1
|
Bharathi R, Harini G, Sankaranarayanan A, Shanmugavadivu A, Vairamani M, Selvamurugan N. Nuciferine-loaded chitosan hydrogel-integrated 3D-printed polylactic acid scaffolds for bone tissue engineering: A combinatorial approach. Int J Biol Macromol 2023; 253:127492. [PMID: 37858655 DOI: 10.1016/j.ijbiomac.2023.127492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/07/2023] [Accepted: 10/15/2023] [Indexed: 10/21/2023]
Abstract
Critical-sized bone defects resulting from severe trauma and open fractures cannot spontaneously heal and require surgical intervention. Limitations of traditional bone grafting include immune rejection and demand-over-supply issues leading to the development of novel tissue-engineered scaffolds. Nuciferine (NF), a plant-derived alkaloid, has excellent therapeutic properties, but its osteogenic potential is yet to be reported. Furthermore, the bioavailability of NF is obstructed due to its hydrophobicity, requiring an efficient drug delivery system, such as chitosan (CS) hydrogel. We designed and fabricated polylactic acid (PLA) scaffolds via 3D printing and integrated them with NF-containing CS hydrogel to obtain the porous biocomposite scaffolds (PLA/CS-NF). The fabricated scaffolds were subjected to in vitro physicochemical characterization, cytotoxicity assays, and osteogenic evaluation studies. Scanning electron microscopic studies revealed uniform pore size distribution on PLA/CS-NF scaffolds. An in vitro drug release study showed a sustained and prolonged release of NF. The cyto-friendly nature of NF in PLA/CS-NF scaffolds towards mouse mesenchymal stem cells (mMSCs) was observed. Also, cellular and molecular level studies signified the osteogenic potential of NF in PLA/CS-NF scaffolds on mMSCs. These results indicate that the PLA/CS-NF scaffolds could promote new bone formation and have potential applications in bone tissue engineering.
Collapse
Affiliation(s)
- Ramanathan Bharathi
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Ganesh Harini
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Aravind Sankaranarayanan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Abinaya Shanmugavadivu
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Mariappanadar Vairamani
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Nagarajan Selvamurugan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India..
| |
Collapse
|
2
|
Si Y, Liu H, Yu H, Jiang X, Sun D. MOF-derived CuO@ZnO modified titanium implant for synergistic antibacterial ability, osteogenesis and angiogenesis. Colloids Surf B Biointerfaces 2022; 219:112840. [PMID: 36113223 DOI: 10.1016/j.colsurfb.2022.112840] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/27/2022] [Accepted: 09/10/2022] [Indexed: 12/17/2022]
Abstract
Surface modification of titanium implants with antibacterial, osteogenic and even angiogenic capabilities are essential to enhance their clinical applicability. Herein, metal-organic framework (MOF) derived CuO@ZnO composite was grafted onto the polydopamine (PDA) modified titanium alloy to achieve vascularized bone regeneration. The CuO@ZnO-coated titanium effectively inhibits the formation of bacterial biofilms and the sterilization rate of Staphylococcus aureus (S. aureus) reaches 99%. Benefitting from the intrinsic porous architecture of MOFs, the Zn2+ and Cu2+ could be controllably released to facilitate the production of excess intracellular reactive oxygen species (ROS) inside the bacteria, which ensures the excellent antibacterial performance of the composite coating. The CuO@ZnO-coated titanium also exhibits good cytocompatibility, effectively promotes the adhesion and proliferation of the human bone marrow mesenchymal stem cells (hBMSCs) and reduces the level of the cell apoptosis. The up-regulated expression of the osteogenesis-related genes and the superior extracellular matrix mineralization reveals that the CuO@ZnO coating possesses fantastic osteoinductive properties. In addition, the transwell and tube formation assays of the human umbilical vein endothelial cells (HUVECs) suggest the superior angiogenesis ability of the CuO@ZnO-coated titanium. The released Cu2+ stimulated the angiogenesis of the HUVECs in vitro by up-regulating the expression of the vascular endothelial growth factor (VEGF). These findings will provide new insight into the development of multifunctional titanium implants for clinical applications.
Collapse
Affiliation(s)
- Yunhui Si
- School of Materials, Sun Yat-Sen University, Shenzhen 518107, PR China
| | - Huanyao Liu
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, PR China
| | - Hongying Yu
- School of Materials, Sun Yat-Sen University, Shenzhen 518107, PR China; Innovation Group of Marine Engineering Materials and Corrosion Control, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, PR China.
| | - Xuzhou Jiang
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, PR China; Nanotechnology Research Center, Sun Yat-sen University, Guangzhou 510275, PR China.
| | - Dongbai Sun
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, PR China; National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083, PR China; Innovation Group of Marine Engineering Materials and Corrosion Control, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, PR China.
| |
Collapse
|
3
|
Nunes F, Oliveira P, Bergamo E, Kjellin P, Novaes A, Ghiraldini B, Bezerra F, Scombatti de Souza S. Effect of Smoke Exposure on Gene Expression in Bone Healing around Implants Coated with Nanohydroxyapatite. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3737. [PMID: 36364513 PMCID: PMC9653954 DOI: 10.3390/nano12213737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/11/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
This study evaluated the effect of smoke exposure on the expression of genes related to bone metabolism in implants coated with nanohydroxyapatite (NHA). A total of 36 rats were exposed to cigarette smoke for 60 days. The animals were allocated into three groups: machined implants (MAC), dual acid-etched implants (DAE), and NHA-coated implants (NHA). Implants were installed in the left tibia of the rats after 30 days of smoke exposure. The implants were retrieved 7 and 30 days after implantation, and the adjacent bone analyzed using a real-time polymerase chain reaction for gene expression of alkaline phosphatase (ALP), osteopontin (OPN), receptor activator of the nuclear factor kappa ligand (RANKL), osteoprotegerin (OPG), the RANKL/OPG ratio, osteocalcin (OCN) and runt-related transcription factor 2 (Runx2). After 7 days, Runx2, OPN and OPG expression demonstrated significantly higher levels for the NHA surface treatment relative to DAE and MAC surfaces. NHA presented the lowest RANKL and RANKL/OPG levels. After 30 days, NHA-coated implants showed significantly higher levels of Runx2, ALP, OPN, OPG, OC, RANKL and RANKL/OPG relative to DAE and MAC implants. The results indicated a greater osteogenic and high osteoclastic activity around NHA implants, in comparison to DAE and MAC implants.
Collapse
Affiliation(s)
- Felipe Nunes
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14021-630, SP, Brazil
| | - Paula Oliveira
- Department of Periodontology, School of Dentistry, University Center of State of Para, Belem 66060-575, PA, Brazil
| | - Edmara Bergamo
- Department of Prosthodontics and Periodontology, School of Dentistry of Bauru, University of São Paulo, Bauru 17012-901, SP, Brazil
| | - Per Kjellin
- Promimic AB, AstraZeneca BioventureHub, 431 83 Mölndal, Sweden
| | - Arthur Novaes
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14021-630, SP, Brazil
| | - Bruna Ghiraldini
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14021-630, SP, Brazil
| | - Fabio Bezerra
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14021-630, SP, Brazil
| | - Sergio Scombatti de Souza
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14021-630, SP, Brazil
| |
Collapse
|
4
|
Li C, Cui Z, Deng S, Chen P, Li X, Yang H. The potential of plant extracts in cell therapy. STEM CELL RESEARCH & THERAPY 2022; 13:472. [PMID: 36104798 PMCID: PMC9476258 DOI: 10.1186/s13287-022-03152-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 05/23/2022] [Indexed: 11/10/2022]
Abstract
Cell therapy is the frontier technology of biotechnology innovation and the most promising method for the treatment of refractory diseases such as tumours. However, cell therapy has disadvantages, such as toxicity and poor therapeutic effects. Plant extracts are natural, widely available, and contain active small molecule ingredients that are widely used in the treatment of various diseases. By studying the effect of plant extracts on cell therapy, active plant extracts that have positive significance in cell therapy can be discovered, and certain contributions to solving the current problems of attenuation and adjuvant therapy in cell therapy can be made. Therefore, this article reviews the currently reported effects of plant extracts in stem cell therapy and immune cell therapy, especially the effects of plant extracts on the proliferation and differentiation of mesenchymal stem cells and nerve stem cells and the potential role of plant extracts in chimeric antigen receptor T-cell immunotherapy (CAR-T) and T-cell receptor modified T-cell immunotherapy (TCR-T), in the hope of encouraging further research and clinical application of plant extracts in cell therapy.
Collapse
|
5
|
A two-phase and long-lasting multi-antibacterial coating enables titanium biomaterials to prevent implants-related infections. Mater Today Bio 2022; 15:100330. [PMID: 35789634 PMCID: PMC9250043 DOI: 10.1016/j.mtbio.2022.100330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 01/08/2023] Open
Abstract
In clinical work, the main challenges for titanium (Ti) implantation are bacterial infection and aseptic loosening, which severely affect the survival rate of implants. The first 4 weeks post-operation is the infection peak phase of implants. Inhibiting implant infection caused by bacteria adhesion and proliferation during the early phase as well as promoting subsequent osteointegration is essential for implant success. Herein, we constructed a quaternary ammonium carboxymethyl chitosan (QCMC), collagen (COL Ⅰ) and hydroxyapatite (HAP) multilayers coating on Ti substrates via a modified layer-by-layer (LBL) technique and polymerization of dopamine. The QCMC/COL/HAP coating exhibited a multi-antibacterial property with a two-phase function: (1) At the first 4 weeks post-operation, the covalently bonded QCMC could be slowly degraded and demonstrated both contact-killing and release-killing properties during the infection peak phase; (2) At the second phase, osteogenesis and osseointegration-promotion capabilities were enhanced by HAP under the effective control of infection. The multifilm coating was degraded for more than 45 days under the action of collagenase Ⅰ, and displayed good biocompatibility in vivo and in vitro. Most importantly, the coating exhibited a long-lasting antibacterial activity for more than 3 months, against the main pathogenic bacteria of peri-implant infections. Both in vitro studies and in vivo animal models revealed a desirable osteogenic differentiation capacity of Ti-CCH. Therefore, our study reports a two-phase, long-lasting multi-antibacterial coating on Ti-CCH and indicates potential applications of the modified LBL strategy in orthopaedic fields, which is enlightening for developing practical implant and scaffold materials. Developing a QCMC/COL/HAP multifilm coating via modified layer-by-layer technique and self-polymerization of dopamine. The QCMC/COL/HAP coating exhibited desirable mechanical properties and excellent biocompatibility. The release kinetics endowed the QCMC/COL/HAP coating with multi-antibacterial activity at the first phase after operation. The QCMC/COL/HAP coating could improve osseointegration at the second phase of post-operation.
Collapse
|
6
|
Nižnanský Ľ, Nižnanská Ž, Kuruc R, Szórádová A, Šikuta J, Zummerová A. Ayahuasca as a Decoction Applied to Human: Analytical Methods, Pharmacology and Potential Toxic Effects. J Clin Med 2022; 11:1147. [PMID: 35207420 PMCID: PMC8880227 DOI: 10.3390/jcm11041147] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/28/2022] [Accepted: 02/19/2022] [Indexed: 02/06/2023] Open
Abstract
Ahyahuasca is a term commonly used to describe a decoction prepared by cooking the bark or crushed stems of the liana Banisteriopsis caapi (contains β-carbolines) alone or in combination with other plants, most commonly leaves of the shrub Psychotria viridis (contains N,N-dimethyltryptamine-DMT). More than 100 different plants can serve as sources of β-carbolines and DMT, which are the active alkaloids of this decoction, and therefore it is important to know the most accurate composition of the decoction, especially when studying the pharmacology of this plant. The aim was to summarize the latest sensitive methods used in the analysis of the composition of the beverage itself and the analysis of various biological matrices. We compared pharmacokinetic parameters in all of the studies where decoction of ayahuasca was administered and where its composition was known, whereby minimal adverse effects were observed. The therapeutic benefit of this plant is still unclear in the scientific literature, and side effects occur probably on the basis of pre-existing psychiatric disorder. We also described toxicological risks and clinical benefits of ayahuasca intake, which meant that the concentrations of active alkaloids in the decoction or in the organism, often not determined in publications, were required for sufficient evaluation of its effect on the organism. We did not find any post-mortem study, in which the toxicological examination of biological materials together with the autopsy findings would suggest potential lethality of this plant.
Collapse
Affiliation(s)
- Ľuboš Nižnanský
- Department of Forensic Medicine and Toxicology, Health Care Surveillance Authority, Antolská 11, 85107 Bratislava, Slovakia; (R.K.); (A.S.); (J.Š.); (A.Z.)
- Institute of Forensic Medicine, Faculty of Medicine, Comenius University in Bratislava, Sasinková 4, 81108 Bratislava, Slovakia
| | - Žofia Nižnanská
- Department of Forensic Medicine and Toxicology, Health Care Surveillance Authority, Antolská 11, 85107 Bratislava, Slovakia; (R.K.); (A.S.); (J.Š.); (A.Z.)
- Institute of Forensic Medicine, Faculty of Medicine, Comenius University in Bratislava, Sasinková 4, 81108 Bratislava, Slovakia
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská Dolina, Ilkovičova 6, 84215 Bratislava, Slovakia
| | - Roman Kuruc
- Department of Forensic Medicine and Toxicology, Health Care Surveillance Authority, Antolská 11, 85107 Bratislava, Slovakia; (R.K.); (A.S.); (J.Š.); (A.Z.)
- Institute of Forensic Medicine, Faculty of Medicine, Comenius University in Bratislava, Sasinková 4, 81108 Bratislava, Slovakia
| | - Andrea Szórádová
- Department of Forensic Medicine and Toxicology, Health Care Surveillance Authority, Antolská 11, 85107 Bratislava, Slovakia; (R.K.); (A.S.); (J.Š.); (A.Z.)
- Institute of Forensic Medicine, Faculty of Medicine, Comenius University in Bratislava, Sasinková 4, 81108 Bratislava, Slovakia
| | - Ján Šikuta
- Department of Forensic Medicine and Toxicology, Health Care Surveillance Authority, Antolská 11, 85107 Bratislava, Slovakia; (R.K.); (A.S.); (J.Š.); (A.Z.)
- Institute of Forensic Medicine, Faculty of Medicine, Comenius University in Bratislava, Sasinková 4, 81108 Bratislava, Slovakia
| | - Anežka Zummerová
- Department of Forensic Medicine and Toxicology, Health Care Surveillance Authority, Antolská 11, 85107 Bratislava, Slovakia; (R.K.); (A.S.); (J.Š.); (A.Z.)
- Institute of Forensic Medicine, Faculty of Medicine, Comenius University in Bratislava, Sasinková 4, 81108 Bratislava, Slovakia
| |
Collapse
|
7
|
Luikham S, Mavani A, Bhattacharyya J. Deciphering binding affinity, energetics, and base specificity of plant alkaloid Harmane with AT & GC hairpin duplex DNA. LUMINESCENCE 2022; 37:691-701. [DOI: 10.1002/bio.4210] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/01/2022] [Accepted: 02/08/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Soching Luikham
- Department of Chemistry National Institute of Technology Nagaland Chumukedima Dimapur Nagaland India
| | - A. Mavani
- Department of Chemistry National Institute of Technology Nagaland Chumukedima Dimapur Nagaland India
| | - Jhimli Bhattacharyya
- Department of Chemistry National Institute of Technology Nagaland Chumukedima Dimapur Nagaland India
| |
Collapse
|
8
|
Cell-Based Double-Screening Method to Identify a Reliable Candidate for Osteogenesis-Targeting Compounds. Biomedicines 2022; 10:biomedicines10020426. [PMID: 35203635 PMCID: PMC8962348 DOI: 10.3390/biomedicines10020426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 01/15/2023] Open
Abstract
Small-molecule compounds strongly affecting osteogenesis can form the basis of effective therapeutic strategies in bone regenerative medicine. A cell-based high-throughput screening system might be a powerful tool for identifying osteoblast-targeting candidates; however, this approach is generally limited with using only one molecule as a cell-based sensor that does not always reflect the activation of the osteogenic phenotype. In the present study, we used the MC3T3-E1 cell line stably transfected with the green fluorescent protein (GFP) reporter gene driven by a fragment of type I collagen promoter (Col-1a1GFP-MC3T3-E1) to evaluate a double-screening system to identify osteogenic inducible compounds using a combination of a cell-based reporter assay and detection of alkaline phosphatase (ALP) activity. Col-1a1GFP-MC3T3-E1 cells were cultured in an osteogenic induction medium after library screening of 1280 pharmacologically active compounds (Lopack1280). After 7 days, GFP fluorescence was measured using a microplate reader. After 14 days of osteogenic induction, the cells were stained with ALP. Library screening using the Col-1a1/GFP reporter and ALP staining assay detected three candidates with significant osteogenic induction ability. Furthermore, leflunomide, one of the three detected candidates, significantly promoted new bone formation in vivo. Therefore, this double-screening method could identify candidates for osteogenesis-targeting compounds more reliably than conventional methods.
Collapse
|
9
|
Luikham S, Bhattacharyya J. Targeting Natural Polymeric DNAs with Harmane: An Insight into Binding and Thermodynamic Interaction Through Biophysical Approach. DNA Cell Biol 2022; 41:91-102. [PMID: 35049377 DOI: 10.1089/dna.2021.0132] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
DNA is one of the major molecular targets for a broad range of anticancer drugs. Hence, interaction studies involving cellular DNA and small molecules can be highly beneficial as they often lead to rational and efficient drug design. In this study, the binding interaction of Harmane (a naturally occurring, bioactive indole alkaloid) with two natural polymeric DNAs, that is, Calf thymus (CT) DNA and Herring testis (HT) DNA has been elucidated using biophysical techniques. A ground state, 1:1 complexation, was revealed by steady-state fluorescence spectroscopy. The thermodynamic profile and energetics of the associated reaction were evaluated by temperature-dependent fluorescence spectroscopy. The spontaneity of the binding was confirmed by the negative ΔG° values in both cases. Negative enthalpy change, along with stronger positive entropic contribution, indicated the dominant electrostatic nature of the interaction and finally the entropy-driven exothermic binding process throughout. Salt-dependent studies further demonstrated the significant contribution of electrostatic interactions in ligand binding toward DNA. Infrared data substantiated the structural information of the said interactions, leading to the exploration of the structure-function relationship.
Collapse
Affiliation(s)
- Soching Luikham
- Department of Chemistry, National Institute of Technology Nagaland, Chumukedima, Dimapur, India
| | - Jhimli Bhattacharyya
- Department of Chemistry, National Institute of Technology Nagaland, Chumukedima, Dimapur, India
| |
Collapse
|
10
|
Pengjam Y, Syazwani N, Inchai J, Numit A, Yodthong T, Pitakpornpreecha T, Panichayupakaranant P. High water-soluble curcuminoids-rich extract regulates osteogenic differentiation of MC3T3-E1 cells: Involvement of Wnt/β-catenin and BMP signaling pathway. CHINESE HERBAL MEDICINES 2021; 13:534-540. [PMID: 36119369 PMCID: PMC9476497 DOI: 10.1016/j.chmed.2021.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Yutthana Pengjam
- Faculty of Medical Technology, Prince of Songkla University, Hat-Yai 90110, Thailand
| | - Nurul Syazwani
- Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai 90112, Thailand
| | - Jakkapong Inchai
- Faculty of Medical Technology, Prince of Songkla University, Hat-Yai 90110, Thailand
| | - Amornkan Numit
- Faculty of Medical Technology, Prince of Songkla University, Hat-Yai 90110, Thailand
| | | | | | | |
Collapse
|
11
|
Park CH, Kim G, Lee Y, Kim H, Song MJ, Lee DH, Chung JH. A natural compound harmine decreases melanin synthesis through regulation of the DYRK1A/NFATC3 pathway. J Dermatol Sci 2021; 103:16-24. [PMID: 34030962 DOI: 10.1016/j.jdermsci.2021.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Melanin plays important roles in determining human skin color and protecting human skin cells against harmful ultraviolet light. However, abnormal hyperpigmentation in some areas of the skin may become aesthetically unpleasing, resulting in the need for effective agents or methods to regulate undesirable hyperpigmentation. OBJECTIVE We investigated the effect of harmine, a natural harmala alkaloid belonging to the beta-carboline family, on melanin synthesis and further explored the signaling pathways involved in its mechanism of action. METHODS Human MNT-1 melanoma cells and human primary melanocytes were treated with harmine, chemical inhibitors, small interfering RNAs, or mammalian expression vectors. Cell viability, melanin content, and expression of various target molecules were assessed. RESULTS Harmine decreased melanin synthesis and tyrosinase expression in human MNT-1 melanoma cells. Inhibition of DYRK1A, a harmine target, decreased melanin synthesis and tyrosinase expression. Further studies revealed that nuclear translocation of NFATC3, a potential DYRK1A substrate, was induced via the harmine/DYRK1A pathway and that NFATC3 knockdown increased melanin synthesis and tyrosinase expression. Suppression of melanin synthesis and tyrosinase expression via the harmine/DYRK1A pathway was significantly attenuated by NFATC3 knockdown. Furthermore, harmine also decreased melanin synthesis and tyrosinase expression through regulation of NFATC3 in human primary melanocytes. CONCLUSION Our results indicate that harmine decreases melanin synthesis through regulation of the DYRK1A/NFATC3 pathway and suggest that the DYRK1A/NFATC3 pathway may be a potential target for the development of depigmenting agents.
Collapse
Affiliation(s)
- Chi-Hyun Park
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Goeun Kim
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul Republic of Korea
| | - Yuri Lee
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul Republic of Korea
| | - Haesoo Kim
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul Republic of Korea
| | - Min Ji Song
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul Republic of Korea
| | - Dong Hun Lee
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul Republic of Korea
| | - Jin Ho Chung
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul Republic of Korea; Institute on Aging, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
12
|
Wang L, Wang Q, Wang W, Ge G, Xu N, Zheng D, Jiang S, Zhao G, Xu Y, Wang Y, Zhu R, Geng D. Harmine Alleviates Titanium Particle-Induced Inflammatory Bone Destruction by Immunomodulatory Effect on the Macrophage Polarization and Subsequent Osteogenic Differentiation. Front Immunol 2021; 12:657687. [PMID: 34079546 PMCID: PMC8165263 DOI: 10.3389/fimmu.2021.657687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 04/26/2021] [Indexed: 01/16/2023] Open
Abstract
Peri-prosthetic osteolysis (PPO) and following aseptic loosening are regarded as the prime reasons for implant failure after joint replacement. Increasing evidence indicated that wear-debris-irritated inflammatory response and macrophage polarization state play essential roles in this osteolytic process. Harmine, a β-carboline alkaloid primitively extracted from the Peganum harmala seeds, has been reported to have various pharmacological effects on monoamine oxidase action, insulin intake, vasodilatation and central nervous systems. However, the impact of harmine on debris-induced osteolysis has not been demonstrated, and whether harmine participates in regulating macrophage polarization and subsequent osteogenic differentiation in particle-irritated osteolysis remains unknown. In the present study, we investigated the effect of harmine on titanium (Ti) particle-induced osteolysis in vivo and in vitro. The results suggested harmine notably alleviated Ti particle-induced bone resorption in a murine PPO model. Harmine was also found to suppress the particle-induced inflammatory response and shift the polarization of macrophages from M1 phenotypes to M2 phenotypes in vivo and in vitro, which improved anti-inflammatory and bone-related cytokines levels. In the conditioned medium from Ti particle-stimulated murine macrophage RAW264.7 cells treated with harmine, the osteoblast differentiation ability of mouse pre-osteoblastic MC3T3-E1 cells was greatly increased. And we also provided evidences that the immunomodulatory capacity of harmine might be attributed to the inhibition of the c-Jun N-terminal kinase (JNK) in wear particle-treated macrophages. All the results strongly show that harmine might be a promising therapeutic agent to treat PPO.
Collapse
Affiliation(s)
- Liangliang Wang
- Department of Orthopaedics, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Qing Wang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wei Wang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Gaoran Ge
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Nanwei Xu
- Department of Orthopaedics, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Dong Zheng
- Department of Orthopaedics, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Shijie Jiang
- Department of Orthopaedics, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Gongyin Zhao
- Department of Orthopaedics, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Yaozeng Xu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuji Wang
- Department of Orthopaedics, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China.,Departments of Orthopedic Surgery and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States.,Department of Orthopedics, The Third Affiliated Hospital of Gansu University of Chinese Medicine, Baiyin, China
| | - Ruixia Zhu
- Department of Orthopaedics, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Dechun Geng
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
13
|
Paul P, Karar M, Alam MN, Dutta D, Majumdar T, Mallick A. Circumstantial Overdose Management of an Efficient Cancer Cell Photosensitizer with Preclinical Evidence: A Biophysical Study. ACS APPLIED BIO MATERIALS 2020; 3:8049-8060. [PMID: 35019544 DOI: 10.1021/acsabm.0c01121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this article, pharmacological management of circumstantial overdose of an anticancer drug, Harmine (HM), under in vitro and in vivo conditions is described and further validated by employing in silico methods. HM, an efficient cancer cell photosensitizer, interacts extensively with nontoxic β-cyclodextrin (β-CD). Steady-state fluorescence studies and molecular docking analysis established differential nature of molecular inclusion depending on the relative concentrations of β-CD. Presently, β-CD is commonly used as a standard drug-delivery vehicle but its application for controlled drug withdrawal is rarely explored. Flow cytometric results and in vivo investigations on a zebrafish model showed that conditional overdose of preadministered drug molecules can be efficiently removed by encapsulating successfully within nontoxic β-CDs, albeit by controlled application of the same. This is an approach to manage the cytotoxicity of a drug in a safe way that is already administered. We believe that this β-CD-mediated withdrawal of drugs may find possible applications in controlled capturing of excess or unused drug inside living systems and reducing the unwanted toxicity associated with chemotherapeutics.
Collapse
Affiliation(s)
- Provakar Paul
- Department of Chemistry, University of Kalyani, Nadia, Kalyani, West Bengal 741235, India
| | - Monaj Karar
- Department of Chemistry, University of Kalyani, Nadia, Kalyani, West Bengal 741235, India
| | - Md Nur Alam
- Department of Life Sciences, Presidency University, Kolkata 700073 West Bengal, India
| | - Debanjan Dutta
- Department of MRDG, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Tapas Majumdar
- Department of Chemistry, University of Kalyani, Nadia, Kalyani, West Bengal 741235, India
| | - Arabinda Mallick
- Department of Chemistry, Kazi Nazrul University, Asansol, West Bengal 713340, India
| |
Collapse
|
14
|
Ramesh T. Osteogenic differentiation potential of human bone marrow-derived mesenchymal stem cells enhanced by bacoside-A. Cell Biochem Funct 2020; 39:148-158. [PMID: 33137853 DOI: 10.1002/cbf.3596] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/30/2020] [Accepted: 10/07/2020] [Indexed: 01/18/2023]
Abstract
Stem cell therapy is growing rapidly to treat numerous diseases including bone-associated diseases. Mesenchymal stem cells (MSCs) are most commonly preferred to treat bone diseases because it possesses high osteogenic potency. Though, to obtain maximum osteogenic efficiency of MSCs is challenging. Therefore, this study was planned to evaluate the osteogenic efficiency of human bone marrow derived mesenchymal stem cells (hBMSCs) by bacoside-A. This study was investigated the activity of alkaline phosphatase (ALP) and expressions of the genes specific to osteogenic regulation mainly runt-related transcription factor 2 (Runx2), osterix (Osx), osteocalcin (OCN) and collagen type Iα1 (Col I α1) in hBMSCs cultured under osteogenic conditions at different concentrations of bacoside-A for 14 days. The results of this study depicted significant upregulation in the activity of ALP and expressions of osteogenic regulator genes in bacoside-A treated cells when compared with control cells. Besides, expressions of glycogen synthase kinase-3β (GSK-3β) and Wnt/β-catenin were evaluated; these expressions were also significantly increased in bacoside-A treated cells when compared with control cells. This result provides a further supporting evidence of bacoside-A role on osteogenesis in hBMSCs. The present study suggest that bacoside-A will be applied to ameliorate the process of osteogenesis in hBMSCs to repair damaged bone structure during MSC-based therapy; this will be an excellent and auspicious treatment for bone-associated disorders including osteoporosis. Significance of the study Osteoporosis is a bone metabolic disorder characterized by an imbalance between the activity of osteoblastic bone formation and osteoclastic bone resorption that disrupts the bone microarchitecture. Current anti-osteoporotic drugs are inhibiting bone resorption, but they are unable to restore the bone structure due to extreme bone remodelling process and causes numerous side effects. The finding of natural bioactive compounds with osteogenic property is very essential for osteoporosis treatment. This study was reported that bacoside-A ameliorated osteogenic differentiation of hBMSCs through upregulation of osteogenic differentiation genes and Wnt/β-catenin signalling pathway. This result is indicating that bacoside-A may be useful for osteoporosis treatments.
Collapse
Affiliation(s)
- Thiyagarajan Ramesh
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Kingdom of Saudi Arabia
| |
Collapse
|
15
|
Lai M, Yan X, Shen K, Tang Q, Fang X, Zhang C, Zhu Z, Hou Y. The effect of calcitonin gene-related peptide functionalized TiO2 nanotubes on osteoblast and osteoclast differentiation in vitro. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124899] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Shen K, Tang Q, Fang X, Zhang C, Zhu Z, Hou Y, Lai M. The sustained release of dexamethasone from TiO 2 nanotubes reinforced by chitosan to enhance osteoblast function and anti-inflammation activity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111241. [PMID: 32806259 DOI: 10.1016/j.msec.2020.111241] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 06/20/2020] [Accepted: 06/24/2020] [Indexed: 01/07/2023]
Abstract
Controlling macrophage response to biomaterials is critical for the reduction of inflammation after implantation. Here we designed a sustained release system from TiO2 nanotubes (TNTs) to improve osteogenesis on titanium implants with anti-inflammatory properties. TNTs (around 70 nm diameter) were first fabricated on titanium surfaces by anodization, directly filled with the anti-inflammatory drug, dexamethasone (DEX) and then covered by chitosan (CHI) multilayer films. Primary osteoblast and macrophage (RAW 264.7) cells were cultured on untreated and treated titanium surfaces in vitro. Osteoblasts grown on CHI-coated Dex-filled TNTs surfaces displayed higher alkaline phosphatase (ALP) and mineralization, which was consistent with qRT-PCR analysis of osteoblastic genes including collagen type I (Col I), osteocalcin (OCN), osteopontin (OPN) and runt related transcription factor 2 (Runx2). In contrast, protein levels of nitric oxide (NO) and proinflammatory cytokines (TNF-α and IL-1β) from macrophages on Dex-filled TNTs, CHI-coated TNTs and CHI-coated Dex-filled TNTs were significantly lower, especially on CHI-coated Dex-filled TNTs surfaces compared to levels on titanium and TNTs. These results indicate that CHI-coated Dex-filled TNTs enhanced osteoblast differentiation and decreased the inflammatory response of macrophages. The approach presented here provides new insight into the modification of TNTs for the development of titanium-based implants.
Collapse
Affiliation(s)
- Ke Shen
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Qiang Tang
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Xingtang Fang
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Chunlei Zhang
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Zhaojing Zhu
- Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China
| | - Yanhua Hou
- Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China
| | - Min Lai
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China.
| |
Collapse
|
17
|
Hu RY, Tian XB, Li B, Luo R, Zhang B, Zhao JM. Individualized Drug Repositioning For Rheumatoid Arthritis Using Weighted Kolmogorov-Smirnov Algorithm. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2019; 12:369-375. [PMID: 31849513 PMCID: PMC6912015 DOI: 10.2147/pgpm.s230751] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 11/06/2019] [Indexed: 12/13/2022]
Abstract
Background Existing drugs are far from enough for investigators and patients to administrate the therapy of rheumatoid arthritis. Drug repositioning has drawn broad attention by reusing marketed drugs and clinical candidates for new uses. Purpose This study attempted to predict candidate drugs for rheumatoid arthritis treatment by mining the similarities of pathway aberrance induced by disease and various drugs, on a personalized or customized basis. Methods We firstly measured the individualized pathway aberrance induced by rheumatoid arthritis based on the microarray data and various drugs from CMap database, respectively. Then, the similarities of pathway aberrances between RA and various drugs were calculated using a Kolmogorov–Smirnov weighted enrichment score algorithm. Results Using this method, we identified 4 crucial pathways involved in rheumatoid arthritis development and predicted 9 underlying candidate drugs for rheumatoid arthritis treatment. Some candidates with current indications to treat other diseases might be repurposed to treat rheumatoid arthritis and complement the drug group for rheumatoid arthritis. Conclusion This study predicts candidate drugs for rheumatoid arthritis treatment through mining the similarities of pathway aberrance induced by disease and various drugs, on a personalized or customized basis. Our framework will provide novel insights in personalized drug discovery for rheumatoid arthritis and contribute to the future application of custom therapeutic decisions.
Collapse
Affiliation(s)
- Ru-Yin Hu
- Department of Orthopaedics, Guangxi Medical University, Nanning 530021, People's Republic of China.,Department of Orthopaedics, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, People's Republic of China.,Department of Orthopaedics, Guizhou Provincial People's Hospital, Guiyang 550002, People's Republic of China
| | - Xiao-Bin Tian
- Department of Orthopaedics, Guizhou Provincial People's Hospital, Guiyang 550002, People's Republic of China
| | - Bo Li
- Department of Orthopaedics, Guizhou Provincial People's Hospital, Guiyang 550002, People's Republic of China
| | - Rui Luo
- Department of Orthopaedics, Guizhou Provincial People's Hospital, Guiyang 550002, People's Republic of China
| | - Bin Zhang
- Department of Orthopaedics, Guizhou Provincial People's Hospital, Guiyang 550002, People's Republic of China
| | - Jin-Min Zhao
- Department of Orthopaedics, Guangxi Medical University, Nanning 530021, People's Republic of China
| |
Collapse
|
18
|
Ding Y, Jiang H, Meng B, Zhu B, Yu X, Xiang G. Sweroside-mediated mTORC1 hyperactivation in bone marrow mesenchymal stem cells promotes osteogenic differentiation. J Cell Biochem 2019; 120:16025-16036. [PMID: 31074104 DOI: 10.1002/jcb.28882] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/21/2019] [Accepted: 01/24/2019] [Indexed: 12/21/2022]
Abstract
This paper aims to probe into the effect of sweroside (SOS) in osteoporosis (OP) and explains mechanisms of its molecular. Applying the ovariectomized (OVX) mouse model investigates the preventive effect of SOS against postmenopausal OP after 3 months of SOS treatment (120 mg/kg/day). Using hematoxylin and eosin (HE) staining and micro computed tomography (CT) observed the morphology of OP in each group. Immunohistochemical staining (IHC) was used to examine osteoblast markers. Experiments in vitro, bone marrow mesenchymal stem cells (BMSCs) from C57/BL6 mice were treated with SOS for 14 days. The staining of alizarin red and alkaline phosphatase activity were measured, and the presentation of osteoblast markers was detected by quantitative reverse transcription PCR. BMSCs were also treated with 1 μg/mL SOS with or without rapamycin, the expression of protein S6 (PS6), P-mTOR, runt-related transcription factor 2 (RUNX2), OSX, and osteocalcin (OCN) was detected by Western blotting. Experiments in vivo, HE results show that SOS can alleviate OP, CT results show that there are lower trabecular thickness, bone mineral density, and trabecular number in control OVX mice than those in the OVX + SOS group. IHC results showed that SOS can promote the expression of osteogenic markers and immunofluorescent results show that SOS can promote mTORC1 signal activation. Experiments in vitro revealed that SOS stimulated the activation of the mTORC1 signaling pathway and upregulated RUNX2, OSX, and OCN, rapamycin can reverse it. Our findings demonstrated that differentiated BMSCs into osteoblasts can be promoted by SOS via upregulating the expression of P-mTOR, PS6, RUNX2, OSX, and OCN. SOS effectively prevented OP by hyperactivation of the mTORC1/PS6 signaling pathway.
Collapse
Affiliation(s)
- Yan Ding
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China.,Department of Endocrinology, General Hospital of Central Theater Command, Hubei Province, China
| | - Huaji Jiang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China.,Department of Immunology, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, China
| | - Biying Meng
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China.,Department of Endocrinology, General Hospital of Central Theater Command, Hubei Province, China
| | - Biao Zhu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China.,Department of Endocrinology, General Hospital of Central Theater Command, Hubei Province, China
| | - Xiao Yu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China.,Department of Immunology, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, China
| | - Guangda Xiang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China.,Department of Endocrinology, General Hospital of Central Theater Command, Hubei Province, China
| |
Collapse
|
19
|
Ida-Yonemochi H, Nakagawa E, Takata H, Furuyashiki T, Kakutani R, Tanaka M, Ohshima H. Extracellular enzymatically synthesized glycogen promotes osteogenesis by activating osteoblast differentiation via Akt/GSK-3β signaling pathway. J Cell Physiol 2019; 234:13602-13616. [PMID: 30604872 DOI: 10.1002/jcp.28039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 11/30/2018] [Indexed: 11/05/2022]
Abstract
Glycogen is the stored form of glucose and plays a major role in energy metabolism. Recently, it has become clear that enzymatically synthesized glycogen (ESG) has biological functions, such as the macrophage-stimulating activity. This study aimed to evaluate the effect of ESG on osteogenesis. MC3T3-E1 cells were cultured with ESG, and their cell proliferative activity and osteoblast differentiation were measured. An in vivo study was conducted in which ESG pellets with BMP-2 were grafted into mouse calvarial defects and histomorphometrically analyzed for the new bone formation. To confirm the effect of ESG on bone growth in vivo, ESG was orally administered to pregnant mice and the femurs of their pups were examined. We observed that ESG stimulated cell proliferation and enhanced messenger RNA expression of osteocalcin and osteopontin in MC3T3-E1 cells. ESG was taken up by the cells associated with GLUT-1 and activated the Akt/GSK-3β pathway. In vivo, the new bone formation in the calvarial defect was significantly accelerated by ESG and the maternal administration of ESG promoted fetal bone growth. In conclusion, ESG stimulates cell proliferation and differentiation of preosteoblasts via the activation of Akt/GSK-3β signaling and promotes new bone formation in vivo, suggesting that ESG could be a useful stimulant for osteogenesis.
Collapse
Affiliation(s)
- Hiroko Ida-Yonemochi
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Eizo Nakagawa
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hiroki Takata
- Institute of Health Sciences, Ezaki Glico Co., Ltd, Osaka, Japan
| | | | - Ryo Kakutani
- Institute of Health Sciences, Ezaki Glico Co., Ltd, Osaka, Japan
| | - Mikako Tanaka
- Department of Dental Technician, Meirin College, Niigata, Japan
| | - Hayato Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
20
|
Lai M, Jin Z, Yan M, Zhu J, Yan X, Xu K. The controlled naringin release from TiO2 nanotubes to regulate osteoblast differentiation. J Biomater Appl 2018; 33:673-680. [DOI: 10.1177/0885328218809239] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
To design titanium (Ti)-based biomaterials with controlled drug-releasing bioactive property, TiO2 nanotubes with a diameter of approximately 110 nm was fabricated by electrochemical anodization. TiO2 nanotubes were then loaded with naringin by direct dropping and coated with chitosan layers. The surface morphologies, chemical compositions and wettability of different substrates were characterized by field emission scanning electron microscopy, atomic force microscope, X-ray photoelectron spectroscopy and contact angle measurement, respectively. The in vitro release behavior of naringin was evaluated by UV-visible-spectrophotometer. The biological properties of osteoblasts on different substrates were investigated in vitro. Our results indicate that the chitosan-coated naringin-loaded TiO2 nanotubes enhanced osteoblast spreading, proliferation, alkaline phosphatase activity and late-stage osteoblast mineralization. This study provides a platform to help enhance osteointegration between the bone and implant surface in clinical applications.
Collapse
Affiliation(s)
- Min Lai
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Ziyang Jin
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Mengying Yan
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Jing Zhu
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Xufeng Yan
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Kui Xu
- Biomedical Engineering Research Center, Medical School of Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
21
|
Lai M, Yan X, Jin Z. The response of bone cells to titanium surfaces modified by simvastatin-loaded multilayered films. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2018; 29:1895-1908. [PMID: 30156968 DOI: 10.1080/09205063.2018.1517483] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The aim of this study was to enhance cytocompatibility of titanium substrates by loading a multilayer film of chitosan (Chi), gelatin (Gel) and simvastatin (SV). This was fabricated using a spin-assisted layer-by-layer (LBL) technique. The surface properties of the different substrates were characterized by field emission scanning electron microscopy (FE-SEM), atomic force microscope (AFM), X-ray photoelectron spectroscopy (XPS) and contact angle measurement, respectively. Simvastatin release in vitro was measured by ultraviolet-visible spectrophotometer. A well morphology with filopodia extensions was observed in mesenchymal stem cells (MSCs) grown on simvastatin loaded multilayered films-modified titanium substrates. After 7, 14 and 21 days of culture, the simvastatin loaded multilayered films increased cell proliferation, improved osteoblastic differentiation of alkaline phosphatase (ALP) and mineralization. Additionally, osteoclast diffentiation marker tartrate-resistant acid phosphatase (TRAP) was decreased in simvastatin loaded multilayered films. This study provides a new insight for the fabrication of titanium-based implants to enhance osseointegration especially for osteoporosis patients in orthopedic application.
Collapse
Affiliation(s)
- Min Lai
- a School of Life Science , Jiangsu Normal University , Xuzhou , Jiangsu , China
| | - Xufeng Yan
- a School of Life Science , Jiangsu Normal University , Xuzhou , Jiangsu , China
| | - Ziyang Jin
- a School of Life Science , Jiangsu Normal University , Xuzhou , Jiangsu , China
| |
Collapse
|
22
|
Karvande A, Khan S, Khan I, Singh D, Khedgikar V, Kushwaha P, Ahmad N, Kothari P, Dhasmana A, Kant R, Trivedi R, Chauhan PMS. Discovery of a tetrazolyl β-carboline with in vitro and in vivo osteoprotective activity under estrogen-deficient conditions. MEDCHEMCOMM 2018; 9:1213-1225. [PMID: 30109010 PMCID: PMC6072419 DOI: 10.1039/c8md00109j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/02/2018] [Indexed: 11/21/2022]
Abstract
β-Carbolines have been assessed for osteoclastogenesis. However, their effect on osteoblasts during estrogen deficiency is still unclear. Here, a series of novel piperazine and tetrazole tag β-carbolines have been synthesized and examined for osteoblast differentiation in vitro. In vitro data suggest that compound 8g is the most promising osteoblast differentiating agent that was evaluated for in vivo studies. Compound 8g promoted osteoblast mineralization, stimulated Runx2, BMP-2 and OCN expression levels, increased BrdU incorporation and inhibited generation of free radicals as well as nitric oxide. Since a piperazine group is involved in bone repair activity and β-carboline in IκB kinase (IKK) inhibition, compound 8g inhibited tumor necrosis factor α (TNFα) directed IκBα phosphorylation, preventing nuclear translocation of NF-κB thereby alleviating osteoblast apoptosis. In vivo studies show that compound 8g was able to restore estrogen deficiency-induced bone loss in ovariectomized rats without any toxicity, thus signifying its potential in bone-protection chemotherapy under postmenopausal conditions.
Collapse
Affiliation(s)
- Anirudha Karvande
- Endocrinology Division , CSIR-Central Drug Research Institute (CSIR-CDRI) , Lucknow , 226031 , India .
| | - Shahnawaz Khan
- Chemistry Division , BHUPAL NOBLES' UNIVERSITY , Udaipur-313001 , India
| | - Irfan Khan
- Medicinal and Process Chemistry Division , CSIR-Central Drug Research Institute , Lucknow-226031 , U.P , India .
| | - Deepti Singh
- Medicinal and Process Chemistry Division , CSIR-Central Drug Research Institute , Lucknow-226031 , U.P , India .
| | - Vikram Khedgikar
- Endocrinology Division , CSIR-Central Drug Research Institute (CSIR-CDRI) , Lucknow , 226031 , India .
| | - Priyanka Kushwaha
- Endocrinology Division , CSIR-Central Drug Research Institute (CSIR-CDRI) , Lucknow , 226031 , India .
| | - Naseer Ahmad
- Endocrinology Division , CSIR-Central Drug Research Institute (CSIR-CDRI) , Lucknow , 226031 , India .
| | - Priyanka Kothari
- Endocrinology Division , CSIR-Central Drug Research Institute (CSIR-CDRI) , Lucknow , 226031 , India .
| | - Anupam Dhasmana
- Research Himalayan School of Bio sciences , Swami Rama Himalayan University , Dehradun , India
| | - Ruchir Kant
- Molecular and Structural Biology Central Drug Research Institute , CSIR , Lucknow 226031 , India
| | - Ritu Trivedi
- Endocrinology Division , CSIR-Central Drug Research Institute (CSIR-CDRI) , Lucknow , 226031 , India .
| | - Prem M S Chauhan
- Medicinal and Process Chemistry Division , CSIR-Central Drug Research Institute , Lucknow-226031 , U.P , India .
| |
Collapse
|
23
|
Fabrication of hyaluronidase-responsive biocompatible multilayers on BMP2 loaded titanium nanotube for the bacterial infection prevention. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 89:95-105. [PMID: 29752124 DOI: 10.1016/j.msec.2018.03.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 12/25/2017] [Accepted: 03/23/2018] [Indexed: 11/21/2022]
Abstract
Infection associated with orthopedic implants is the chief cause of implant failure. An important consideration to prevent the infection at implants is to inhibit the biofilm formation for the initial 6 h. Therefore, we fabricated hyaluronidase-sensitive multilayers of chitosan (Chi)/sodium hyaluronate-lauric acid (SL) onto the surface of bone morphogenetic protein 2 (BMP2) loaded titanium nanotube (TNT) via spin-assisted layer-by-layer technique. The results of both Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (1H NMR) confirmed the successful synthesis of SL. The multilayer structure on BMP2 loaded TNT was characterized by field-emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM) and water contact angle, respectively. The release profiles confirmed that hyaluronidase could trigger the release of lauric acid (LA) from the SL multilayer and accelerate the release of BMP2 in the system. The hyaluronidase-sensitive-multilayer-coated BMP2-loaded TNT (TNT/BMP2/(Chi/SL/Chi/Gel)4) not only demonstrated good antibacterial capability, but also showed good biocompatibility in in vitro usage, which was supported by the efficient growth inhibition of both Staphylococcus aureus and Escherichia coli, as well as higher cell viability, alkaline phosphatase activity, mineralization capability, and higher gene expression of osteoblasts on TNT/BMP2/(Chi/SL/Chi/Gel)4. This study developed an alternative approach to fabricate effective antibacterial implants for orthopedic implantation.
Collapse
|
24
|
Harmine promotes molar root development via SMAD1/5/8 phosphorylation. Biochem Biophys Res Commun 2018; 497:924-929. [DOI: 10.1016/j.bbrc.2017.12.062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 12/12/2017] [Indexed: 11/16/2022]
|
25
|
Ma XY, Feng YF, Wang TS, Lei W, Li X, Zhou DP, Wen XX, Yu HL, Xiang LB, Wang L. Involvement of FAK-mediated BMP-2/Smad pathway in mediating osteoblast adhesion and differentiation on nano-HA/chitosan composite coated titanium implant under diabetic conditions. Biomater Sci 2018; 6:225-238. [PMID: 29231215 DOI: 10.1039/c7bm00652g] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nanophase HA/CS composite coated porous titanium implant exhibited superior biological performance under diabetic conditions compared to pure Ti.
Collapse
Affiliation(s)
- Xiang-Yu Ma
- Department of Orthopedics
- General Hospital of Shenyang Military Area Command of Chinese PLA
- Shenyang
- China
- Department of Orthopedics of the 463 Hospital of PLA
| | - Ya-Fei Feng
- Department of Orthopedics
- Xijing Hospital
- Fourth Military Medical University
- Xi'an
- China
| | - Tian-Sheng Wang
- Department of Orthopedics of the 463 Hospital of PLA
- Shenyang
- China
| | - Wei Lei
- Department of Orthopedics
- Xijing Hospital
- Fourth Military Medical University
- Xi'an
- China
| | - Xiang Li
- School of Mechanical Engineering
- Shanghai Jiao Tong University
- State Key Laboratory of Mechanical System and Vibration
- Shanghai
- China
| | - Da-Peng Zhou
- Department of Orthopedics
- General Hospital of Shenyang Military Area Command of Chinese PLA
- Shenyang
- China
| | - Xin-Xin Wen
- Department of Orthopedics of the 463 Hospital of PLA
- Shenyang
- China
- Department of Orthopedics
- Xijing Hospital
| | - Hai-Long Yu
- Department of Orthopedics
- General Hospital of Shenyang Military Area Command of Chinese PLA
- Shenyang
- China
| | - Liang-Bi Xiang
- Department of Orthopedics
- General Hospital of Shenyang Military Area Command of Chinese PLA
- Shenyang
- China
| | - Lin Wang
- Department of Orthopedics
- Xijing Hospital
- Fourth Military Medical University
- Xi'an
- China
| |
Collapse
|
26
|
Lim HC, Cha BY, Song SU, Yun JH. Harmine promotes periodontal ligament cell-induced tissue regeneration. Oral Dis 2017; 24:456-464. [DOI: 10.1111/odi.12770] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/31/2017] [Accepted: 09/03/2017] [Indexed: 11/29/2022]
Affiliation(s)
- H-C Lim
- Department of Periodontology; School of Dentistry; Kyung Hee University; Seoul Korea
- Clinic for Fixed and Removable Prosthodontics and Dental Material Science; University of Zürich; Zürich Switzerland
| | - B-Y Cha
- Research Institute for Biological Functions; CHUBU University; Aichi Japan
| | - SU Song
- Clinical Research Center; School of Medicine; Inha University; Incheon Korea
| | - J-H Yun
- Department of Periodontology; School of Dentistry and Institute of Oral Bioscience; Chonbuk National University; Jeonju Korea
- Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital; Jeonju Korea
| |
Collapse
|
27
|
ZOFKOVA I, BLAHOS J. New Molecules Modulating Bone Metabolism – New Perspectives in the Treatment of Osteoporosis. Physiol Res 2017; 66:S341-S347. [DOI: 10.33549/physiolres.933720] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In this review the authors outline traditional antiresorptive pharmaceuticals, such as bisphosphonates, monoclonal antibodies against RANKL, SERMs, as well as a drug with an anabolic effect on the skeleton, parathormone. However, there is also a focus on non-traditional strategies used in therapy for osteolytic diseases. The newest antiosteoporotic pharmaceuticals increase osteoblast differentiation via BMP signaling (harmine), or stimulate osteogenic differentiation of mesenchymal stem cells through Wnt/β-catenin (icarrin, isoflavonoid caviunin, or sulfasalazine). A certain promise in the treatment of osteoporosis is shown by molecules targeting non-coding microRNAs (which are critical for osteoclastogenesis) or those stimulating osteoblast activity via epigenetic mechanisms. Vitamin D metabolites have specific antiosteoporotic potencies, modulating the skeleton not only via mineralization, but markedly also through the direct effects on the bone microstructure.
Collapse
Affiliation(s)
- I. ZOFKOVA
- Institute of Endocrinology, Prague, Czech Republic
| | | |
Collapse
|
28
|
Lai M, Jin Z, Tang Q, Lu M. Sustained release of melatonin from TiO2 nanotubes for modulating osteogenic differentiation of mesenchymal stem cells in vitro. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017; 28:1651-1664. [DOI: 10.1080/09205063.2017.1342334] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Min Lai
- School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Ziyang Jin
- School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Qiang Tang
- School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Min Lu
- School of Life Science, Jiangsu Normal University, Xuzhou, China
| |
Collapse
|
29
|
Kornicka K, Kocherova I, Marycz K. The effects of chosen plant extracts and compounds on mesenchymal stem cells-a bridge between molecular nutrition and regenerative medicine- concise review. Phytother Res 2017; 31:947-958. [DOI: 10.1002/ptr.5812] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/19/2017] [Accepted: 03/20/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Katarzyna Kornicka
- Department of Experimental Biology and Electron Microscope Facility, The Faculty of Biology and Animal Science; Wroclaw University of Environmental and Life Sciences; Chełmońskiego 38c 50-630 Wrocław Poland
- Wroclaw Research Centre EIT+; 54-066 Wrocław Poland
| | - Ievgeniia Kocherova
- Department of Experimental Biology and Electron Microscope Facility, The Faculty of Biology and Animal Science; Wroclaw University of Environmental and Life Sciences; Chełmońskiego 38c 50-630 Wrocław Poland
| | - Krzysztof Marycz
- Department of Experimental Biology and Electron Microscope Facility, The Faculty of Biology and Animal Science; Wroclaw University of Environmental and Life Sciences; Chełmońskiego 38c 50-630 Wrocław Poland
- Wroclaw Research Centre EIT+; 54-066 Wrocław Poland
| |
Collapse
|
30
|
Lai M, Jin Z, Su Z. Surface modification of TiO2 nanotubes with osteogenic growth peptide to enhance osteoblast differentiation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 73:490-497. [DOI: 10.1016/j.msec.2016.12.083] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 12/08/2016] [Accepted: 12/17/2016] [Indexed: 11/28/2022]
|
31
|
Jain A, Cheng K. The principles and applications of avidin-based nanoparticles in drug delivery and diagnosis. J Control Release 2017; 245:27-40. [PMID: 27865853 PMCID: PMC5222781 DOI: 10.1016/j.jconrel.2016.11.016] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 11/07/2016] [Indexed: 01/04/2023]
Abstract
Avidin-biotin interaction is one of the strongest non-covalent interactions in the nature. Avidin and its analogues have therefore been extensively utilized as probes and affinity matrices for a wide variety of applications in biochemical assays, diagnosis, affinity purification, and drug delivery. Recently, there has been a growing interest in exploring this non-covalent interaction in nanoscale drug delivery systems for pharmaceutical agents, including small molecules, proteins, vaccines, monoclonal antibodies, and nucleic acids. Particularly, the ease of fabrication without losing the chemical and biological properties of the coupled moieties makes the avidin-biotin system a versatile platform for nanotechnology. In addition, avidin-based nanoparticles have been investigated as diagnostic systems for various tumors and surface antigens. In this review, we will highlight the various fabrication principles and biomedical applications of avidin-based nanoparticles in drug delivery and diagnosis. The structures and biochemical properties of avidin, biotin and their respective analogues will also be discussed.
Collapse
Affiliation(s)
- Akshay Jain
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri Kansas City, Kansas City, MO 64108, United States
| | - Kun Cheng
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri Kansas City, Kansas City, MO 64108, United States.
| |
Collapse
|
32
|
Yin C, Zhang Y, Cai Q, Li B, Yang H, Wang H, Qi H, Zhou Y, Meng W. Effects of the micro-nano surface topography of titanium alloy on the biological responses of osteoblast. J Biomed Mater Res A 2016; 105:757-769. [PMID: 27756111 DOI: 10.1002/jbm.a.35941] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 10/13/2016] [Accepted: 10/17/2016] [Indexed: 11/12/2022]
Affiliation(s)
- Chengcheng Yin
- Department of Dental Implantology, School and Hospital of Stomatology; Jilin University, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling; Changchun 130021 People's Republic of China
| | - Yanjing Zhang
- Department of Dental Implantology, School and Hospital of Stomatology; Jilin University, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling; Changchun 130021 People's Republic of China
| | - Qing Cai
- Department of Dental Implantology, School and Hospital of Stomatology; Jilin University, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling; Changchun 130021 People's Republic of China
| | - Baosheng Li
- Department of Dental Implantology, School and Hospital of Stomatology; Jilin University, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling; Changchun 130021 People's Republic of China
| | - Hua Yang
- Department of Dental Implantology, School and Hospital of Stomatology; Jilin University, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling; Changchun 130021 People's Republic of China
| | - Heling Wang
- Department of Dental Implantology, School and Hospital of Stomatology; Jilin University, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling; Changchun 130021 People's Republic of China
| | - Hua Qi
- Department of Dental Implantology, School and Hospital of Stomatology; Jilin University, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling; Changchun 130021 People's Republic of China
| | - Yanmin Zhou
- Department of Dental Implantology, School and Hospital of Stomatology; Jilin University, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling; Changchun 130021 People's Republic of China
| | - Weiyan Meng
- Department of Dental Implantology, School and Hospital of Stomatology; Jilin University, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling; Changchun 130021 People's Republic of China
| |
Collapse
|
33
|
Jiang HJ, Tian XG, Huang SB, Chen GR, Huang MJ, Chen YH, Yan B, Li SF, Tang JJ, Zhao HY, Wang L, Zhang ZM. Tenuigenin promotes the osteogenic differentiation of bone mesenchymal stem cells in vitro and in vivo. Cell Tissue Res 2016; 367:257-267. [PMID: 27844205 PMCID: PMC5269466 DOI: 10.1007/s00441-016-2528-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 10/07/2016] [Indexed: 12/21/2022]
Abstract
Osteoporosis, which is a systemic skeletal disease characterized by low bone mineral density and microarchitectural deterioration of bone quality, is a global and increasing public health problem. Recent studies have suggested that Tenuigenin (TEN), a class of native compounds with numerous biological activities such as anti-resorptive properties, exerts protective effects against postmenopausal bone loss. The present study aims to investigate the osteogenic effects of TEN on bone mesenchymal stem cells (BMSCs) in vitro and in vivo. Alkaline phosphatase (ALP) activity/staining, Alizarin red staining and the expression of osteogenic markers, including runt-related transcription factor 2, osterix, osteocalcin, collagen Iα1, β-catenin and glycogen synthase kinase-3β were investigated in primary femoral BMSCs from C57/BL6 mice cultured under osteogenic conditions for 2 weeks to examine the effects of TEN. An ovariectomized (OVX) mouse model was used to investigate the effect of TEN treatment for 3 months in vivo. We found that ALP activity, mineralized nodules and the expression of osteogenic markers were increased and WNT/β-catenin signaling was enhanced in vitro and in vivo. Bone parameters, including trabecular thickness, trabecular number and bone mineral density were higher in the OVX+TEN group than in control OVX mice. Our results suggest the therapeutic potential of TEN for the treatment of patients with postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Hua-Ji Jiang
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, 183 West Zhongshan Avenue, Guangzhou, 510282, Guangdong, People's Republic of China
| | - Xing-Gui Tian
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, 183 West Zhongshan Avenue, Guangzhou, 510282, Guangdong, People's Republic of China
| | - Shou-Bin Huang
- Department of Orthopedics, Huizhou First Hospital, Huizhou, Guangdong, People's Republic of China
| | - Guo-Rong Chen
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, 183 West Zhongshan Avenue, Guangzhou, 510282, Guangdong, People's Republic of China
| | - Min-Jun Huang
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, 183 West Zhongshan Avenue, Guangzhou, 510282, Guangdong, People's Republic of China
| | - Yu-Hui Chen
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, 183 West Zhongshan Avenue, Guangzhou, 510282, Guangdong, People's Republic of China
| | - Bin Yan
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, 183 West Zhongshan Avenue, Guangzhou, 510282, Guangdong, People's Republic of China
| | - Sheng-Fa Li
- Department of Orthopedics, Huizhou First Hospital, Huizhou, Guangdong, People's Republic of China
| | - Jia-Jun Tang
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, 183 West Zhongshan Avenue, Guangzhou, 510282, Guangdong, People's Republic of China
| | - Hui-Yu Zhao
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, 183 West Zhongshan Avenue, Guangzhou, 510282, Guangdong, People's Republic of China
| | - Liang Wang
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, 183 West Zhongshan Avenue, Guangzhou, 510282, Guangdong, People's Republic of China.
| | - Zhong-Min Zhang
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, 183 West Zhongshan Avenue, Guangzhou, 510282, Guangdong, People's Republic of China.
| |
Collapse
|
34
|
Yang X, Huo H, Xiu C, Song M, Han Y, Li Y, Zhu Y. Inhibition of osteoblast differentiation by aluminum trichloride exposure is associated with inhibition of BMP-2/Smad pathway component expression. Food Chem Toxicol 2016; 97:120-126. [PMID: 27600293 DOI: 10.1016/j.fct.2016.09.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 08/31/2016] [Accepted: 09/01/2016] [Indexed: 02/07/2023]
Abstract
Bone morphogenetic protein-2 (BMP-2)/Smad signaling pathway plays an important role in regulating osteoblast (OB) differentiation. OB differentiation is a key process of bone formation. Aluminum (Al) exposure inhibits bone formation and causes Al-induced bone disease. However, the mechanism is not fully understood. To investigate whether BMP-2/Smad signaling pathway is associated with OB differentiation in aluminum trichloride (AlCl3)-treated OBs, the primary rat OBs were cultured and exposed to 0 (control group, CG), 1/40 IC50 (low-dose group, LG), 1/20 IC50 (mid-dose group, MG), and 1/10 IC50 (high-dose group, HG) of AlCl3 for 24 h, respectively. We found that the expressions of OB differentiation markers (Runx-2, Osterix and ALP) and BMP-2/Smad signaling pathway components (BMP-2, BMPR-IA, p-BMPR-IA, BMPR-II, p-Smad1/5/8 and p-Smad1/5/8/4) were all decreased in AlCl3-treated OBs compared with the CG. These results indicated that inhibition of OB differentiation by AlCl3 was associated with inhibition of BMP-2/Smad pathway component expression. Our findings provide a novel insight into the mechanism of AlCl3-induced bone disease.
Collapse
Affiliation(s)
- Xu Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Hui Huo
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Chunyu Xiu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Miao Song
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yanfei Han
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yanfei Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| | - Yanzhu Zhu
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun 130112, China.
| |
Collapse
|
35
|
Pengjam Y, Madhyastha H, Madhyastha R, Yamaguchi Y, Nakajima Y, Maruyama M. Anthraquinone Glycoside Aloin Induces Osteogenic Initiation of MC3T3-E1 Cells: Involvement of MAPK Mediated Wnt and Bmp Signaling. Biomol Ther (Seoul) 2016; 24:123-31. [PMID: 26869456 PMCID: PMC4774492 DOI: 10.4062/biomolther.2015.106] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 09/10/2015] [Accepted: 10/21/2015] [Indexed: 01/31/2023] Open
Abstract
Osteoporosis is a bone pathology leading to increased fracture risk and challenging the quality of life. The aim of this study was to evaluate the effect of an anthraquinone glycoside, aloin, on osteogenic induction of MC3T3-E1 cells. Aloin increased alkaline phosphatase (ALP) activity, an early differentiation marker of osteoblasts. Aloin also increased the ALP activity in adult human adipose-derived stem cells (hADSC), indicating that the action of aloin was not cell-type specific. Alizarin red S staining revealed a significant amount of calcium deposition in cells treated with aloin. Aloin enhanced the expression of osteoblast differentiation genes, Bmp-2, Runx2 and collagen 1a, in a dose-dependent manner. Western blot analysis revealed that noggin and inhibitors of p38 MAPK and SAPK/JNK signals attenuated aloin-promoted expressions of Bmp-2 and Runx2 proteins. siRNA mediated blocking of Wnt-5a signaling pathway also annulled the influence of aloin, indicating Wnt-5a dependent activity. Inhibition of the different signal pathways abrogated the influence of aloin on ALP activity, confirming that aloin induced MC3T3-E1 cells into osteoblasts through MAPK mediated Wnt and Bmp signaling pathway.
Collapse
Affiliation(s)
- Yutthana Pengjam
- Department of Applied Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan.,Faculty of Medical Technology, Prince of Songkla University, HatYai, Songkhla 90110, Thailand
| | - Harishkumar Madhyastha
- Department of Applied Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Radha Madhyastha
- Department of Applied Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Yuya Yamaguchi
- Department of Applied Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Yuichi Nakajima
- Department of Applied Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Masugi Maruyama
- Department of Applied Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| |
Collapse
|
36
|
Hyung JH, Ahn CB, Je JY. Osteoblastogenic activity of ark shell protein hydrolysates with low molecular weight in mouse mesenchymal stem cells. RSC Adv 2016. [DOI: 10.1039/c6ra00898d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ark shell protein promotes bone formation through regulating osteoblast differentiation.
Collapse
Affiliation(s)
- Jun-Ho Hyung
- Department of Marine-Bio Convergence Science
- Pukyong National University
- Busan 48547
- Republic of Korea
| | - Chang-Bum Ahn
- Division of Food and Nutrition
- Chonnam National University
- Gwangju 61186
- Republic of Korea
| | - Jae-Young Je
- Department of Marine-Bio Convergence Science
- Pukyong National University
- Busan 48547
- Republic of Korea
| |
Collapse
|
37
|
Jian J, Sun L, Cheng X, Hu X, Liang J, Chen Y. Calycosin-7-O-β-d-glucopyranoside stimulates osteoblast differentiation through regulating the BMP/WNT signaling pathways. Acta Pharm Sin B 2015; 5:454-60. [PMID: 26579475 PMCID: PMC4629440 DOI: 10.1016/j.apsb.2015.06.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 06/04/2015] [Accepted: 06/11/2015] [Indexed: 12/31/2022] Open
Abstract
The isoflavone calycosin-7-O-β-d-glucopyranoside (CG) is a principal constituent of Astragalus membranaceus (AR) and has been reported to inhibit osteoclast development in vitro and bone loss in vivo. The aim of this study was to investigate the osteogenic effects of CG and its underlying mechanism in ST2 cells. The results show that exposure of cells to CG in osteogenic differentiation medium increases ALP activity, osteocalcin (Ocal) mRNA expression and the osteoblastic mineralization process. Mechanistically, CG treatment increased the expression of bone morphogenetic protein 2 (BMP-2), p-Smad 1/5/8, β-catenin and Runx2, all of which are regulators of the BMP- or wingless-type MMTV integration site family (WNT)/β-catenin-signaling pathways. Moreover, the osteogenic effects of CG were inhibited by Noggin and DKK-1 which are classical inhibitors of the BMP and WNT/β-catenin-signaling pathways, respectively. Taken together, the results indicate that CG promotes the osteoblastic differentiation of ST2 cells through regulating the BMP/WNT signaling pathways. On this basis, CG may be a useful lead compound for improving the treatment of bone-decreasing diseases and enhancing bone regeneration.
Collapse
Key Words
- ALP, alkaline phosphatase
- AR, Astragalus membranaceus
- BMP signaling pathway
- BMP, bone morphogenetic protein
- CG, calycosin-7-O-β-d-glucopyranoside
- Calycosin-7-O-β-d-glucopyranoside
- DKK-1, dickkopf-1
- ECL, enhanced chemiluminescence
- FGF, fibroblast growth factor
- HAase, hyaluronidase
- IGF1, insulin-like growth factor 1
- MAPK, mitogen-activated protein kinase
- MTT, 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide
- OBM, osteogenic differentiation medium
- OPN, osteopontin
- OVX, ovariectomized
- Ocal, osteocalcin
- Osteoblastic differentiation
- PVDF, polyvinylidine fluoride
- ST2 cells
- TGF-β, transforming growth factor β
- WNT, wingless-type MMTV integration site family
- WNT/β-catenin signaling pathway
Collapse
Affiliation(s)
| | - Lijuan Sun
- Corresponding author. Tel.: +86 27 88663882.
| | | | | | | | - Yong Chen
- Corresponding author. Tel.: +86 27 88668070.
| |
Collapse
|
38
|
Repercussions of NSAIDS drugs on bone tissue: the osteoblast. Life Sci 2015; 123:72-7. [PMID: 25625244 DOI: 10.1016/j.lfs.2015.01.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 12/30/2014] [Accepted: 01/02/2015] [Indexed: 12/11/2022]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) can act by modulating the behavior of osteoblasts, including their proliferation, differentiation, adhesion, and migration, but not all NSAIDs have these effects. Our objective was to update the information on this issue in a review of the literature in order to offer guidance on the prescription of the appropriate NSAID(s) to patients requiring bone tissue repair. To review current knowledge of this issue by searching for all relevant publications since 2001 in the MEDLINE, EMBASE and Cochrane Library databases, we used the following descriptors: bone tissue, osteoblast, NSAIDs, Anti-inflammatory drugs. Published studies show that most NSAIDs have an adverse effect on osteoblast growth by cell cycle arrest and apoptosis induction. The effect on differentiation varies according to the drug, dose, and treatment time. Osteoblast adhesion is increased and migration decreased by some NSAIDs, such as indomethacin and diclofenac. The antigenic profile or phagocytic function can also be modulated by NSAIDs. In general, NSAIDs have an adverse effect on bone tissue and given the routine administration of NSAIDs to individuals requiring bone repair, in which the osteoblast has an essential role, this effect on bone should be borne in mind.
Collapse
|
39
|
Zhang Y, Hu Y, Luo Z, Shen X, Mu C, Cai K. Simultaneous delivery of BMP-2 factor and anti-osteoporotic drugs using hyaluronan-assembled nanocomposite for synergistic regulation on the behaviors of osteoblasts and osteoclastsin vitro. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2015; 26:290-310. [DOI: 10.1080/09205063.2014.998588] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
40
|
Saeki M, Egusa H. [Novel strategies for the development of anabolic agents for treatment of osteoporosis]. Nihon Yakurigaku Zasshi 2014; 144:277-80. [PMID: 25492363 DOI: 10.1254/fpj.144.277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
41
|
Yang W, Xi X, Si Y, Huang S, Wang J, Cai K. Surface engineering of titanium alloy substrates with multilayered biomimetic hierarchical films to regulate the growth behaviors of osteoblasts. Acta Biomater 2014; 10:4525-36. [PMID: 24905934 DOI: 10.1016/j.actbio.2014.05.033] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 05/23/2014] [Accepted: 05/27/2014] [Indexed: 01/27/2023]
Abstract
Osseointegration is essential for the long-term survival of orthopedic implants. Inspired by the hierarchical structure of natural bone, we fabricated a hierarchical structure with osteoinduction potential on titanium alloy (Ti6Al7Nb) substrates via a spin-assisted layer-by-layer assembly technique, with hydroxyapatite nanofibers as the intercalated materials and gelatin and chitosan as the polycation and polyanion, respectively. The as-synthesized hydroxyapatite nanofibers were characterized using scanning electron microscopy (SEM), transmission electron microscopy, Fourier transform infrared spectroscopy and X-ray diffraction. The change of water contact angle corresponding to different layers indicated the formation of a multilayered structure, since different components have their inherent wettability natures. The multilayered lamellar structure was revealed by the cross-sectional view of SEM, suggesting that the film was successfully deposited onto Ti6Al7Nb substrates. Osteoblasts cultured on the hierarchical structure deposited Ti alloy substrates displayed significantly higher cell viability (P<0.01) and better adhesion, a higher production level of alkaline phosphatase, mineralization, genes expressions of osteocalcin and osteopontin (P<0.01 or P<0.05) compared to those of native Ti6Al7Nb substrates after culture for 4, 7 or 14days. These results indicated that the lamellar structure was beneficial for the biological functions of osteoblasts, establishing the basis for osseointegration of a titanium alloy implant.
Collapse
|
42
|
Coelho PG, Takayama T, Yoo D, Jimbo R, Karunagaran S, Tovar N, Janal MN, Yamano S. Nanometer-scale features on micrometer-scale surface texturing: a bone histological, gene expression, and nanomechanical study. Bone 2014; 65:25-32. [PMID: 24813260 DOI: 10.1016/j.bone.2014.05.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 04/18/2014] [Accepted: 05/05/2014] [Indexed: 11/29/2022]
Abstract
Micro- and nanoscale surface modifications have been the focus of multiple studies in the pursuit of accelerating bone apposition or osseointegration at the implant surface. Here, we evaluated histological and nanomechanical properties, and gene expression, for a microblasted surface presenting nanometer-scale texture within a micrometer-scale texture (MB) (Ossean Surface, Intra-Lock International, Boca Raton, FL) versus a dual-acid etched surface presenting texture at the micrometer-scale only (AA), in a rodent femur model for 1, 2, 4, and 8weeks in vivo. Following animal sacrifice, samples were evaluated in terms of histomorphometry, biomechanical properties through nanoindentation, and gene expression by real-time quantitative reverse transcription polymerase chain reaction analysis. Although the histomorphometric, and gene expression analysis results were not significantly different between MB and AA at 4 and 8 weeks, significant differences were seen at 1 and 2 weeks. The expression of the genes encoding collagen type I (COL-1), and osteopontin (OPN) was significantly higher for MB than for AA at 1 week, indicating up-regulated osteoprogenitor and osteoblast differentiation. At 2 weeks, significantly up-regulated expression of the genes for COL-1, runt-related transcription factor 2 (RUNX-2), osterix, and osteocalcin (OCN) indicated progressive mineralization in newly formed bone. The nanomechanical properties tested by the nanoindentation presented significantly higher-rank hardness and elastic modulus for the MB compared to AA at all time points tested. In conclusion, the nanotopographical featured surfaces presented an overall higher host-to-implant response compared to the microtextured only surfaces. The statistical differences observed in some of the osteogenic gene expression between the two groups may shed some insight into the role of surface texture and its extent in the observed bone healing mechanisms.
Collapse
Affiliation(s)
- Paulo G Coelho
- Department of Biomaterials and Biomimetics, New York University College of Dentistry, New York, NY, USA
| | - Tadahiro Takayama
- Department of Prosthodontics, New York University College of Dentistry, New York, NY, USA
| | - Daniel Yoo
- Department of Biomaterials and Biomimetics, New York University College of Dentistry, New York, NY, USA
| | - Ryo Jimbo
- Department of Prosthodontics, Faculty of Odontology, Malmö University, Malmö, Sweden.
| | - Sanjay Karunagaran
- Department of Prosthodontics, University of Tennessee Health Science Center, College of Dentistry, Memphis, TN, USA
| | - Nick Tovar
- Department of Biomaterials and Biomimetics, New York University College of Dentistry, New York, NY, USA
| | - Malvin N Janal
- Department of Epidemiology and Health Promotion, New York University, New York, NY, USA
| | - Seiichi Yamano
- Department of Prosthodontics, New York University College of Dentistry, New York, NY, USA
| |
Collapse
|
43
|
Zhao L, Hu Y, Xu D, Cai K. Surface functionalization of titanium substrates with chitosan–lauric acid conjugate to enhance osteoblasts functions and inhibit bacteria adhesion. Colloids Surf B Biointerfaces 2014; 119:115-25. [DOI: 10.1016/j.colsurfb.2014.05.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 04/21/2014] [Accepted: 05/01/2014] [Indexed: 12/12/2022]
|
44
|
Moloudizargari M, Mikaili P, Aghajanshakeri S, Asghari MH, Shayegh J. Pharmacological and therapeutic effects of Peganum harmala and its main alkaloids. Pharmacogn Rev 2014; 7:199-212. [PMID: 24347928 PMCID: PMC3841998 DOI: 10.4103/0973-7847.120524] [Citation(s) in RCA: 183] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 12/28/2012] [Accepted: 10/25/2013] [Indexed: 11/07/2022] Open
Abstract
Wild Syrian rue (Peganum harmala L. family Zygophyllaceae) is well-known in Iran and various parts of this plant including, its seeds, bark, and root have been used as folk medicine. Recent years of research has demonstrated different pharmacological and therapeutic effects of P. harmala and its active alkaloids, especially harmine and harmaline. Analytical studies on the chemical composition of the plant show that the most important constituents of this plant are beta-carboline alkaloids such as harmalol, harmaline, and harmine. Harmine is the most studied among these naturally occurring alkaloids. In addition to P. harmala (Syrian rue), these beta-carbolines are present in many other plants such as Banisteria caapi and are used for the treatment of different diseases. This article reviews the traditional uses and pharmacological effects of total extract and individual active alkaloids of P. harmala (Syrian rue).
Collapse
Affiliation(s)
- Milad Moloudizargari
- Student of Veterinary Medicine, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Peyman Mikaili
- Department of Pharmacology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Shahin Aghajanshakeri
- Student of Veterinary Medicine, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | | | - Jalal Shayegh
- Veterinary Medicine, Faculty of Agriculture and Veterinary, Shabestar Branch, Islamic Azad University, Shabestar, Iran
| |
Collapse
|
45
|
Gao P, Tao N, Ma Q, Fan WX, Ni C, Wang H, Qin ZH. DH332, a Synthetic β-Carboline Alkaloid, Inhibits B Cell Lymphoma Growth by Activation of the Caspase Family. Asian Pac J Cancer Prev 2014; 15:3901-6. [DOI: 10.7314/apjcp.2014.15.9.3901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
46
|
Mikael PE, Amini AR, Basu J, Josefina Arellano-Jimenez M, Laurencin CT, Sanders MM, Barry Carter C, Nukavarapu SP. Functionalized carbon nanotube reinforced scaffolds for bone regenerative engineering: fabrication,
in vitro
and
in vivo
evaluation. Biomed Mater 2014; 9:035001. [DOI: 10.1088/1748-6041/9/3/035001] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
47
|
Luna-Bertos ED, Ramos-Torrecillas J, Manzano-Moreno FJ, García-Martínez O, Ruiz C. Effects on Growth of Human Osteoblast-Like Cells of Three Nonsteroidal Anti-Inflammatory Drugs. Biol Res Nurs 2014; 17:62-7. [DOI: 10.1177/1099800414527155] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Some nonsteroidal anti-inflammatory drugs (NSAIDs) have adverse effects on bone tissue. The objective of this study was to determine the effect of different doses of dexketoprofen, ketorolac, and metamizole on growth of the osteoblast MG63 cell line. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide spectrophotometry results showed that MG63 cell growth was significantly inhibited after 24 hr of culture with doses of 10, 20, 100, or 1,000 µM of each NSAID and with doses of 0.1, 1, or 5 µM of dexketoprofen and ketorolac but not metamizole. Cell-cycle studies revealed that dexketoprofen and ketorolac treatments significantly arrested the cell cycle in phase G0/G1, increasing the percentage of cells in this phase. Apoptosis/necrosis studies showed significant changes versus control cells, with an increased percentage of cells in apoptosis after treatment with 10, 100, or 1,000 µM of metamizole and after treatment with 1, 10, 100, or 1,000 µM of dexketoprofen or ketorolac. In conclusion, treatment of osteoblast-like cells with high doses of the NSAIDs tested increased not only the percentage of cells in apoptosis but also the percentage of necrotic cells.
Collapse
Affiliation(s)
- Elvira De Luna-Bertos
- Department of Nursing, School of Health Sciences, University of Granada, Granada, Spain
| | | | | | - Olga García-Martínez
- Department of Nursing, School of Health Sciences, University of Granada, Granada, Spain
| | - Concepción Ruiz
- Department of Nursing, School of Health Sciences, Institute of Neurosciences, University of Granada, Granada
| |
Collapse
|
48
|
Kong Z, Lin J, Yu M, Yu L, Li J, Weng W, Cheng K, Wang H. Enhanced loading and controlled release of rhBMP-2 in thin mineralized collagen coatings with the aid of chitosan nanospheres and its biological evaluations. J Mater Chem B 2014; 2:4572-4582. [PMID: 32261558 DOI: 10.1039/c4tb00404c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Osseointegration significantly accelerated by enhanced rhBMP-2 loading in thin mineralized collagen coatings with the aid of electrochemically injected chitosan nanospheres.
Collapse
Affiliation(s)
- Ziqiang Kong
- Department of Materials Science & Engineering
- State Key Laboratory of Silicon Materials
- Zhejiang University
- Hangzhou, China
| | - Jun Lin
- The First Affiliated Hospital Of Medical College
- Zhejiang University
- Hangzhou, China
| | - Mengfei Yu
- The First Affiliated Hospital Of Medical College
- Zhejiang University
- Hangzhou, China
| | - Lan Yu
- The First Affiliated Hospital Of Medical College
- Zhejiang University
- Hangzhou, China
| | - Juan Li
- The First Affiliated Hospital Of Medical College
- Zhejiang University
- Hangzhou, China
| | - Wenjian Weng
- Department of Materials Science & Engineering
- State Key Laboratory of Silicon Materials
- Zhejiang University
- Hangzhou, China
| | - Kui Cheng
- Department of Materials Science & Engineering
- State Key Laboratory of Silicon Materials
- Zhejiang University
- Hangzhou, China
| | - Huiming Wang
- The First Affiliated Hospital Of Medical College
- Zhejiang University
- Hangzhou, China
| |
Collapse
|
49
|
Chen JJ, Zhang NF, Mao GX, He XB, Zhan YC, Deng HB, Song DQ, Li DD, Li ZR, Si SY, Qiu Q, Wang Z. Salidroside stimulates osteoblast differentiation through BMP signaling pathway. Food Chem Toxicol 2013; 62:499-505. [PMID: 24055767 DOI: 10.1016/j.fct.2013.09.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/16/2013] [Accepted: 09/11/2013] [Indexed: 02/03/2023]
Abstract
Salidroside (SAL) is one of main active components of Rhodiola rosea L. and possesses diverse pharmacological effects. However, the direct role of SAL in bone metabolism remains elusive. In this study, effects of SAL on osteoblast differentiation of murine pluripotent mesenchymal cell line C3H10T1/2 and osteoblastic cell line MC3T3-E1 were examined. We first identified SAL as a potential BMP2 activator in a cell-based screening assay. SAL (0.5-10 μM) could slightly promote the proliferation and greatly increase the alkaline phosphatase (ALP) activity in both cells. Furthermore, SAL increased the mRNA expressions of osteoblast marker genes in either C3H10T1/2 or MC3T3-E1 cells after treatment for different time. Moreover, the mineralization of C3H10T1/2 cells assayed by Alizarin red S staining was dose-dependently increased by SAL. Mechanistically, SAL increased the mRNA level of genes involved in the regulation of BMP signaling pathway, including BMP2, BMP6 and BMP7 and enhanced the phosphorylation of Smad1/5/8 and ERK1/2. The osteogenic effect of SAL was abolished by BMP antagonist noggin or by BMP receptor kinase inhibitor dorsomorphin. Further in vivo study demonstrated that SAL reversed bone loss in ovariectomized rats. Collectively, our findings indicate that SAL regulates bone metabolism through BMP signaling pathway.
Collapse
Affiliation(s)
- Jin-Jing Chen
- The Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Wang CY, Yang SF, Wang Z, Tan JM, Xing SM, Chen DC, Xu SM, Yuan W. PCAF acetylates Runx2 and promotes osteoblast differentiation. J Bone Miner Metab 2013; 31:381-9. [PMID: 23468178 DOI: 10.1007/s00774-013-0428-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 01/17/2013] [Indexed: 10/27/2022]
Abstract
Osteoblasts play a crucial role in bone formation. However, the molecular mechanisms involved in osteoblast differentiation remain largely unclear. Runt-related gene 2 (Runx2) is a master transcriptional factor for osteoblast differentiation. Here we reported that p300/CBP-associated factor (PCAF) directly binds to Runx2 and acetylates Runx2, leading to an increase in its transcriptional activity. Upregulation of PCAF in MC3T3-E1 cells increases the expression of osteogenic marker genes including alkaline phosphatase (ALP), osteocalcin (Ocn), and Osteopontin (Opn), and ALP activity was stimulated as well. Consequently, the mineralization of MC3T3-E1 cells was remarkably improved by PCAF. In contrast, PCAF knockdown decreases the mRNA levels of ALP, Ocn, and Opn. ALP activity and the mineralized area were attenuated under PCAF knockdown conditions. These results indicate that PCAF is an important regulator for promoting osteoblast differentiation via acetylation modification of Runx2.
Collapse
Affiliation(s)
- Chao-Yang Wang
- Department of Orthopaedics, 98 Hospital of PLA, Zhejiang, 313000, Huzhou, China.
| | | | | | | | | | | | | | | |
Collapse
|