1
|
Maggiore A, Latina V, D'Erme M, Amadoro G, Coccurello R. Non-canonical pathways associated to Amyloid beta and tau protein dyshomeostasis in Alzheimer's disease: A narrative review. Ageing Res Rev 2024; 102:102578. [PMID: 39542177 DOI: 10.1016/j.arr.2024.102578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/07/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
Alzheimer's Disease (AD) is the most common form of dementia among elderly people. This disease imposes a significant burden on the healthcare system, society, and economy due to the increasing global aging population. Current trials with drugs or bioactive compounds aimed at reducing cerebral Amyloid beta (Aβ) plaques and tau protein neurofibrillary tangles, which are the two main hallmarks of this devastating neurodegenerative disease, have not provided significant results in terms of their neuropathological outcomes nor met the expected clinical end-points. Ageing, genetic and environmental risk factors, along with different clinical symptoms suggest that AD is a complex and heterogeneous disorder with multiple interconnected pathological pathways rather than a single disease entity. In the present review, we highlight and discuss various non-canonical, Aβ-independent mechanisms, like gliosis, unhealthy dietary intake, lipid and sugar signaling, and cerebrovascular damage that contribute to the onset and development of AD. We emphasize that challenging the traditional "amyloid cascade hypothesis" may improve our understanding of this age-related complex syndrome and help fight the progressive cognitive decline in AD.
Collapse
Affiliation(s)
- Anna Maggiore
- Department of Biochemical Sciences, Sapienza University, P.le Aldo Moro 5, Rome 00185, Italy; Department of Brain Sciences, Imperial College, London, UK
| | - Valentina Latina
- European Brain Research Institute (EBRI), Viale Regina Elena 295, Rome 00161, Italy; Institute of Translational Pharmacology (IFT) CNR, Via Fosso del Cavaliere 100, Rome 00133, Italy
| | - Maria D'Erme
- Department of Biochemical Sciences, Sapienza University, P.le Aldo Moro 5, Rome 00185, Italy
| | - Giuseppina Amadoro
- European Brain Research Institute (EBRI), Viale Regina Elena 295, Rome 00161, Italy; Institute of Translational Pharmacology (IFT) CNR, Via Fosso del Cavaliere 100, Rome 00133, Italy.
| | - Roberto Coccurello
- Institute for Complex System (ISC) CNR, Via dei Taurini 19, Rome 00185, Italy; IRCSS Santa Lucia Foundation, European Center for Brain Research, Via Fosso del Fiorano 64-65, Rome 00143, Italy.
| |
Collapse
|
2
|
Microglia and Cholesterol Handling: Implications for Alzheimer's Disease. Biomedicines 2022; 10:biomedicines10123105. [PMID: 36551857 PMCID: PMC9775660 DOI: 10.3390/biomedicines10123105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/04/2022] Open
Abstract
Cholesterol is essential for brain function and structure, however altered cholesterol metabolism and transport are hallmarks of multiple neurodegenerative conditions, including Alzheimer's disease (AD). The well-established link between apolipoprotein E (APOE) genotype and increased AD risk highlights the importance of cholesterol and lipid transport in AD etiology. Whereas more is known about the regulation and dysregulation of cholesterol metabolism and transport in neurons and astrocytes, less is known about how microglia, the immune cells of the brain, handle cholesterol, and the subsequent implications for the ability of microglia to perform their essential functions. Evidence is emerging that a high-cholesterol environment, particularly in the context of defects in the ability to transport cholesterol (e.g., expression of the high-risk APOE4 isoform), can lead to chronic activation, increased inflammatory signaling, and reduced phagocytic capacity, which have been associated with AD pathology. In this narrative review we describe how cholesterol regulates microglia phenotype and function, and discuss what is known about the effects of statins on microglia, as well as highlighting areas of future research to advance knowledge that can lead to the development of novel therapies for the prevention and treatment of AD.
Collapse
|
3
|
Shepilov D, Kovalenko T, Osadchenko I, Smozhanyk K, Marungruang N, Ushakova G, Muraviova D, Hållenius F, Prykhodko O, Skibo G. Varying Dietary Component Ratios and Lingonberry Supplementation May Affect the Hippocampal Structure of ApoE–/– Mice. Front Nutr 2022; 9:565051. [PMID: 35252286 PMCID: PMC8890029 DOI: 10.3389/fnut.2022.565051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 01/11/2022] [Indexed: 11/28/2022] Open
Abstract
Objective This study aimed to investigate and compare the morphological and biochemical characteristics of the hippocampus and the spatial memory of young adult ApoE–/– mice on a standard chow diet, a low-fat diet (LFD), a high-fat diet (HFD), and an HFD supplemented with lingonberries. Methods Eight-week-old ApoE–/– males were divided into five groups fed standard chow (Control), an LFD (LF), an HFD (HF), and an HFD supplemented with whole lingonberries (HF+WhLB) or the insoluble fraction of lingonberries (HF+InsLB) for 8 weeks. The hippocampal cellular structure was evaluated using light microscopy and immunohistochemistry; biochemical analysis and T-maze test were also performed. Structural synaptic plasticity was assessed using electron microscopy. Results ApoE–/– mice fed an LFD expressed a reduction in the number of intact CA1 pyramidal neurons compared with HF+InsLB animals and the 1.6–3.8-fold higher density of hyperchromic (damaged) hippocampal neurons relative to other groups. The LF group had also morphological and biochemical indications of astrogliosis. Meanwhile, both LFD- and HFD-fed mice demonstrated moderate microglial activation and a decline in synaptic density. The consumption of lingonberry supplements significantly reduced the microglia cell area, elevated the total number of synapses and multiple synapses, and increased postsynaptic density length in the hippocampus of ApoE–/– mice, as compared to an LFD and an HFD without lingonberries. Conclusion Our results suggest that, in contrast to the inclusion of fats in a diet, increased starch amount (an LFD) and reduction of dietary fiber (an LFD/HFD) might be unfavorable for the hippocampal structure of young adult (16-week-old) male ApoE–/– mice. Lingonberries and their insoluble fraction seem to provide a neuroprotective effect on altered synaptic plasticity in ApoE–/– animals. Observed morphological changes in the hippocampus did not result in notable spatial memory decline.
Collapse
Affiliation(s)
- Dmytro Shepilov
- Department of Cytology, Bogomoletz Institute of Physiology, Kyiv, Ukraine
- *Correspondence: Dmytro Shepilov
| | - Tatiana Kovalenko
- Department of Cytology, Bogomoletz Institute of Physiology, Kyiv, Ukraine
| | - Iryna Osadchenko
- Department of Cytology, Bogomoletz Institute of Physiology, Kyiv, Ukraine
| | - Kateryna Smozhanyk
- Department of Cytology, Bogomoletz Institute of Physiology, Kyiv, Ukraine
| | - Nittaya Marungruang
- Department of Food Technology, Engineering and Nutrition, Lund University, Lund, Sweden
| | - Galyna Ushakova
- Department of Biochemistry and Physiology, Oles Honchar Dnipro National University, Dnipro, Ukraine
| | - Diana Muraviova
- Department of Biochemistry and Physiology, Oles Honchar Dnipro National University, Dnipro, Ukraine
| | - Frida Hållenius
- Department of Food Technology, Engineering and Nutrition, Lund University, Lund, Sweden
| | - Olena Prykhodko
- Department of Food Technology, Engineering and Nutrition, Lund University, Lund, Sweden
| | - Galyna Skibo
- Department of Cytology, Bogomoletz Institute of Physiology, Kyiv, Ukraine
| |
Collapse
|
4
|
Dulka K, Szabo M, Lajkó N, Belecz I, Hoyk Z, Gulya K. Epigenetic Consequences of in Utero Exposure to Rosuvastatin: Alteration of Histone Methylation Patterns in Newborn Rat Brains. Int J Mol Sci 2021; 22:ijms22073412. [PMID: 33810299 PMCID: PMC8059142 DOI: 10.3390/ijms22073412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/17/2021] [Accepted: 03/24/2021] [Indexed: 12/16/2022] Open
Abstract
Rosuvastatin (RST) is primarily used to treat high cholesterol levels. As it has potentially harmful but not well-documented effects on embryos, RST is contraindicated during pregnancy. To demonstrate whether RST could induce molecular epigenetic events in the brains of newborn rats, pregnant mothers were treated daily with oral RST from the 11th day of pregnancy for 10 days (or until delivery). On postnatal day 1, the brains of the control and RST-treated rats were removed for Western blot or immunohistochemical analyses. Several antibodies that recognize different methylation sites for H2A, H2B, H3, and H4 histones were quantified. Analyses of cell-type-specific markers in the newborn brains demonstrated that prenatal RST administration did not affect the composition and cell type ratios as compared to the controls. Prenatal RST administration did, however, induce a general, nonsignificant increase in H2AK118me1, H2BK5me1, H3, H3K9me3, H3K27me3, H3K36me2, H4, H4K20me2, and H4K20me3 levels, compared to the controls. Moreover, significant changes were detected in the number of H3K4me1 and H3K4me3 sites (134.3% ± 19.2% and 127.8% ± 8.5% of the controls, respectively), which are generally recognized as transcriptional activators. Fluorescent/confocal immunohistochemistry for cell-type-specific markers and histone methylation marks on tissue sections indicated that most of the increase at these sites belonged to neuronal cell nuclei. Thus, prenatal RST treatment induces epigenetic changes that could affect neuronal differentiation and development.
Collapse
Affiliation(s)
- Karolina Dulka
- Department of Cell Biology and Molecular Medicine, University of Szeged, 6720 Szeged, Hungary; (K.D.); (M.S.); (N.L.)
| | - Melinda Szabo
- Department of Cell Biology and Molecular Medicine, University of Szeged, 6720 Szeged, Hungary; (K.D.); (M.S.); (N.L.)
| | - Noémi Lajkó
- Department of Cell Biology and Molecular Medicine, University of Szeged, 6720 Szeged, Hungary; (K.D.); (M.S.); (N.L.)
| | - István Belecz
- Department of Medical Biology, University of Szeged, 6720 Szeged, Hungary;
| | - Zsófia Hoyk
- Biological Barriers Research Group, Institute of Biophysics, Biological Research Center, Eötvös Loránd Research Network, 6726 Szeged, Hungary;
| | - Karoly Gulya
- Department of Cell Biology and Molecular Medicine, University of Szeged, 6720 Szeged, Hungary; (K.D.); (M.S.); (N.L.)
- Correspondence:
| |
Collapse
|
5
|
Bagheri H, Ghasemi F, Barreto GE, Sathyapalan T, Jamialahmadi T, Sahebkar A. The effects of statins on microglial cells to protect against neurodegenerative disorders: A mechanistic review. Biofactors 2020; 46:309-325. [PMID: 31846136 DOI: 10.1002/biof.1597] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 11/22/2019] [Indexed: 12/28/2022]
Abstract
Microglia are the primary innate immune system cells in the central nervous system (CNS). They are crucial for the immunity, neurogenesis, synaptogenesis, neurotrophic support, phagocytosis of cellular debris, and maintaining the CNS integrity and homeostasis. Invasion by pathogens as well as in CNS injuries and damages results in activation of microglia known as microgliosis. The activated microglia have the capacity to release proinflammatory mediators leading to neuroinflammation. However, uncontrolled neuroinflammation can give rise to various neurological disorders (NDs), especially the neurodegenerative diseases including Parkinson's disease (PD) and related disorders, Alzheimer's disease (AD) and other dementias, multiple sclerosis (MS), Huntington's disease (HD), spinocerebellar ataxia (SCA), spinal muscular atrophy (SMA), amyotrophic lateral sclerosis (ALS), and stroke. Statins (HMG-CoA reductase inhibitors) are among the most widely prescribed medications for the management of hypercholesterolemia worldwide. It can be used for primary prevention in healthy individuals who are at higher risk of cardiovascular and coronary heart diseases as well as the secondary prevention in patients with cardiovascular and coronary heart diseases disease. A growing body of evidence has indicated that statins have the potential to attenuate the proinflammatory mediators and subsequent NDs by controlling the microglial activation and consequent reduction in neuroinflammatory mediators. In this review, we have discussed the recent studies on the effects of statins on microglia activation and neuroinflammation.
Collapse
Affiliation(s)
- Hossein Bagheri
- Department of Biotechnology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Faezeh Ghasemi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
- Health Research Institute, University of Limerick, Limerick, Ireland
| | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, UK
| | - Tannaz Jamialahmadi
- Halal Research Center of IRI, FDA, Tehran, Iran
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Husain I, Akhtar M, Abdin MZ, Islamuddin M, Shaharyar M, Najmi AK. Rosuvastatin ameliorates cognitive impairment in rats fed with high-salt and cholesterol diet via inhibiting acetylcholinesterase activity and amyloid beta peptide aggregation. Hum Exp Toxicol 2017; 37:399-411. [PMID: 28441890 DOI: 10.1177/0960327117705431] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Amyloid beta (Aβ) peptide aggregation and cholinergic neurodegeneration are involved in the development of cognitive impairment. Therefore, in this article, we examined rosuvastatin (RSV), an oral hypolipidemic drug, to determine its potential as a dual inhibitor of acetylcholinesterase (AChE) and Aβ peptide aggregation for the treatment of cognitive impairment. Molecular docking study was done to examine the affinity of RSV with Aβ1-42 and AChE in silico. We also employed neurobehavioral activity tests, biochemical estimation, and histopathology to study the anti-Aβ1-42 aggregation capability of RSV in vivo. Molecular docking study provided evidence that RSV has the best binding conformer at its receptor site or active site of an enzyme. The cognitive impairment in female Wistar rats was induced by high-salt and cholesterol diet (HSCD) ad libitum for 8 weeks. RSV ameliorated serum cholesterol level, AChE activity, and Aβ1-42 peptide aggregations in HSCD induced cognitive impairment. In addition, RSV-treated rats showed greater scores in the open field (locomotor activity) test. Moreover, the histopathological studies in the hippocampus and cortex of rat brain also supported that RSV markedly reduced the cognitive impairment and preserved the normal histoarchitectural pattern of the hippocampus and cortex. Taken together, these data indicate that RSV may act as a dual inhibitor of AChE and Aβ1-42 peptide aggregation, therefore suggesting a therapeutic strategy for cognitive impairment treatment.
Collapse
Affiliation(s)
- I Husain
- 1 Department of Pharmacology, Faculty of Pharmacy, Jamia Hamdard (Hamdard University), New Delhi, India
| | - M Akhtar
- 1 Department of Pharmacology, Faculty of Pharmacy, Jamia Hamdard (Hamdard University), New Delhi, India
| | - M Zainul Abdin
- 2 Department of Biotechnology, Faculty of Science, Jamia Hamdard (Hamdard University), New Delhi, India
| | - M Islamuddin
- 2 Department of Biotechnology, Faculty of Science, Jamia Hamdard (Hamdard University), New Delhi, India
| | - M Shaharyar
- 3 Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jamia Hamdard (Hamdard University), New Delhi, India
| | - A K Najmi
- 1 Department of Pharmacology, Faculty of Pharmacy, Jamia Hamdard (Hamdard University), New Delhi, India
| |
Collapse
|
7
|
Kata D, Földesi I, Feher LZ, Hackler L, Puskas LG, Gulya K. Rosuvastatin enhances anti-inflammatory and inhibits pro-inflammatory functions in cultured microglial cells. Neuroscience 2015; 314:47-63. [PMID: 26633263 DOI: 10.1016/j.neuroscience.2015.11.053] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 11/21/2015] [Accepted: 11/23/2015] [Indexed: 12/20/2022]
Abstract
Microglial activation results in profound morphological, functional and gene expression changes that affect the pro- and anti-inflammatory mechanisms of these cells. Although statins have beneficial effects on inflammation, they have not been thoroughly investigated for their ability to affect microglial functions. Therefore the effects of rosuvastatin, one of the most commonly prescribed drugs in cardiovascular therapy, either alone or in combination with bacterial lipopolysaccharide (LPS), were profiled in pure microglial cultures derived from the forebrains of 18-day-old rat embryos. To reveal the effects of rosuvastatin on a number of pro- and anti-inflammatory mechanisms, we performed morphometric, functional and gene expression studies relating to cell adhesion and proliferation, phagocytosis, pro- and anti-inflammatory cytokine (IL-1β, tumor necrosis factor α (TNF-α) and IL-10, respectively) production, and the expression of various inflammation-related genes, including those related to the above morphological parameters and cellular functions. We found that microglia could be an important therapeutic target of rosuvastatin. In unchallenged (control) microglia, rosuvastatin inhibited proliferation and cell adhesion, but promoted microspike formation and elevated the expression of certain anti-inflammatory genes (Cxcl1, Ccl5, Mbl2), while phagocytosis or pro- and anti-inflammatory cytokine production were unaffected. Moreover, rosuvastatin markedly inhibited microglial activation in LPS-challenged cells by affecting both their morphology and functions as it inhibited LPS-elicited phagocytosis and inhibited pro-inflammatory cytokine (IL-1β, TNF-α) production, concomitantly increasing the level of IL-10, an anti-inflammatory cytokine. Finally, rosuvastatin beneficially and differentially affected the expression of a number of inflammation-related genes in LPS-challenged cells by inhibiting numerous pro-inflammatory and stimulating several anti-inflammatory genes. Since the microglia could elicit pro-inflammatory responses leading to neurodegeneration, it is important to attenuate such mechanisms and promote anti-inflammatory properties, and develop prophylactic therapies. By beneficially regulating both pro- and anti-inflammatory microglial functions, rosuvastatin may be considered as a prophylactic agent in the prevention of inflammation-related neurological disorders.
Collapse
Affiliation(s)
- D Kata
- Department of Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
| | - I Földesi
- Department of Laboratory Medicine, University of Szeged, Szeged, Hungary
| | | | | | | | - K Gulya
- Department of Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary.
| |
Collapse
|
8
|
Wang H, Blumberg JB, Chen CYO, Choi SW, Corcoran MP, Harris SS, Jacques PF, Kristo AS, Lai CQ, Lamon-Fava S, Matthan NR, McKay DL, Meydani M, Parnell LD, Prokopy MP, Scott TM, Lichtenstein AH. Dietary modulators of statin efficacy in cardiovascular disease and cognition. Mol Aspects Med 2014; 38:1-53. [PMID: 24813475 DOI: 10.1016/j.mam.2014.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 04/14/2014] [Accepted: 04/14/2014] [Indexed: 12/21/2022]
Abstract
Cardiovascular disease remains the leading cause of morbidity and mortality in the United States and other developed countries, and is fast growing in developing countries, particularly as life expectancy in all parts of the world increases. Current recommendations for the prevention of cardiovascular disease issued jointly from the American Academy of Cardiology and American Heart Association emphasize that lifestyle modification should be incorporated into any treatment plan, including those on statin drugs. However, there is a dearth of data on the interaction between diet and statins with respect to additive, complementary or antagonistic effects. This review collates the available data on the interaction of statins and dietary patterns, cognition, genetics and individual nutrients, including vitamin D, niacin, omega-3 fatty acids, fiber, phytochemicals (polyphenols and stanols) and alcohol. Of note, although the available data is summarized, the scope is limited, conflicting and disparate. In some cases it is likely there is unrecognized synergism. Virtually no data are available describing the interactions of statins with dietary components or dietary pattern in subgroups of the population, particularly those who may benefit most were positive effects identified. Hence, it is virtually impossible to draw any firm conclusions at this time. Nevertheless, this area is important because were the effects of statins and diet additive or synergistic harnessing the effect could potentially lead to the use of a lower intensity statin or dose.
Collapse
Affiliation(s)
- Huifen Wang
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Jeffrey B Blumberg
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - C-Y Oliver Chen
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Sang-Woon Choi
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA.
| | - Michael P Corcoran
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Susan S Harris
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Paul F Jacques
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Aleksandra S Kristo
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Chao-Qiang Lai
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Stefania Lamon-Fava
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Nirupa R Matthan
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Diane L McKay
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Mohsen Meydani
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Laurence D Parnell
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Max P Prokopy
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Tammy M Scott
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Alice H Lichtenstein
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| |
Collapse
|
9
|
|
10
|
Azizi G, Mirshafiey A. The potential role of proinflammatory and antiinflammatory cytokines in Alzheimer disease pathogenesis. Immunopharmacol Immunotoxicol 2012; 34:881-95. [DOI: 10.3109/08923973.2012.705292] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
11
|
Ankolekar S, Rewell S, Howells DW, Bath PMW. The Influence of Stroke Risk Factors and Comorbidities on Assessment of Stroke Therapies in Humans and Animals. Int J Stroke 2012; 7:386-97. [DOI: 10.1111/j.1747-4949.2012.00802.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The main driving force behind the assessment of novel pharmacological agents in animal models of stroke is to deliver new drugs to treat the human disease rather than to increase knowledge of stroke pathophysiology. There are numerous animal models of the ischaemic process and it appears that the same processes operate in humans. Yet, despite these similarities, the drugs that appear effective in animal models have not worked in clinical trials. To date, tissue plasminogen activator is the only drug that has been successfully used at the bedside in hyperacute stroke management. Several reasons have been put forth to explain this, but the failure to consider comorbidities and risk factors common in older people is an important one. In this article, we review the impact of the risk factors most studied in animal models of acute stroke and highlight the parallels with human stroke, and, where possible, their influence on evaluation of therapeutic strategies.
Collapse
Affiliation(s)
| | - Sarah Rewell
- Florey Neuroscience Institutes, Melbourne Brain Centre, Heidelberg, Australia
| | - David W. Howells
- Florey Neuroscience Institutes, Melbourne Brain Centre, Heidelberg, Australia
| | | |
Collapse
|
12
|
Hipp DM, Ely EW. Pharmacological and nonpharmacological management of delirium in critically ill patients. Neurotherapeutics 2012; 9:158-75. [PMID: 22270810 PMCID: PMC3271151 DOI: 10.1007/s13311-011-0102-9] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Delirium is a common yet under-diagnosed syndrome of acute brain dysfunction, which is characterized by inattention, fluctuating mental status, altered level of consciousness, or disorganized thinking. Although our recognition of risk factors for delirium has progressed, our understanding of the underlying pathophysiologic mechanisms remains limited. Improvements in monitoring and assessment for delirium (particularly in the intensive care setting) have resulted in validated and reliable tools such as arousal scales and bedside delirium monitoring instruments. Once delirium is recognized and the modifiable risk factors are addressed, the next step in management (if delirium persists) is often pharmacological intervention. The sedatives, analgesics, and hypnotics most often used in the intensive care unit (ICU) to achieve patient comfort are all too frequently deliriogenic, resulting in a longer duration of ICU and hospital stay, and increased costs. Therefore, identification of safe and efficacious agents to reduce the incidence, duration, and severity of ICU delirium is a hot topic in critical care. Recognizing that there are no medications approved by the Food and Drug Administration (FDA) for the prevention or treatment of delirium, we chose anti-psychotics and alpha-2 agonists as the general pharmacological focus of this article because both were subjects of relatively recent data and ongoing clinical trials. Emerging pharmacological strategies for addressing delirium must be combined with nonpharmacological approaches (such as daily spontaneous awakening trials and spontaneous breathing trials) and early mobility (combined with the increasingly popular approach called: Awakening and Breathing Coordination, Delirium Monitoring, Early Mobility, and Exercise [ABCDE] of critical care) to develop evidence-based approaches that will ensure safer and faster recovery of the sickest patients in our healthcare system.
Collapse
Affiliation(s)
- Dustin M. Hipp
- Vanderbilt University School of Medicine, Nashville, TN 37232 USA
| | - E. Wesley Ely
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care, Vanderbilt University School of Medicine, Nashville, TN 37232 USA
- Center for Health Services Research, Vanderbilt University, Nashville, TN 37232-8300 USA
- Geriatric Research Education Clinical Center (GRECC) of the Veteran’s Affairs Administration, Associate Director of Aging Research for Tennessee Valley VA GRECC, Nashville, TN 37232 USA
| |
Collapse
|
13
|
Morandi A, Hughes CG, Girard TD, McAuley DF, Ely EW, Pandharipande PP. Statins and brain dysfunction: a hypothesis to reduce the burden of cognitive impairment in patients who are critically ill. Chest 2011; 140:580-585. [PMID: 21896517 PMCID: PMC3168859 DOI: 10.1378/chest.10-3065] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 03/09/2011] [Indexed: 01/05/2023] Open
Abstract
Delirium is a frequent form of acute brain dysfunction in patients who are critically ill and is associated with poor clinical outcomes, including a critical illness brain injury that may last for months to years. Despite widespread recognition of significant adverse outcomes, pharmacologic approaches to prevent or treat delirium during critical illness remain unproven. We hypothesize that commonly prescribed statin medications may prevent and treat delirium by targeting molecular pathways of inflammation (peripheral and central) and microglial activation that are central to the pathogenesis of delirium. Systemic inflammation, a principal mechanism of injury, for example, in sepsis, acute respiratory distress syndrome, and other critical illnesses, can cause neuronal apoptosis, blood-brain barrier injury, brain ischemia, and microglial activation. We hypothesize that the known pleiotropic effects of statins, which attenuate such neuroinflammation, may redirect microglial activation and promote an antiinflammatory phenotype, thereby offering the potential to reduce the public health burden of delirium and its associated long-term cognitive injury.
Collapse
Affiliation(s)
- Alessandro Morandi
- Center for Quality of Aging, Vanderbilt University School of Medicine; Center for Health Services Research, Vanderbilt University School of Medicine; Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine.
| | - Christopher G Hughes
- Department of Anesthesiology, Division of Critical Care Medicine, Vanderbilt University School of Medicine
| | - Timothy D Girard
- Center for Quality of Aging, Vanderbilt University School of Medicine; Center for Health Services Research, Vanderbilt University School of Medicine; Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine; Geriatric Research, Education, and Clinical Center Service, Department of Veterans Affairs Medical Center, Tennessee Valley Healthcare System, Nashville, TN
| | - Danny F McAuley
- Regional Intensive Care Unit, the Queen's University of Belfast, Belfast, Northern Ireland; Royal Victoria Hospital, and the Centre for Infection and Immunity, the Queen's University of Belfast, Belfast, Northern Ireland
| | - E Wesley Ely
- Center for Quality of Aging, Vanderbilt University School of Medicine; Center for Health Services Research, Vanderbilt University School of Medicine; Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine; Geriatric Research, Education, and Clinical Center Service, Department of Veterans Affairs Medical Center, Tennessee Valley Healthcare System, Nashville, TN
| | - Pratik P Pandharipande
- Department of Anesthesiology, Division of Critical Care Medicine, Vanderbilt University School of Medicine; Anesthesia Service, Department of Veterans Affairs Medical Center, Tennessee Valley Healthcare System, Nashville, TN
| |
Collapse
|