1
|
Tyagi R, Singh A, Chaudhary KK, Yadav MK. Pharmacophore modeling and its applications. Bioinformatics 2022. [DOI: 10.1016/b978-0-323-89775-4.00009-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
2
|
Pal A, Curtin JF, Kinsella GK. Structure based prediction of a novel GPR120 antagonist based on pharmacophore screening and molecular dynamics simulations. Comput Struct Biotechnol J 2021; 19:6050-6063. [PMID: 34849208 PMCID: PMC8605389 DOI: 10.1016/j.csbj.2021.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 11/03/2021] [Accepted: 11/03/2021] [Indexed: 12/20/2022] Open
Abstract
Hypothesis of the important residues in conserving the GPR120S “ionic-lock”. Computational model targeting W277 and N313 for virtual screening of GPR120S ligands. Cpd 9 emerged as a potential GPR120S antagonist and anti-cancer treatment.
The G-protein coupled receptor, GPR120, has ubiquitous expression and multifaceted roles in modulating metabolic and anti-inflammatory processes. Recent implications of its role in cancer progression have presented GPR120 as an attractive oncogenic drug target. GPR120 gene knockdown in breast cancer studies revealed a role of GPR120-induced chemoresistance in epirubicin and cisplatin-induced DNA damage in tumour cells. Higher expression and activation levels of GPR120 is also reported to promote tumour angiogenesis and cell migration in colorectal cancer. Some agonists targeting GPR120 have been reported, such as TUG891 and Compound39, but to date development of small-molecule inhibitors of GPR120 is limited. Herein, following homology modelling of the receptor a pharmacophore hypothesis was derived from 300 ns all-atomic molecular dynamics (MD) simulations on apo, TUG891-bound and Compound39-bound GPR120S (short isoform) receptor models embedded in a water solvated lipid bilayer system. We performed comparative MD analysis on protein–ligand interactions between the two agonist and apo simulations on the stability of the “ionic lock” – a Class A GPCRs characteristic of receptor activation and inactivation. The detailed analysis predicted that ligand interactions with W277 and N313 are critical to conserve the “ionic-lock” conformation (R136 of Helix 3) and prevent GPR120S receptor activation. The results led to generation of a W277 and N313 focused pharmacophore hypothesis and the screening of the ZINC15 database using ZINCPharmer through the structure-based pharmacophore. 100 ns all-atomic molecular dynamics (MD) simulations were performed on 9 small molecules identified and Cpd 9, (2-hydroxy-N-{4-[(6-hydroxy-2-methylpyrimidin-4-yl) amino] phenyl} benzamide) was predicted to be a small-molecule GPR120S antagonist. The conformational results from the collective all-atomic MD analysis provided structural information for further identification and optimisation of novel druggable inhibitors of GPR120S using this rational design approach, which could have future potential for anti-cancer drug development studies.
Collapse
Affiliation(s)
- Ajay Pal
- School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin, Dublin D07 ADY7, Ireland.,Environmental Sustainability and Health Institute (ESHI), Grangegorman, Technological University Dublin, Dublin D07 H6K8, Ireland
| | - James F Curtin
- School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin, Dublin D07 ADY7, Ireland
| | - Gemma K Kinsella
- School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin, Dublin D07 ADY7, Ireland
| |
Collapse
|
3
|
Multiple Virtual Screening Strategies for the Discovery of Novel Compounds Active Against Dengue Virus: A Hit Identification Study. Sci Pharm 2019. [DOI: 10.3390/scipharm88010002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Dengue infection is caused by a mosquito-borne virus, particularly in children, which may even cause death. No effective prevention or therapeutic agents to cure this disease are available up to now. The dengue viral envelope (E) protein was discovered to be a promising target for inhibition in several steps of viral infection. Structure-based virtual screening has become an important technique to identify first hits in a drug screening process, as it is possible to reduce the number of compounds to be assayed, allowing to save resources. In the present study, pharmacophore models were generated using the common hits approach (CHA), starting from trajectories obtained from molecular dynamics (MD) simulations of the E protein complexed with the active inhibitor, flavanone (FN5Y). Subsequently, compounds presented in various drug databases were screened using the LigandScout 4.2 program. The obtained hits were analyzed in more detail by molecular docking, followed by extensive MD simulations of the complexes. The highest-ranked compound from this procedure was then synthesized and tested on its inhibitory efficiency by experimental assays.
Collapse
|
4
|
Carpenter EL, Chagani S, Nelson D, Cassidy PB, Laws M, Ganguli-Indra G, Indra AK. Mitochondrial complex I inhibitor deguelin induces metabolic reprogramming and sensitizes vemurafenib-resistant BRAF V600E mutation bearing metastatic melanoma cells. Mol Carcinog 2019; 58:1680-1690. [PMID: 31211467 DOI: 10.1002/mc.23068] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 12/22/2022]
Abstract
Treatment with vemurafenib, a potent and selective inhibitor of mitogen-activated protein kinase signaling downstream of the BRAFV600E oncogene, elicits dramatic clinical responses in patients with metastatic melanoma. Unfortunately, the clinical utility of this drug is limited by a high incidence of drug resistance. Thus, there is an unmet need for alternative therapeutic strategies to treat vemurafenib-resistant metastatic melanomas. We have conducted high-throughput screening of two bioactive compound libraries (Siga and Spectrum libraries) against a metastatic melanoma cell line (A2058) and identified two structurally analogous compounds, deguelin and rotenone, from a cell viability assay. Vemurafenib-resistant melanoma cell lines, A2058R and A375R (containing the BRAFV600E mutation), also showed reduced proliferation when treated with these two compounds. Deguelin, a mitochondrial complex I inhibitor, was noted to significantly inhibit oxygen consumption in cellular metabolism assays. Mechanistically, deguelin treatment rapidly activates AMPK signaling, which results in inhibition of mTORC1 signaling and differential phosphorylation of mTORC1's downstream effectors, 4E-BP1 and p70S6 kinase. Deguelin also significantly inhibited ERK activation and Ki67 expression without altering Akt activation in the same timeframe in the vemurafenib-resistant melanoma cells. These data posit that treatment with metabolic regulators, such as deguelin, can lead to energy starvation, thereby modulating the intracellular metabolic environment and reducing survival of drug-resistant melanomas harboring BRAF V600E mutations.
Collapse
Affiliation(s)
- Evan L Carpenter
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon.,Department of Dermatology, Oregon Health & Science University, Portland, Oregon
| | - Sharmeen Chagani
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon
| | - Dylan Nelson
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon
| | - Pamela B Cassidy
- Department of Dermatology, Oregon Health & Science University, Portland, Oregon.,Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Madeleine Laws
- Department of Dermatology, Oregon Health & Science University, Portland, Oregon
| | - Gitali Ganguli-Indra
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon.,Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Arup K Indra
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon.,Department of Dermatology, Oregon Health & Science University, Portland, Oregon.,Department of Biochemistry and Biophysics, OSU, Corvallis, Oregon.,Linus Pauling Institute, Oregon State University, Corvallis, Oregon.,Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
5
|
Johnson DK, Karanicolas J. Ultra-High-Throughput Structure-Based Virtual Screening for Small-Molecule Inhibitors of Protein-Protein Interactions. J Chem Inf Model 2016; 56:399-411. [PMID: 26726827 DOI: 10.1021/acs.jcim.5b00572] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Protein-protein interactions play important roles in virtually all cellular processes, making them enticing targets for modulation by small-molecule therapeutics: specific examples have been well validated in diseases ranging from cancer and autoimmune disorders, to bacterial and viral infections. Despite several notable successes, however, overall these remain a very challenging target class. Protein interaction sites are especially challenging for computational approaches, because the target protein surface often undergoes a conformational change to enable ligand binding: this confounds traditional approaches for virtual screening. Through previous studies, we demonstrated that biased "pocket optimization" simulations could be used to build collections of low-energy pocket-containing conformations, starting from an unbound protein structure. Here, we demonstrate that these pockets can further be used to identify ligands that complement the protein surface. To do so, we first build from a given pocket its "exemplar": a perfect, but nonphysical, pseudoligand that would optimally match the shape and chemical features of the pocket. In our previous studies, we used these exemplars to quantitatively compare protein surface pockets to one another. Here, we now introduce this exemplar as a template for pharmacophore-based screening of chemical libraries. Through a series of benchmark experiments, we demonstrate that this approach exhibits comparable performance as traditional docking methods for identifying known inhibitors acting at protein interaction sites. However, because this approach is predicated on ligand/exemplar overlays, and thus does not require explicit calculation of protein-ligand interactions, exemplar screening provides a tremendous speed advantage over docking: 6 million compounds can be screened in about 15 min on a single 16-core, dual-GPU computer. The extreme speed at which large compound libraries can be traversed easily enables screening against a "pocket-optimized" ensemble of protein conformations, which in turn facilitates identification of more diverse classes of active compounds for a given protein target.
Collapse
Affiliation(s)
- David K Johnson
- Center for Computational Biology, and ‡Department of Molecular Biosciences, University of Kansas , 2030 Becker Drive, Lawrence, Kansas 66045-7534, United States
| | - John Karanicolas
- Center for Computational Biology, and ‡Department of Molecular Biosciences, University of Kansas , 2030 Becker Drive, Lawrence, Kansas 66045-7534, United States
| |
Collapse
|
6
|
Sethi D, Mahajan S, Singh C, Lama A, Hade MD, Gupta P, Dikshit KL. Lipoprotein LprI of Mycobacterium tuberculosis Acts as a Lysozyme Inhibitor. J Biol Chem 2015; 291:2938-53. [PMID: 26589796 DOI: 10.1074/jbc.m115.662593] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Indexed: 12/12/2022] Open
Abstract
Mycobacterium tuberculosis executes numerous defense strategies for the successful establishment of infection under a diverse array of challenges inside the host. One such strategy that has been delineated in this study is the abrogation of lytic activity of lysozyme by a novel glycosylated and surface-localized lipoprotein, LprI, which is exclusively present in M. tuberculosis complex. The lprI gene co-transcribes with the glbN gene (encoding hemoglobin (HbN)) and both are synchronously up-regulated in M. tuberculosis during macrophage infection. Recombinant LprI, expressed in Escherichia coli, exhibited strong binding (Kd ≤ 2 nm) with lysozyme and abrogated its lytic activity completely, thereby conferring protection to fluorescein-labeled Micrococcus lysodeikticus from lysozyme-mediated hydrolysis. Expression of the lprI gene in Mycobacterium smegmatis (8-10-fold) protected its growth from lysozyme inhibition in vitro and enhanced its phagocytosis and survival during intracellular infection of peritoneal and monocyte-derived macrophages, known to secrete lysozyme, and in the presence of exogenously added lysozyme in secondary cell lines where lysozyme levels are low. In contrast, the presence of HbN enhanced phagocytosis and intracellular survival of M. smegmatis only in the absence of lysozyme but not under lysozyme stress. Interestingly, co-expression of the glbN-lprI gene pair elevated the invasion and survival of M. smegmatis 2-3-fold in secondary cell lines in the presence of lysozyme in comparison with isogenic cells expressing these genes individually. Thus, specific advantage against macrophage-generated lysozyme, conferred by the combination of LprI-HbN during invasion of M. tuberculosis, may have vital implications on the pathogenesis of tuberculosis.
Collapse
Affiliation(s)
- Deepti Sethi
- From the Council of Scientific and Industrial Research-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India
| | - Sahil Mahajan
- From the Council of Scientific and Industrial Research-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India
| | - Chaahat Singh
- From the Council of Scientific and Industrial Research-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India
| | - Amrita Lama
- From the Council of Scientific and Industrial Research-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India
| | - Mangesh Dattu Hade
- From the Council of Scientific and Industrial Research-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India
| | - Pawan Gupta
- From the Council of Scientific and Industrial Research-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India
| | - Kanak L Dikshit
- From the Council of Scientific and Industrial Research-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India
| |
Collapse
|
7
|
Sykes ML, Avery VM. Development and application of a sensitive, phenotypic, high-throughput image-based assay to identify compound activity against Trypanosoma cruzi amastigotes. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2015; 5:215-28. [PMID: 27120069 PMCID: PMC4847003 DOI: 10.1016/j.ijpddr.2015.10.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 10/05/2015] [Accepted: 10/06/2015] [Indexed: 01/08/2023]
Abstract
We have developed a high content 384-well, image-based assay to estimate the effect of compound treatment on Trypanosoma cruzi amastigotes in 3T3 fibroblasts. In the same well, the effect of compound activity on host cells can also be determined, as an initial indicator of cytotoxicity. This assay has been used to identify active compounds from an in-house library of compounds with either known biological activity or that are FDA approved, and separately, from the Medicines for Malaria Venture Malaria Box collection. Active compounds were screened against T. cruzi trypomastigotes, utilising an assay developed with the viability dye resazurin. Twelve compounds with reconfirmed solid sample activity, with IC50 values of less than 10 μM and selectivity indices to T. cruzi amastigotes over 3T3 host cells of between >22 and 319 times were identified from these libraries. As 3T3 cells are contact inhibited, with limited proliferation in the assay, selective compounds of interest were profiled in a separate assay to estimate the viability of compound treated, replicating HEK293 cells. Selective compounds that were not previously reported in the literature were further profiled by extending the incubation time against amastigote infected 3T3 cells to determine if there were residual amastigotes post-treatment, important for the consideration of the exposure time required for further biological characterisation. The assay development process and the suitability of identified compounds as hit molecules for Chagas disease research are discussed. Image-based techniques to quantify compound activity against Trypanosoma cruzi. Two fluorophores to accurately identify amastigote infection of host cells. Selective hit compounds with a potential for further development are described.
Collapse
Affiliation(s)
- Melissa L Sykes
- Discovery Biology, Eskitis Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia.
| | - Vicky M Avery
- Discovery Biology, Eskitis Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| |
Collapse
|
8
|
Leysen S, Van Herreweghe JM, Yoneda K, Ogata M, Usui T, Araki T, Michiels CW, Strelkov SV. The structure of the proteinaceous inhibitor PliI from Aeromonas hydrophila in complex with its target lysozyme. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:344-51. [PMID: 25664745 DOI: 10.1107/s1399004714025863] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 11/26/2014] [Indexed: 11/10/2022]
Abstract
Recent microbiological data have revealed that Gram-negative bacteria are able to protect themselves against the lytic action of host lysozymes by secreting proteinaceous inhibitors. Four distinct classes of such inhibitors have been discovered that specifically act against c-type, g-type and i-type lysozymes. Here, the 1.24 Å resolution crystal structure of the periplasmic i-type lysozyme inhibitor from Aeromonas hydrophila (PliI-Ah) in complex with the i-type lysozyme from Meretrix lusoria is reported. The structure is the first to explain the inhibitory mechanism of the PliI family at the atomic level. A distinct `ridge' formed by three exposed PliI loops inserts into the substrate-binding groove of the lysozyme, resulting in a complementary `key-lock' interface. The interface is principally stabilized by the interactions made by the PliI-Ah residues Ser104 and Tyr107 belonging to the conserved SGxY motif, as well as by the other conserved residues Ser46 and Asp76. The functional importance of these residues is confirmed by inhibition assays with the corresponding point mutants of PliI-Ah. The accumulated structural data on lysozyme-inhibitor complexes from several classes indicate that in all cases an extensive interface of either a single or a double `key-lock' type is formed, resulting in highly efficient inhibition. These data provide a basis for the rational development of a new class of antibacterial drugs.
Collapse
Affiliation(s)
- Seppe Leysen
- Laboratory for Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Joris M Van Herreweghe
- Laboratory of Food Microbiology, Leuven Food Science and Nutrition Research Centre, KU Leuven, 3000 Leuven, Belgium
| | - Kazunari Yoneda
- Department of Bioscience, School of Agriculture, Tokai University, Kawayo, Minamiaso, Kumamoto 869-1404, Japan
| | - Makoto Ogata
- Department of Chemistry and Biochemistry, Fukushima National College of Technology, 30 Nagao, Kamiarakawa, Taira, Iwaki, Fukushima 970-8034, Japan
| | - Taichi Usui
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan
| | - Tomohiro Araki
- Department of Bioscience, School of Agriculture, Tokai University, Kawayo, Minamiaso, Kumamoto 869-1404, Japan
| | - Christiaan W Michiels
- Laboratory of Food Microbiology, Leuven Food Science and Nutrition Research Centre, KU Leuven, 3000 Leuven, Belgium
| | - Sergei V Strelkov
- Laboratory for Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
9
|
Voet ARD, Kumar A, Berenger F, Zhang KYJ. Combining in silico and in cerebro approaches for virtual screening and pose prediction in SAMPL4. J Comput Aided Mol Des 2014; 28:363-73. [PMID: 24446075 DOI: 10.1007/s10822-013-9702-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 12/17/2013] [Indexed: 12/14/2022]
Abstract
The SAMPL challenges provide an ideal opportunity for unbiased evaluation and comparison of different approaches used in computational drug design. During the fourth round of this SAMPL challenge, we participated in the virtual screening and binding pose prediction on inhibitors targeting the HIV-1 integrase enzyme. For virtual screening, we used well known and widely used in silico methods combined with personal in cerebro insights and experience. Regular docking only performed slightly better than random selection, but the performance was significantly improved upon incorporation of additional filters based on pharmacophore queries and electrostatic similarities. The best performance was achieved when logical selection was added. For the pose prediction, we utilized a similar consensus approach that amalgamated the results of the Glide-XP docking with structural knowledge and rescoring. The pose prediction results revealed that docking displayed reasonable performance in predicting the binding poses. However, prediction performance can be improved utilizing scientific experience and rescoring approaches. In both the virtual screening and pose prediction challenges, the top performance was achieved by our approaches. Here we describe the methods and strategies used in our approaches and discuss the rationale of their performances.
Collapse
Affiliation(s)
- Arnout R D Voet
- Zhang Initiative Research Unit, Institute Laboratories, RIKEN, 2-1 Hirosawa, Wakō, Saitama, 351-0198, Japan
| | | | | | | |
Collapse
|
10
|
Leysen S, Vanderkelen L, Weeks SD, Michiels CW, Strelkov SV. Structural basis of bacterial defense against g-type lysozyme-based innate immunity. Cell Mol Life Sci 2013; 70:1113-22. [PMID: 23086131 PMCID: PMC11113182 DOI: 10.1007/s00018-012-1184-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 09/21/2012] [Accepted: 09/27/2012] [Indexed: 10/27/2022]
Abstract
Gram-negative bacteria can produce specific proteinaceous inhibitors to defend themselves against the lytic action of host lysozymes. So far, four different lysozyme inhibitor families have been identified. Here, we report the crystal structure of the Escherichia coli periplasmic lysozyme inhibitor of g-type lysozyme (PliG-Ec) in complex with Atlantic salmon g-type lysozyme (SalG) at a resolution of 0.95 Å, which is exceptionally high for a complex of two proteins. The structure reveals for the first time the mechanism of g-type lysozyme inhibition by the PliG family. The latter contains two specific conserved regions that are essential for its inhibitory activity. The inhibitory complex formation is based on a double 'key-lock' mechanism. The first key-lock element is formed by the insertion of two conserved PliG regions into the active site of the lysozyme. The second element is defined by a distinct pocket of PliG accommodating a lysozyme loop. Computational analysis indicates that this pocket represents a suitable site for small molecule binding, which opens an avenue for the development of novel antibacterial agents that suppress the inhibitory activity of PliG.
Collapse
Affiliation(s)
- S. Leysen
- Laboratory for Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit Leuven, Herestraat 49 bus 822, 3000 Leuven, Belgium
| | - L. Vanderkelen
- Laboratory of Food Microbiology, Leuven Food Science and Nutrition Research Centre (LFoRCe), Katholieke Universiteit Leuven, Kasteelpark Arenberg 22, 3001 Leuven, Belgium
| | - S. D. Weeks
- Laboratory for Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit Leuven, Herestraat 49 bus 822, 3000 Leuven, Belgium
| | - C. W. Michiels
- Laboratory of Food Microbiology, Leuven Food Science and Nutrition Research Centre (LFoRCe), Katholieke Universiteit Leuven, Kasteelpark Arenberg 22, 3001 Leuven, Belgium
| | - S. V. Strelkov
- Laboratory for Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit Leuven, Herestraat 49 bus 822, 3000 Leuven, Belgium
| |
Collapse
|
11
|
Callewaert L, Van Herreweghe JM, Vanderkelen L, Leysen S, Voet A, Michiels CW. Guards of the great wall: bacterial lysozyme inhibitors. Trends Microbiol 2012; 20:501-10. [DOI: 10.1016/j.tim.2012.06.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 06/22/2012] [Accepted: 06/29/2012] [Indexed: 10/28/2022]
|
12
|
Role of lysozyme inhibitors in the virulence of avian pathogenic Escherichia coli. PLoS One 2012; 7:e45954. [PMID: 23049900 PMCID: PMC3458809 DOI: 10.1371/journal.pone.0045954] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 08/23/2012] [Indexed: 11/19/2022] Open
Abstract
Lysozymes are key effectors of the animal innate immunity system that kill bacteria by hydrolyzing peptidoglycan, their major cell wall constituent. Recently, specific inhibitors of the three major lysozyme families occuring in the animal kingdom (c-, g- and i-type) have been discovered in Gram-negative bacteria, and it has been proposed that these may help bacteria to evade lysozyme mediated lysis during interaction with an animal host. Escherichia coli produces two inhibitors that are specific for c-type lysozyme (Ivy, Inhibitor of vertebrate lysozyme; MliC, membrane bound lysozyme inhibitor of c-type lysozyme), and one specific for g-type lysozyme (PliG, periplasmic lysozyme inhibitor of g-type lysozyme). Here, we investigated the role of these lysozyme inhibitors in virulence of Avian Pathogenic E. coli (APEC) using a serum resistance test and a subcutaneous chicken infection model. Knock-out of mliC caused a strong reduction in serum resistance and in in vivo virulence that could be fully restored by genetic complementation, whereas ivy and pliG could be knocked out without effect on serum resistance and virulence. This is the first in vivo evidence for the involvement of lysozyme inhibitors in bacterial virulence. Remarkably, the virulence of a ivy mliC double knock-out strain was restored to almost wild-type level, and this strain also had a substantial residual periplasmic lysozyme inhibitory activity that was higher than that of the single knock-out strains. This suggests the existence of an additional periplasmic lysozyme inhibitor in this strain, and indicates a regulatory interaction in the expression of the different inhibitors.
Collapse
|
13
|
Van Herreweghe JM, Michiels CW. Invertebrate lysozymes: Diversity and distribution, molecular mechanism and in vivo function. J Biosci 2012; 37:327-48. [DOI: 10.1007/s12038-012-9201-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|