratory of Clinical Medicine for Institutions of Higher Learning in Henan Province, Zhengzhou, China
| | - Zheng Guangying
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University
- The Key Discipline Open Laboratory of Clinical Medicine for Institutions of Higher Learning in Henan Province, Zhengzhou, China
| |
Collapse
|
8
|
Berthoud VM, Minogue PJ, Lambert PA, Snabb JI, Beyer EC. The Cataract-linked Mutant Connexin50D47A Causes Endoplasmic Reticulum Stress in Mouse Lenses. J Biol Chem 2016; 291:17569-78. [PMID: 27317663 DOI: 10.1074/jbc.m115.707950] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Indexed: 11/06/2022] Open
Abstract
Mice expressing connexin50D47A (Cx50D47A) exhibit nuclear cataracts and impaired differentiation. Cx50D47A does not traffic properly, and homozygous mutant lenses show increased levels of the stress-responsive αB-crystallins. Therefore, we assessed whether expression of Cx50D47A led to endoplasmic reticulum (ER) stress in the lens in vivo Although pharmacologic induction of ER stress can be transduced by three different pathways, we found no evidence for activation of the IRE1α or ATF6 pathways in Cx50D47A-expressing lenses. In contrast, heterozygous and homozygous Cx50D47A lenses showed an increase in phosphorylated PERK immunoreactivity and in the ratio of phosphorylated to total EIF2α (2.4- and 3.3-fold, respectively) compared with wild type. Levels of ATF4 were similar in wild type and heterozygous lenses but elevated in homozygotes (391%). In both heterozygotes and homozygotes, levels of calreticulin protein were increased (184 and 262%, respectively), as was Chop mRNA (1.9- and 12.4-fold, respectively). CHOP protein was increased in homozygotes (384%). TUNEL staining was increased in Cx50D47A lenses, especially in homozygous mice. Levels of two factors that may be pro-survival, Irs2 and Trib3, were greatly increased in homozygous lenses. These results suggest that expression of Cx50D47A induces ER stress, triggering activation of the PERK-ATF4 pathway, which potentially contributes to the lens pathology and leads to increased expression of anti-apoptotic factors, allowing cell survival.
Collapse
Affiliation(s)
| | | | - Paul A Lambert
- the Pritzker School of Medicine, University of Chicago, Chicago, Illinois 60637
| | | | | |
Collapse
|
9
|
Zhou Y, Bennett TM, Shiels A. Lens ER-stress response during cataract development in Mip-mutant mice. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1433-42. [PMID: 27155571 DOI: 10.1016/j.bbadis.2016.05.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/25/2016] [Accepted: 05/03/2016] [Indexed: 12/22/2022]
Abstract
Major intrinsic protein (MIP) is a functional water-channel (AQP0) that also plays a key role in establishing lens fiber cell architecture. Genetic variants of MIP have been associated with inherited and age-related forms of cataract; however, the underlying pathogenic mechanisms are unclear. Here we have used lens transcriptome profiling by microarray-hybridization and qPCR to identify pathogenic changes during cataract development in Mip-mutant (Lop/+) mice. In postnatal Lop/+ lenses (P7) 99 genes were up-regulated and 75 were down-regulated (>2-fold, p=<0.05) when compared with wild-type. A pathway analysis of up-regulated genes in the Lop/+ lens (P7) was consistent with endoplasmic reticulum (ER)-stress and activation of the unfolded protein response (UPR). The most up-regulated UPR genes (>4-fold) in the Lop/+ lens included Chac1>Ddit3>Atf3>Trib3>Xbp1 and the most down-regulated genes (>5-fold) included two anti-oxidant genes, Hspb1 and Hmox1. Lop/+ lenses were further characterized by abundant TUNEL-positive nuclei within central degenerating fiber cells, glutathione depletion, free-radical overproduction, and calpain hyper-activation. These data suggest that Lop/+ lenses undergo proteotoxic ER-stress induced cell-death resulting from prolonged activation of the Eif2ak3/Perk-Atf4-Ddit3-Chac1 branch of the UPR coupled with severe oxidative-stress.
Collapse
Affiliation(s)
- Yuefang Zhou
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Thomas M Bennett
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alan Shiels
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
10
|
Panda AK, Nandi SK, Chakraborty A, Nagaraj RH, Biswas A. Differential role of arginine mutations on the structure and functions of α-crystallin. Biochim Biophys Acta Gen Subj 2015; 1860:199-210. [PMID: 26080000 DOI: 10.1016/j.bbagen.2015.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 05/22/2015] [Accepted: 06/09/2015] [Indexed: 11/29/2022]
Abstract
BACKGROUND α-Crystallin is a major protein of the eye lens in vertebrates. It is composed of two subunits, αA- and αB-crystallin. α-Crystallin is an oligomeric protein having these two subunits in 3:1 ratio. It belongs to small heat shock protein family and exhibits molecular chaperone function, which plays an important role in maintaining the lens transparency. Apart from chaperone function, both subunits also exhibit anti-apoptotic property. Comparison of their primary sequences reveals that αA- and αB-crystallin posses 13 and 14 arginine residues, respectively. Several of them undergo mutations which eventually lead to various eye diseases such as congenital cataract, juvenile cataract, and retinal degeneration. Interestingly, many arginine residues of these subunits are modified during glycation and even some are truncated during aging. All these facts indicate the importance of arginine residues in α-crystallin. SCOPE OF REVIEW In this review, we will emphasize the recent in vitro and in vivo findings related to congenital cataract causing arginine mutations in α-crystallin. MAJOR CONCLUSIONS Congenital cataract causing arginine mutations alters the structure and decreases the chaperone function of α-crystallin. These mutations also affect the lens morphology and phenotypes. Interestingly, non-natural arginine mutations (generated for mimicking the glycation and truncation environment) improve the chaperone function of α-crystallin which may play an important role in maintaining the eye lens transparency during aging. GENERAL SIGNIFICANCE The neutralization of positive charge on the guanidino group of arginine residues is not always detrimental to the functionality of α-crystallin. This article is part of a Special Issue entitled Crystallin Biochemistry in Health and Disease.
Collapse
Affiliation(s)
- Alok Kumar Panda
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, Odisha 751013, India
| | - Sandip Kumar Nandi
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, Odisha 751013, India
| | - Ayon Chakraborty
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, Odisha 751013, India
| | - Ram H Nagaraj
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Ashis Biswas
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, Odisha 751013, India.
| |
Collapse
|
11
|
Andley UP, Goldman JW. Autophagy and UPR in alpha-crystallin mutant knock-in mouse models of hereditary cataracts. Biochim Biophys Acta Gen Subj 2015; 1860:234-9. [PMID: 26071686 DOI: 10.1016/j.bbagen.2015.06.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 06/03/2015] [Accepted: 06/04/2015] [Indexed: 11/28/2022]
Abstract
BACKGROUND Knock-in mice provide useful models of congenital and age-related cataracts caused by α-crystallin mutations. R49C αA-crystallin and R120G αB-crystallin mutations are linked with hereditary cataracts. Knock-in αA-R49C+/- heterozygotes develop cataracts by 1-2months, whereas homozygote mice have cataracts at birth. The R49C mutation drastically reduces lens protein water solubility and causes cell death in knock-in mouse lenses. Mutant crystallin cannot function as a chaperone, which leads to protein aggregation and lens opacity. Protein aggregation disrupts the lens fiber cell structure and normal development and causes cell death in epithelial and fiber cells. We determined what aspects of the wild-type phenotype are age-dependently altered in the mutant lens. METHODS Wild-type, heterozygote (αA-R49C+/-), and homozygote (αA-R49C+/+) mouse lenses were assessed pre- and postnatally for lens morphology (electron microscopy, immunohistochemistry), and autophagy or unfolded protein response markers (immunoblotting). RESULTS Morphology was altered by embryonic day 17 in R49C+/+ lenses; R49C+/- lens morphology was unaffected at this stage. Active autophagy in the lens epithelium of mutant lenses was indicated by the presence of autophagosomes using electron microscopy. Protein p62 levels, which are degraded specifically by autophagy, increased in αA-R49C mutant versus wild-type lenses, suggesting autophagy inhibition in the mutant lenses. The unfolded protein response marker XBP-1 was upregulated in adult lenses of αB-R120G+/+ mice, suggesting its role in lens opacification. CONCLUSIONS Mutated crystallins alter lens morphology, autophagy, and stress responses. GENERAL SIGNIFICANCE Therapeutic modulation of autophagic pathways may improve protein degradation in cataractous lenses and reduce lens opacity. This article is part of a Special Issue entitled Crystallin Biochemistry in Health and Disease.
Collapse
Affiliation(s)
- Usha P Andley
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Joshua W Goldman
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
12
|
Rumyantseva YV, Ryabchikova EI, Fursova AZ, Kolosova NG. Ameliorative effects of SkQ1 eye drops on cataractogenesis in senescence-accelerated OXYS rats. Graefes Arch Clin Exp Ophthalmol 2014; 253:237-48. [PMID: 25267419 DOI: 10.1007/s00417-014-2806-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 08/06/2014] [Accepted: 09/15/2014] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Antioxidant supplements have been suggested as a strategy to decrease the risk of age-related cataract, but there is no evidence that antioxidants can reduce the signs of the disease. Recently, we showed that the mitochondrial antioxidant SkQ1 can partially reverse cataract signs in senescence-accelerated OXYS rats. The aim of the present study was the histomorphological examination of the influence of SkQ1 eye drops on the cataract development in OXYS rats. METHODS OXYS rats received SkQ1 eye drops (250 nM) from 9 to 12 months of age. Ophthalmoscopic examination was carried out before and after treatment. Light and electron microscopy were used for histomorphological examination. Expression of the Cryaa and Cryab genes was determined using real-time PCR. αB-crystallin expression was detected using Western blotting. RESULTS SkQ1 completely prevented the cataract development in OXYS rats, and in some of the animals diminished the signs of the disease. Light and electron microscopy showed that SkQ1 attenuated the (typical for cataract) alterations in the lens capsule and epithelial cells, ameliorated disturbances of the hexagonal packing geometry of lens fibers, and improved ultrastructure of the epithelial cells. The levels of mRNA of α-crystallins genes which encode small heat shock proteins αA- and αB-crystallin that play a central role in maintaining lens transparency were significantly lower in the OXYS rats' lenses than in Wistar rats (control). SkQ1 normalized the level of mRNA of Cryaa, and significantly increased the level of Cryab mRNA as well as αB-crystallin protein in the lens of OXYS rats to the level of the control Wistar rats. CONCLUSION SkQ1 eye drops hold promise as a treatment of cataract.
Collapse
Affiliation(s)
- Yuliya V Rumyantseva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090, Acad. Lavrentjev 10, Novosibirsk, Russia,
| | | | | | | |
Collapse
|
13
|
Yang J, Cai L, Zhang S, Zhu X, Zhou P, Lu Y. Silica-based cerium (III) chloride nanoparticles prevent the fructose-induced glycation of α-crystallin and H₂O₂-induced oxidative stress in human lens epithelial cells. Arch Pharm Res 2013; 37:404-11. [PMID: 23828754 DOI: 10.1007/s12272-013-0195-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 06/17/2013] [Indexed: 11/26/2022]
Abstract
This study aimed to investigate whether silica-cerium (III) chloride (CeCl3) nanoparticles could inhibit the formation of advanced glycation end-products (AGEs) and reduce oxidative stress. Silica-CeCl3 nanoparticles were synthesised by adsorption and embedment with micro-silica materials, forming uniform nanoparticles with a diameter of approximately 130 nm. Chaperone activity assays and AGEs formation assays, and intracellular reactive assays were adopted in this study to evaluate CeCl3 nanoparticles effect. UV-visible spectrometry showed that silica-CeCl3 nanoparticles at low concentrations rapidly formed tentatively stable conjugations with α-crystallin, greatly enhancing the chaperone activity of α-crystallin. Moreover, silica-CeCl3 nanoparticles markedly inhibited the fructose-induced glycation of α-crystallin, showing an advantage over the control drugs aminoguanidine and carnosine. Silica-CeCl3 nanoparticles also reduced intracellular reactive oxygen species production and restored glutathione levels in H2O2-treated human lens epithelial cells. These findings suggest that silica-CeCl3 may be used as a novel agent for the prevention of cataractogenesis.
Collapse
Affiliation(s)
- Jin Yang
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China
| | | | | | | | | | | |
Collapse
|
14
|
Andley UP, Malone JP, Hamilton PD, Ravi N, Townsend RR. Comparative proteomic analysis identifies age-dependent increases in the abundance of specific proteins after deletion of the small heat shock proteins αA- and αB-crystallin. Biochemistry 2013; 52:2933-48. [PMID: 23590631 DOI: 10.1021/bi400180d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Mice with deletion of genes for small heat shock proteins αA- and αB-crystallin (αA/αB(-/-)) develop cataracts. We used proteomic analysis to identify lens proteins that change in abundance after deletion of these α-crystallin genes. Wild-type (WT) and αA/αB(-/-) knockout (DKO) mice were compared using two-dimensional difference gel electrophoresis and mass spectrometric analysis, and protein identifications were validated by Mascot proteomic software. The abundance of histones H2A, H4, and H2B fragment, and a low molecular weight β1-catenin increased 2-3-fold in postnatal day 2 lenses of DKO lenses compared with WT lenses. Additional major increases were observed in abundance of βB2-crystallin and vimentin in 30-day-old lenses of DKO animals compared with WT animals. Lenses of DKO mice were comprised of nine protein spots containing βB2-crystallin at 10-40-fold higher abundance and three protein spots containing vimentin at ≥2-fold higher abundance than in WT lenses. Gel permeation chromatography identified a unique 328 kDa protein in DKO lenses, containing β-crystallin, demonstrating aggregation of β-crystallin in the absence of α-crystallins. Together, these changes provide biochemical evidence for possible functions of specific cell adhesion proteins, cytoskeletal proteins, and crystallins in lens opacities caused by the absence of the major chaperones, αA- and αB-crystallins.
Collapse
Affiliation(s)
- Usha P Andley
- Department of Ophthalmology and Visual Sciences, Washington University, School of Medicine, St. Louis, MO 63110, USA.
| | | | | | | | | |
Collapse
|
15
|
Expressions of GRP78 and Bax associate with differentiation, metastasis, and apoptosis in non-small cell lung cancer. Mol Biol Rep 2012; 39:6753-61. [PMID: 22297694 DOI: 10.1007/s11033-012-1500-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 01/24/2012] [Indexed: 02/08/2023]
Abstract
The purpose of this study was to detect the expressions of GRP78 and Bax in human non-small cell lung cancer (NSCLC) tissues, to analyze their correlations with carcinogenesis and the development of NSCLC, and to investigate the relationship of GRP78 expression to metastasis and apoptosis in the NSCLC cell line HCC827. The positive expression rates of GRP78 and Bax in NSCLC lung tissues were 59.7% and 34.7% by RT-PCR, respectively. The mRNA and protein expression levels of GRP78 in NSCLC tissues were significantly higher than that in the relatively normal surrounding lung tissues (p < 0.05); the lesser the degree of tumor differentiation was, the higher the mRNA and protein expression levels of GRP78 were (p < 0.05). The mRNA and protein expression levels of GRP78 from patients in advanced pathological stages (III-IV) were significantly higher than the corresponding levels in patients in early pathological stages (I-II) (p < 0.05); the mRNA and protein expression levels of GRP78 in patients with positive lymph node metastasis were significantly higher than those in patients with negative lymph node metastasis (p < 0.05). The mRNA and protein expression levels of Bax in the above cases showed the opposite trend of the mRNA and protein expression levels of GRP78. However, the mRNA and protein expression levels of both GRP78 and Bax were independent of the patient’s sex, the patient’s age, the tumor size and the histological type (adenocarcinoma or squamous cell carcinoma) of NSCLC (p > 0.05). The mRNA expression level of GRP78 and the mRNA expression level of Bax in human NSCLC tissues were negatively correlated (r = -0.353, p = 0.002). After transfection of GRP78 siRNA in HCC827 cells, the GRP78 protein expression level was significantly decreased (p < 0.01), while the Bax protein expression level was significantly increased (p < 0.01); the number of cells that passed through the Transwell chamber was significantly less in the non-transfected control group compared to the transfected control group (p < 0.01). The number of apoptotic cells was significantly greater in the non-transfected control group compared to the transfected control group (p < 0.01). The expression levels of GRP78 and Bax were related to the carcinogenesis, development and metastasis of NSCLC. GRP78 expression with siRNA interference in the human NSCLC cell line HCC827 can reduce metastasis and promote apoptosis in HCC827 cells.
Collapse
|
16
|
Alapure BV, Stull JK, Firtina Z, Duncan MK. The unfolded protein response is activated in connexin 50 mutant mouse lenses. Exp Eye Res 2012; 102:28-37. [PMID: 22713599 DOI: 10.1016/j.exer.2012.06.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 04/25/2012] [Accepted: 06/08/2012] [Indexed: 10/28/2022]
Abstract
The unfolded protein response is a set of cell signaling pathways recently recognized to be activated in the lens during both normal development and endoplasmic reticulum stress induced by either unfolded proteins or oxidative damage. While mutations in the gene for connexin 50 are known to cause autosomal dominant cataracts, it has not been previously reported whether mutant connexins can activate the unfolded protein response in the lens. Mice homozygous for the S50P or G22R mutation of connexin 50 have reduced amounts of connexin 50 protein at the cell membrane, with some intracellular staining consistent with retention in the endoplasmic reticulum. Connexin 50 mutants have elevated levels of BiP expression in both lens epithelial and fiber cells from E15.5 with the most robust elevation detected in newborns. While this elevation decreases in magnitude postnatally, BiP expression is still abnormally high in adults, particularly in the perinuclear endoplasmic reticulum of cell nuclei that are inappropriately retained in adult homozygous mutant lenses. Xbp1 splicing was elevated in lenses from both connexin mutants studied, while Atf4 and Atf6 levels were not majorly affected. Overall, these data suggest that UPR may be a contributing factor to the phenotype of connexin 50 mutant lenses even though the relatively modest extent of the response suggests that it is unlikely to be a major driver of the pathology.
Collapse
Affiliation(s)
- Bhagwat V Alapure
- Department of Biological Sciences, University of Delaware, 327 Wolf Hall, The Green, Newark, DE 19716, USA
| | | | | | | |
Collapse
|
17
|
Wu M, Zhang X, Bian Q, Taylor A, Liang JJ, Ding L, Horwitz J, Shang F. Oligomerization with wt αA- and αB-crystallins reduces proteasome-mediated degradation of C-terminally truncated αA-crystallin. Invest Ophthalmol Vis Sci 2012; 53:2541-50. [PMID: 22427585 DOI: 10.1167/iovs.11-9147] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE We previously demonstrated that the ubiquitin-proteasome pathway (UPP) is a general protein quality control system that selectively degrades damaged or abnormal lens proteins, including C-terminally truncated αA-crystallin. The objective of this work was to determine the effects of wt αA- and αB-crystallins on the degradation of C-terminally truncated αA-crystallin (αA(1-162)) and vice versa. METHODS Recombinant wt αA, αB, and αA(1-162) were expressed in Escherichia coli and purified to homogeneity by chromatography. Subunit exchange and oligomerization were detected by fluorescence resonance energy transfer (FRET), multiangle-light scattering and coprecipitation assays. Protein substrates were labeled with (125)I and lens epithelial cell lysates were used as the source of the UPP for degradation assays. RESULTS FRET, multiangle light scattering, and coprecipitation assays showed that αA(1-162) exchanged subunits with wt αA- or wt αB- crystallin to form hetero-oligomers. αA(1-162) was more susceptible than wt αA-crystallin to degradation by the UPP. When mixed with wt αA-crystallin at 1:1 or 1:4 (αA(1-162) : wt) ratios to form hetero-oligomers, the degradation of αA(1-162) was significantly decreased. Conversely, formation of hetero-oligomers with αA(1-162) enhanced the degradation of wt αA-crystallin. The presence of αA(1-162), but not wt αA-crystallin, decreased the degradation of wt αB-crystallin. CONCLUSIONS αA(1-162) forms hetero-oligomers with wt αA- and αB-crystallins. Oligomerization with wt αA- or αB-crystallins reduces the susceptibility of αA(1-162) to degradation by the UPP. In addition, the presence of αA(1-162) in the hetero-oligomers also affects the degradation of wt αA- and αB-crystallins.
Collapse
Affiliation(s)
- Mingxing Wu
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, 711 Washington Street, Boston, MA 02111, USA.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Haeri M, Knox BE. Endoplasmic Reticulum Stress and Unfolded Protein Response Pathways: Potential for Treating Age-related Retinal Degeneration. J Ophthalmic Vis Res 2012; 7:45-59. [PMID: 22737387 PMCID: PMC3381108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 12/18/2011] [Indexed: 11/24/2022] Open
Abstract
Accumulation of misfolded proteins in the endoplasmic reticulum (ER) and their aggregation impair normal cellular function and can be toxic, leading to cell death. Prolonged expression of misfolded proteins triggers ER stress, which initiates a cascade of reactions called the unfolded protein response (UPR). Protein misfolding is the basis for a variety of disorders known as ER storage or conformational diseases. There are an increasing number of eye disorders associated with misfolded proteins and pathologic ER responses, including retinitis pigmentosa (RP). Herein we review the basic cellular and molecular biology of UPR with focus on pathways that could be potential targets for treating retinal degenerative diseases.
Collapse
Affiliation(s)
- Mohammad Haeri
- Correspondence to: Mohammad Haeri, MD, PhD. Departments of Neuroscience and Physiology and Ophthalmology, SUNY Upstate Medical University, WH3220, Syracuse, NY 13210, USA; Tel: +1 315 464 8148, Fax: +1 315 464 7725; e-mail:
| | | |
Collapse
|
19
|
Castorino JJ, Gallagher-Colombo SM, Levin AV, Fitzgerald PG, Polishook J, Kloeckener-Gruissem B, Ostertag E, Philp NJ. Juvenile cataract-associated mutation of solute carrier SLC16A12 impairs trafficking of the protein to the plasma membrane. Invest Ophthalmol Vis Sci 2011; 52:6774-84. [PMID: 21778275 DOI: 10.1167/iovs.10-6579] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE SLC16A12 encodes an orphan member of the monocarboxylate transporter family, MCT12. A nonsense mutation in SLC16A12 (c.643C>T; p.Q215X) causes juvenile cataract with a dominant inheritance pattern. In the present study, in vitro and in vivo experimental models were used to gain insight into how the SLC16A12 (c.643C>T) mutation leads to cataract formation. METHODS MCT12 peptide antibodies were generated and used to examine the expression of MCT12 in the lens using immuno-confocal microscopy. To determine whether loss of Slc16a12 resulted in cataract formation, a Slc16a12 hypomorphic rat generated by transposon insertional mutagenesis was characterized using RT-PCR, slit lamp microscopy and histologic methods. Exogenous expression of MCT12 and MCT12:214Δ, a mimic of the mutant allele, were used to assess protein expression and trafficking. RESULTS MCT12 protein was detected in the lens epithelium and secondary fiber cells at postnatal day 1. In the Slc16a12(TKO) rat, complete loss of MCT12 did not result in any detectable ocular phenotype. Exogenous expression of MCT12-GFP and MCT12:214Δ-GFP revealed that the full-length protein was trafficked to the plasma membrane (PM), whereas the truncated protein was retained in the endoplasmic reticulum (ER). When both MCT12 and MCT12:214Δ were coexpressed, to mimic the heterozygous patient genotype, the truncated protein was retained in the ER whereas full-length MCT12 was trafficked to the PM. Furthermore, MCT12 was identified as another MCT isoform that requires CD147 for trafficking to the cell surface. CONCLUSIONS These data support a model whereby the SLC16A12 (c.643C>T) mutation causes juvenile cataract by a defect in protein trafficking rather than by haploinsufficiency.
Collapse
Affiliation(s)
- John J Castorino
- Department of Pathology, Anatomy, and Cell Biology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
A knock-in mouse model for the R120G mutation of αB-crystallin recapitulates human hereditary myopathy and cataracts. PLoS One 2011; 6:e17671. [PMID: 21445271 PMCID: PMC3060869 DOI: 10.1371/journal.pone.0017671] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 02/09/2011] [Indexed: 11/19/2022] Open
Abstract
An autosomal dominant missense mutation in αB-crystallin (αB-R120G) causes cataracts and desmin-related myopathy, but the underlying mechanisms are unknown. Here, we report the development of an αB-R120G crystallin knock-in mouse model of these disorders. Knock-in αB-R120G mice were generated and analyzed with slit lamp imaging, gel permeation chromatography, immunofluorescence, immunoprecipitation, histology, and muscle strength assays. Wild-type, age-matched mice were used as controls for all studies. Both heterozygous and homozygous mutant mice developed myopathy. Moreover, homozygous mutant mice were significantly weaker than wild-type control littermates at 6 months of age. Cataract severity increased with age and mutant gene dosage. The total mass, precipitation, and interaction with the intermediate filament protein vimentin, as well as light scattering of αB-crystallin, also increased in mutant lenses. In skeletal muscle, αB-R120G co-aggregated with desmin, became detergent insoluble, and was ubiquitinated in heterozygous and homozygous mutant mice. These data suggest that the cataract and myopathy pathologies in αB-R120G knock-in mice share common mechanisms, including increased insolubility of αB-crystallin and co-aggregation of αB-crystallin with intermediate filament proteins. These knock-in αB-R120G mice are a valuable model of the developmental and molecular biological mechanisms that underlie the pathophysiology of human hereditary cataracts and myopathy.
Collapse
|