1
|
Ghorbani N, Shiri M, Alian M, Yaghubi R, Shafaghi M, Hojjat H, Pahlavan S, Davoodi J. A Non-Apoptotic Pattern of Caspase-9/Caspase-3 Activation During Differentiation of Human Embryonic Stem Cells into Cardiomyocytes. Adv Biol (Weinh) 2024; 8:e2400026. [PMID: 38640919 DOI: 10.1002/adbi.202400026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/22/2024] [Indexed: 04/21/2024]
Abstract
In vitro studies have demonstrated that the differentiation of embryonic stem cells (ESCs) into cardiomyocytes requires activation of caspases through the mitochondrial pathway. These studies have relied on synthetic substrates for activity measurements, which can be misleading due to potential none-specific hydrolysis of these substrates by proteases other than caspases. Hence, caspase-9 and caspase-3 activation are investigated during the differentiation of human ESCs (hESCs) by directly assessing caspase-9 and -3 cleavage. Western blot reveals the presence of the cleaved caspase-9 prior to and during the differentiation of human ESCs (hESCs) into cardiomyocytes at early stages, which diminishes as the differentiation progresses, without cleavage and activation of endogenous procaspase-3. Activation of exogenous procaspase-3 by endogenous caspase-9 and subsequent cleavage of chromogenic caspase-3 substrate i.e. DEVD-pNA during the course of differentiation confirmes that endogenous caspase-9 has the potency to recognize and activate procaspase-3, but for reasons that are unknown to us fails to do so. These observations suggest the existence of distinct mechanisms of caspase regulation in differentiation as compared to apoptosis. Bioinformatics analysis suggests the presence of caspase-9 regulators, which may influence proteolytic function under specific conditions.
Collapse
Affiliation(s)
- Negar Ghorbani
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, 1417614335, Iran
| | - Mahshad Shiri
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, 1665659911, Iran
| | - Maedeh Alian
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, 1417614335, Iran
| | - Roham Yaghubi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, 1417614411, Iran
| | - Mojtaba Shafaghi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, 1665659911, Iran
| | - Hamidreza Hojjat
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, 1417614335, Iran
| | - Sara Pahlavan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, 1665659911, Iran
| | - Jamshid Davoodi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, 1417614335, Iran
| |
Collapse
|
2
|
Guo Y, Lu W, Zhang Z, Liu H, Zhang A, Zhang T, Wu Y, Li X, Yang S, Cui Q, Li Z. A novel pyroptosis-related gene signature exhibits distinct immune cells infiltration landscape in Wilms' tumor. BMC Pediatr 2024; 24:279. [PMID: 38678251 PMCID: PMC11055250 DOI: 10.1186/s12887-024-04731-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 03/31/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND Wilms' tumor (WT) is the most common renal tumor in childhood. Pyroptosis, a type of inflammation-characterized and immune-related programmed cell death, has been extensively studied in multiple tumors. In the current study, we aim to construct a pyroptosis-related gene signature for predicting the prognosis of Wilms' tumor. METHODS We acquired RNA-seq data from TARGET kidney tumor projects for constructing a gene signature, and snRNA-seq data from GEO database for validating signature-constructing genes. Pyroptosis-related genes (PRGs) were collected from three online databases. We constructed the gene signature by Lasso Cox regression and then established a nomogram. Underlying mechanisms by which gene signature is related to overall survival states of patients were explored by immune cell infiltration analysis, differential expression analysis, and functional enrichment analysis. RESULTS A pyroptosis-related gene signature was constructed with 14 PRGs, which has a moderate to high predicting capacity with 1-, 3-, and 5-year area under the curve (AUC) values of 0.78, 0.80, and 0.83, respectively. A prognosis-predicting nomogram was established by gender, stage, and risk score. Tumor-infiltrating immune cells were quantified by seven algorithms, and the expression of CD8( +) T cells, B cells, Th2 cells, dendritic cells, and type 2 macrophages are positively or negatively correlated with risk score. Two single nuclear RNA-seq samples of different histology were harnessed for validation. The distribution of signature genes was identified in various cell types. CONCLUSIONS We have established a pyroptosis-related 14-gene signature in WT. Moreover, the inherent roles of immune cells (CD8( +) T cells, B cells, Th2 cells, dendritic cells, and type 2 macrophages), functions of differentially expressed genes (tissue/organ development and intercellular communication), and status of signaling pathways (proteoglycans in cancer, signaling pathways regulating pluripotent of stem cells, and Wnt signaling pathway) have been elucidated, which might be employed as therapeutic targets in the future.
Collapse
Affiliation(s)
- Yujun Guo
- Department of Pediatric Surgery, The Sixth Affiliated Hospital of Harbin Medical University, Harbin Medical University, No.998 Aiying Street, Harbin, Heilongjiang, 150027, China
| | - Wenjun Lu
- Department of Pediatric Surgery, The Sixth Affiliated Hospital of Harbin Medical University, Harbin Medical University, No.998 Aiying Street, Harbin, Heilongjiang, 150027, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China
- Laboratory of Systems Immunology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Ze'nan Zhang
- Department of Pediatric Surgery, The Sixth Affiliated Hospital of Harbin Medical University, Harbin Medical University, No.998 Aiying Street, Harbin, Heilongjiang, 150027, China
| | - Hengchen Liu
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital of Zhejiang University School of Medicine, No.88 Jiefang Road, Hangzhou, Zhejiang, 310022, China
| | - Aodan Zhang
- Department of Pediatric Surgery, The Sixth Affiliated Hospital of Harbin Medical University, Harbin Medical University, No.998 Aiying Street, Harbin, Heilongjiang, 150027, China
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, No.246 Xuefu Road, Harbin, Heilongjiang, 150000, China
| | - Tingting Zhang
- Psychology and Health Management Center, Harbin Medical University, No.157 Baojian Road, Harbin, Heilongjiang, 150081, China
| | - Yang Wu
- Department of Pediatric Surgery, The Sixth Affiliated Hospital of Harbin Medical University, Harbin Medical University, No.998 Aiying Street, Harbin, Heilongjiang, 150027, China
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, No.246 Xuefu Road, Harbin, Heilongjiang, 150000, China
| | - Xiangqi Li
- Department of Pediatric Surgery, The Sixth Affiliated Hospital of Harbin Medical University, Harbin Medical University, No.998 Aiying Street, Harbin, Heilongjiang, 150027, China
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, No.246 Xuefu Road, Harbin, Heilongjiang, 150000, China
| | - Shulong Yang
- Department of Pediatric Surgery, The Sixth Affiliated Hospital of Harbin Medical University, Harbin Medical University, No.998 Aiying Street, Harbin, Heilongjiang, 150027, China
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, No.246 Xuefu Road, Harbin, Heilongjiang, 150000, China
| | - Qingbo Cui
- Department of Pediatric Surgery, The Sixth Affiliated Hospital of Harbin Medical University, Harbin Medical University, No.998 Aiying Street, Harbin, Heilongjiang, 150027, China.
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, No.246 Xuefu Road, Harbin, Heilongjiang, 150000, China.
| | - Zhaozhu Li
- Department of Pediatric Surgery, The Sixth Affiliated Hospital of Harbin Medical University, Harbin Medical University, No.998 Aiying Street, Harbin, Heilongjiang, 150027, China.
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, No.246 Xuefu Road, Harbin, Heilongjiang, 150000, China.
| |
Collapse
|
3
|
Contribution of Apaf-1 to the pathogenesis of cancer and neurodegenerative diseases. Biochimie 2021; 190:91-110. [PMID: 34298080 DOI: 10.1016/j.biochi.2021.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/24/2021] [Accepted: 07/12/2021] [Indexed: 01/02/2023]
Abstract
Deregulation of apoptosis is associated with various pathologies, such as neurodegenerative disorders at one end of the spectrum and cancer at the other end. Generally speaking, differentiated cells like cardiomyocytes, skeletal myocytes and neurons exhibit low levels of Apaf-1 (Apoptotic protease activating factor 1) protein suggesting that down-regulation of Apaf-1 is an important event contributing to the resistance of these cells to apoptosis. Nonetheless, upregulation of Apaf-1 has not emerged as a common phenomenon in pathologies associated with enhanced neuronal cell death, i.e., neurodegenerative diseases. In cancer, on the other hand, Apaf-1 downregulation is a common phenomenon, which occurs through various mechanisms including mRNA hyper-methylation, gene methylation, Apaf-1 localization in lipid rafts, inhibition by microRNAs, phosphorylation, and interaction with specific inhibitors. Due to the diversity of these mechanisms and involvement of other factors, defining the exact contribution of Apaf-1 to the development of cancer in general and neurodegenerative disorders, in particular, is complicated. The current review is an attempt to provide a comprehensive image of Apaf-1's contribution to the pathologies observed in cancer and neurodegenerative diseases with the emphasis on the therapeutic aspects of Apaf-1 as an important target in these pathologies.
Collapse
|
4
|
Sandall CF, Ziehr BK, MacDonald JA. ATP-Binding and Hydrolysis in Inflammasome Activation. Molecules 2020; 25:molecules25194572. [PMID: 33036374 PMCID: PMC7583971 DOI: 10.3390/molecules25194572] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/02/2020] [Accepted: 10/03/2020] [Indexed: 02/06/2023] Open
Abstract
The prototypical model for NOD-like receptor (NLR) inflammasome assembly includes nucleotide-dependent activation of the NLR downstream of pathogen- or danger-associated molecular pattern (PAMP or DAMP) recognition, followed by nucleation of hetero-oligomeric platforms that lie upstream of inflammatory responses associated with innate immunity. As members of the STAND ATPases, the NLRs are generally thought to share a similar model of ATP-dependent activation and effect. However, recent observations have challenged this paradigm to reveal novel and complex biochemical processes to discern NLRs from other STAND proteins. In this review, we highlight past findings that identify the regulatory importance of conserved ATP-binding and hydrolysis motifs within the nucleotide-binding NACHT domain of NLRs and explore recent breakthroughs that generate connections between NLR protein structure and function. Indeed, newly deposited NLR structures for NLRC4 and NLRP3 have provided unique perspectives on the ATP-dependency of inflammasome activation. Novel molecular dynamic simulations of NLRP3 examined the active site of ADP- and ATP-bound models. The findings support distinctions in nucleotide-binding domain topology with occupancy of ATP or ADP that are in turn disseminated on to the global protein structure. Ultimately, studies continue to reveal how the ATP-binding and hydrolysis properties of NACHT domains in different NLRs integrate with signaling modules and binding partners to control innate immune responses at the molecular level.
Collapse
|
5
|
Abrahamse H, Houreld NN. Genetic Aberrations Associated with Photodynamic Therapy in Colorectal Cancer Cells. Int J Mol Sci 2019; 20:ijms20133254. [PMID: 31269724 PMCID: PMC6651415 DOI: 10.3390/ijms20133254] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 12/22/2022] Open
Abstract
Photodynamic therapy (PDT) is a cancer treatment modality that utilizes three components: light (λ 650-750 nm), a photosensitizer (PS) and molecular oxygen, which upon activation renders the modality effective. Colorectal cancer has one of the highest incident rates as well as a high mortality rate worldwide. In this study, a zinc (Zn) metal-based phthalocyanine (ZnPcSmix) PS was used to determine its efficacy for the treatment of colon adenocarcinoma cells (DLD-1 and Caco-2). Photoactivation of the PS was achieved by laser irradiation at a wavelength of 680 nm. Dose responses were performed to establish optimal PS concentration and irradiation fluence. A working combination of 20 µM ZnPcSmix and 5 J/cm2 was used. Biochemical responses were determined after 1 or 24 h incubation post-treatment. Since ZnPcSmix is localized in lysosomes and mitochondria, mitochondrial destabilization analysis was performed monitoring mitochondrial membrane potential (MMP). Cytosolic acidification was determined measuring hydrogen peroxide (H2O2) levels in the cytoplasm. Having established apoptotic cell death induction, an apoptosis PCR array was performed to establish the apoptotic mechanism. In DLD-1 cells, expression of genes included 3 up-regulated and 20 down-regulated genes while in Caco-2 cells, there were 16 up-regulated and 22 down-regulated genes. In both cell lines, in up-regulated genes, there was a combination of pro- and anti-apoptotic genes that were significantly expressed. Gene expression results showed that more tumorigenic cells (DLD-1) went through apoptosis; however, they exhibit increased risk of resistance and recurrence, while less tumorigenic Caco-2 cells responded better to PDT, thus being suggestive of a better prognosis post-PDT treatment. In addition, the possible apoptotic mechanisms of cell death were deduced based on the genetic expression profiling of regulatory apoptotic inducing factors.
Collapse
Affiliation(s)
- Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg 2028, South Africa.
| | - Nicolette Nadene Houreld
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg 2028, South Africa
| |
Collapse
|
6
|
Sharma N, Jha S. NLR-regulated pathways in cancer: opportunities and obstacles for therapeutic interventions. Cell Mol Life Sci 2016; 73:1741-64. [PMID: 26708292 PMCID: PMC11108278 DOI: 10.1007/s00018-015-2123-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 12/09/2015] [Accepted: 12/15/2015] [Indexed: 02/08/2023]
Abstract
NLRs (nucleotide-binding domain, leucine-rich repeat containing receptors) are pattern recognition receptors associated with immunity and inflammation in response to endogenous and exogenous pathogen and damage associated molecular patterns (PAMPs and DAMPs respectively). Dysregulated NLR function is associated with several diseases including cancers, metabolic diseases, autoimmune disorders and autoinflammatory syndromes. In the last decade, distinct cell and organ specific roles for NLRs have been identified however; their roles in cancer initiation, development and progression remain controversial. This review summarizes the emerging role of NLRs in cancer and their possible future as targets for cancer therapeutics.
Collapse
Affiliation(s)
- Nidhi Sharma
- Department of Biology, Indian Institute of Technology Jodhpur, Old Residency Road, Ratanada, Jodhpur, Rajasthan, 342011, India
| | - Sushmita Jha
- Department of Biology, Indian Institute of Technology Jodhpur, Old Residency Road, Ratanada, Jodhpur, Rajasthan, 342011, India.
| |
Collapse
|
7
|
Role of Inhibitors of Apoptosis Proteins in Testicular Function and Male Fertility: Effects of Polydeoxyribonucleotide Administration in Experimental Varicocele. BIOMED RESEARCH INTERNATIONAL 2015; 2015:248976. [PMID: 26347229 PMCID: PMC4539425 DOI: 10.1155/2015/248976] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 04/20/2015] [Accepted: 04/21/2015] [Indexed: 12/17/2022]
Abstract
Neuronal apoptosis inhibitory protein (NAIP) and survivin might play an important role in testicular function. We investigated the effect of PDRN, an agonist of adenosine A2A receptor, on testicular NAIP and survivin expression in an experimental model of varicocele. After the creation of experimental varicocele (28 days), adolescent male Sprague-Dawley rats were randomized to one of the following treatments lasting 21 days: vehicle, PDRN (8 mg/kg i.p., daily), PDRN + 3,7-dimethyl-propargylxanthine (DMPX, a specific adenosine A2A-receptor antagonist, 0.1 mg/kg i.p., daily), varicocelectomy, and varicocelectomy + PDRN (8 mg/kg i.p., daily). Sham-operated animals were used as controls. Animals were then euthanized and testis expression of NAIP and survivin was evaluated through qRT-PCR, western blot, and immunohistochemical analysis. Spermatogenetic activity was also assessed. NAIP and survivin expressions were significantly reduced following varicocele induction when compared to sham animals whereas PDRN-treated rats showed an increase in NAIP and survivin levels. Immunohistochemistry revealed an enhanced expression of NAIP and survivin with a characteristic pattern of cellular localization following PDRN treatment. Moreover, administration of PDRN significantly restored spermatogenic function in varicocele rats. PDRN may represent a rational therapeutic option for accelerating recovery from depressed testicular function through a strategic modulation of apoptosis in experimental varicocele.
Collapse
|
8
|
Budhidarmo R, Day CL. IAPs: Modular regulators of cell signalling. Semin Cell Dev Biol 2014; 39:80-90. [PMID: 25542341 DOI: 10.1016/j.semcdb.2014.12.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 12/17/2014] [Indexed: 01/30/2023]
Abstract
Members of the inhibitor of apoptosis (IAP) family are characterised by the presence of at least one baculoviral IAP repeat (BIR) domain. However, during the course of evolution, other globular modules have been adopted to perform distinct functions. Consequently, the IAP family is now recognised as consisting of members that perform critical functions in different aspects of cellular regulation. In this review, the structural diversity present within the IAP protein family is presented. Known structures of individual domains are discussed and their properties are described in light of recent data. In particular the plasticity of BIR domains and their ability to accommodate different binding partners is highlighted, as well as the importance of communication between the domains in regulating the covalent attachment of ubiquitin.
Collapse
Affiliation(s)
- Rhesa Budhidarmo
- Department of Biochemistry, Otago School of Medical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Catherine L Day
- Department of Biochemistry, Otago School of Medical Sciences, University of Otago, Dunedin 9054, New Zealand.
| |
Collapse
|
9
|
Harvey H, Piskareva O, Creevey L, Alcock LC, Buckley PG, O'Sullivan MJ, Segura MF, Gallego S, Stallings RL, Bray IM. Modulation of chemotherapeutic drug resistance in neuroblastoma SK-N-AS cells by the neural apoptosis inhibitory protein and miR-520f. Int J Cancer 2014; 136:1579-88. [PMID: 25137037 DOI: 10.1002/ijc.29144] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 06/20/2014] [Accepted: 07/23/2014] [Indexed: 12/26/2022]
Abstract
The acquisition of multidrug resistance is a major impediment to the successful treatment of neuroblastoma, a clinically heterogeneous cancer accounting for ∼15% of all pediatric cancer deaths. The MYCN transcription factor, whose gene is amplified in ∼30% of high-risk neuroblastoma cases, influences drug resistance by regulating a cadre of genes, including those involved with drug efflux, however, other high-risk subtypes of neuroblastoma lacking MYCN amplification, such as those with chromosome 11q deletions, also acquire multidrug resistance. To elucidate additional mechanisms involved with drug resistance in non-MYCN amplified tumour cells, an SK-N-AS subline (SK-N-AsCis24) that is significantly resistant to cisplatin and cross resistant to etoposide was developed through a pulse-selection process. High resolution aCGH analysis of SK-N-AsCis24 revealed a focal gain on chromosome 5 containing the coding sequence for the neural apoptosis inhibitory protein (NAIP). Significant overexpression of NAIP mRNA and protein was documented, while experimental modulation of NAIP levels in both SK-N-AsCis24 and in parental SK-N-AS cells confirmed that NAIP was responsible for the drug resistant phenotype by apoptosis inhibition. Furthermore, a decrease in the NAIP targeting microRNA, miR-520f, was also demonstrated to be partially responsible for increased NAIP levels in SK-N-AsCis24. Interestingly, miR-520f levels were determined to be significantly lower in postchemotherapy treatment tumours relative to matched prechemotherapy samples, consistent with a role for this miRNA in the acquisition of drug resistance in vivo, potentially through decreased NAIP targeting. Our findings provide biological novel insight into neuroblastoma drug-resistance and have implications for future therapeutic research.
Collapse
Affiliation(s)
- Harry Harvey
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin 2, Ireland; National Children's Research Centre, Our Ladies Hospital for Sick Children, Dublin 12, Ireland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Minutoli L, Altavilla D, Marini H, Rinaldi M, Irrera N, Pizzino G, Bitto A, Arena S, Cimino S, Squadrito F, Russo GI, Morgia G. Inhibitors of apoptosis proteins in experimental benign prostatic hyperplasia: effects of serenoa repens, selenium and lycopene. J Biomed Sci 2014; 21:19. [PMID: 24606563 PMCID: PMC3995880 DOI: 10.1186/1423-0127-21-19] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Accepted: 03/03/2014] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The apoptosis machinery is a promising target against benign prostatic hyperplasia (BPH). Inhibitors of apoptosis proteins (IAPs) modulate apoptosis by direct inhibition of caspases. Serenoa Repens (SeR) may be combined with other natural compounds such as Lycopene (Ly) and Selenium (Se) to maximize its therapeutic activity in BPH. We investigated the effects of SeR, Se and Ly, alone or in association, on the expression of four IAPs, cIAP-1, cIAP-2, NAIP and survivin in rats with experimental testosterone-dependent BPH. Moreover, caspase-3, interleukin-6 (IL-6) and prostate specific membrane antigen (PSMA) have been evaluated.Rats were administered, daily, with testosterone propionate (3 mg/kg/sc) or its vehicle for 14 days. Testosterone injected animals (BPH) were randomized to receive vehicle, SeR (25 mg/kg/sc), Se (3 mg/kg/sc), Ly (1 mg/kg/sc) or the SeR-Se-Ly association for 14 days. Animals were sacrificed and prostate removed for analysis. RESULTS BPH animals treated with vehicle showed unchanged expression of cIAP-1 and cIAP-2 and increased expression of NAIP, survivin, caspase-3, IL-6 and PSMA levels when compared with sham animals. Immunofluorescence studies confirmed the enhanced expression of NAIP and survivin with a characteristic pattern of cellular localization. SeR-Se-Ly association showed the highest efficacy in reawakening apoptosis; additionally, this therapeutic cocktail significantly reduced IL-6 and PSMA levels. The administration of SeR, Se and Ly significantly blunted prostate overweight and growth; moreover, the SeR-Se-Ly association was most effective in reducing prostate enlargement and growth by 43.3% in treated animals. CONCLUSIONS The results indicate that IAPs may represent interesting targets for drug therapy of BPH.
Collapse
Affiliation(s)
- Letteria Minutoli
- Department of Clinical and Experimental Medicine, University of Messina, Messina 98125, Italy
| | - Domenica Altavilla
- Department of Paediatric, Gynaecological, Microbiological and Biomedical Sciences, University of Messina, Messina 98125, Italy
| | - Herbert Marini
- Department of Clinical and Experimental Medicine, University of Messina, Messina 98125, Italy
| | - Mariagrazia Rinaldi
- Department of Clinical and Experimental Medicine, University of Messina, Messina 98125, Italy
| | - Natasha Irrera
- Department of Clinical and Experimental Medicine, University of Messina, Messina 98125, Italy
| | - Gabriele Pizzino
- Department of Clinical and Experimental Medicine, University of Messina, Messina 98125, Italy
| | - Alessandra Bitto
- Department of Clinical and Experimental Medicine, University of Messina, Messina 98125, Italy
| | - Salvatore Arena
- Department of Paediatric, Gynaecological, Microbiological and Biomedical Sciences, University of Messina, Messina 98125, Italy
| | - Sebastiano Cimino
- Department of Urology, Polyclinic Hospital, University of Catania, Catania 95100, Italy
| | - Francesco Squadrito
- Department of Clinical and Experimental Medicine, University of Messina, Messina 98125, Italy
| | - Giorgio Ivan Russo
- Department of Urology, Polyclinic Hospital, University of Catania, Catania 95100, Italy
| | - Giuseppe Morgia
- Department of Urology, Polyclinic Hospital, University of Catania, Catania 95100, Italy
| |
Collapse
|
11
|
Wang K, Lin B. Inhibitor of apoptosis proteins (IAPs) as regulatory factors of hepatic apoptosis. Cell Signal 2013; 25:1970-80. [PMID: 23770286 DOI: 10.1016/j.cellsig.2013.06.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 05/13/2013] [Accepted: 06/04/2013] [Indexed: 12/29/2022]
Abstract
IAPs are a group of regulatory proteins that are structurally related. Their conserved homologues have been identified in various organisms. In human, eight IAP members have been recognized based on baculoviral IAP repeat (BIR) domains. IAPs are key regulators of apoptosis, cytokinesis and signal transduction. The antiapoptotic property of IAPs depends on their professional role for caspases. IAPs are functionally non-equivalent and regulate effector caspases through distinct mechanisms. IAPs impede apoptotic process via membrane receptor-dependent (extrinsic) cascade and mitochondrial dependent (intrinsic) pathway. IAP-mediated apoptosis affects the progression of liver diseases. Therapeutic options of liver diseases may depend on the understanding toward mechanisms of the IAP-mediated apoptosis.
Collapse
Affiliation(s)
- Kewei Wang
- Departments of Surgery, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA.
| | | |
Collapse
|
12
|
Roscioli E, Hamon R, Lester S, Murgia C, Grant J, Zalewski P. Zinc-rich inhibitor of apoptosis proteins (IAPs) as regulatory factors in the epithelium of normal and inflamed airways. Biometals 2013; 26:205-27. [PMID: 23460081 DOI: 10.1007/s10534-013-9618-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 02/25/2013] [Indexed: 11/25/2022]
Abstract
Integrity of the airway epithelium (AE) is important in the context of inhaled allergens and noxious substances, particularly during asthma-related airway inflammation where there is increased vulnerability of the AE to cell death. Apoptosis involves a number of signaling pathways which activate procaspases leading to cleavage of critical substrates. Understanding the factors which regulate AE caspases is important for development of strategies to minimize AE damage and airway inflammation, and therefore to better control asthma. One such factor is the essential dietary metal zinc. Zinc deficiency results in enhanced AE apoptosis, and worsened airway inflammation. This has implications for asthma, where abnormalities in zinc homeostasis have been observed. Zinc is thought to suppress the steps involved in caspase-3 activation. One target of zinc is the family of inhibitor of apoptosis proteins (IAPs) which are endogenous regulators of caspases. More studies are needed to identify the roles of IAPs in regulating apoptosis in normal and inflamed airways and to study their interaction with labile zinc ions. This new information will provide a framework for future clinical studies aimed at monitoring and management of airway zinc levels as well as minimising airway damage and inflammation in asthma.
Collapse
Affiliation(s)
- Eugene Roscioli
- Discipline of Medicine, The Basil Hetzel Institute for Translational Research, The Queen Elizabeth Hospital, University of Adelaide, Woodville, SA, 5011, Australia.
| | | | | | | | | | | |
Collapse
|
13
|
Mazrouei S, Ziaei A, Tanhaee AP, Keyhanian K, Esmaeili M, Baradaran A, Salehi M. Apoptosis inhibition or inflammation: the role of NAIP protein expression in Hodgkin and non-Hodgkin lymphomas compared to non-neoplastic lymph node. JOURNAL OF INFLAMMATION-LONDON 2012; 9:4. [PMID: 22357131 PMCID: PMC3297494 DOI: 10.1186/1476-9255-9-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 02/23/2012] [Indexed: 01/12/2023]
Abstract
Background Inhibitors of Apoptosis (IAP) family play a critical role in apoptosis and inflammatory response. Neuronal Apoptosis Inhibitory Protein (NAIP), as a member of both IAPs and NLR families (NOD-Like Receptor), is a unique IAP harboring NOD (Nucleotide Oligomerization Domain) and LLR (Leucine Rich Repeat) motifs. Considering these motifs in NAIP, it has been suggested that the main function of NAIP is distinct from other members of IAPs. As a member of NLR, NAIP mediates the assembly of 'Inflammasome' for inflammatory caspase activation. Pathologic expression of NAIP has been reported not only in some infectious and inflammatory diseases but also in some malignancies. However, there is no report to elucidate NAIP expression in lymphomatic malignancies. Methods In this study, we examined NAIP protein expression in 101 Formalin-Fixed Paraffin-Embedded blocks including samples from 39 Hodgkin Lymphoma and 23 Non Hodgkin Lymphoma cases in comparison with 39 control samples (30 normal and 9 Reactive Lymphoid Hyperplasia (RLH) lymph nodes) using semi-quantitative immuno-flourecent Staining. Results NAIP expression was not statistically different in lymphoma samples neither in HL nor in NHL cases comparing to normal samples. However, we evaluated NAIP expression in normal and RLH lymph nodes. Surprisingly, we have found a statistically significant-difference between the NAIP expression in RLH (M.R of NAIP/GAPDH expression = 0.6365 ± 0.017) and normal lymph node samples (M.R of NAIP/GAPDH expression = 0.5882 ± 0.047) (P < 0.01). Conclusions These findings show that the regulation of apoptosis could not be the main function of NAIP in the cell, so the pathologic expression of NAIP is not involved in lymphoma. But, we concluded that the over expression of NAIP has more effective role in the inflammatory response. Also, this study clarifies the NAIP expression level in lymphoma which is required for IAPs profiling in order to be used in potential translational applications of IAPs.
Collapse
Affiliation(s)
- Safoura Mazrouei
- Dept of Genetics and Molecular Biology, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran.
| | | | | | | | | | | | | |
Collapse
|
14
|
Mason DR, Beck PL, Muruve DA. Nucleotide-binding oligomerization domain-like receptors and inflammasomes in the pathogenesis of non-microbial inflammation and diseases. J Innate Immun 2011; 4:16-30. [PMID: 22067846 DOI: 10.1159/000334247] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 10/10/2011] [Indexed: 12/18/2022] Open
Abstract
The nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) or nucleotide-binding domain leucine-rich repeat-containing family of genes plays an important role in the development of innate immune responses. Some family members are known to form multiprotein complexes known as inflammasomes that regulate the processing and secretion of proinflammatory mediators, such as interleukin-1β and interleukin-18. Activity of the inflammasome is triggered not only by microbial infection, but also by a wide range of both exogenous and endogenous noninfectious stimuli. Consequently, the dysregulation of inflammasome activity is associated with numerous proinflammatory, non-microbial human diseases. The discovery of NLRP3 gene mutations in autoinflammatory diseases such as Muckle-Wells syndrome has led to the association of NLRs in the pathogenesis of many non-microbial diseases that include arthritis, neurodegenerative disorders, metabolic disorders (obesity and diabetes), cardiovascular disease (atherosclerosis, myocardial infarction), inflammatory bowel disease, kidney disease and hypersensitivity dermatitis. A number of NLRs are also associated with human disease in the absence of inflammasome activity, suggesting additional roles for NLRs in the regulation of inflammation and disease. This review serves to provide a summary of NLR-associated diseases and, where possible, the mechanisms behind the associations.
Collapse
Affiliation(s)
- D Randal Mason
- Department of Medicine, Immunology Research Group and the Institute of Infection, Immunity and Inflammation, University of Calgary, Calgary, Alta., Canada
| | | | | |
Collapse
|