1
|
Huang H, Shakkottai VG. Targeting Ion Channels and Purkinje Neuron Intrinsic Membrane Excitability as a Therapeutic Strategy for Cerebellar Ataxia. Life (Basel) 2023; 13:1350. [PMID: 37374132 DOI: 10.3390/life13061350] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
In degenerative neurological disorders such as Parkinson's disease, a convergence of widely varying insults results in a loss of dopaminergic neurons and, thus, the motor symptoms of the disease. Dopamine replacement therapy with agents such as levodopa is a mainstay of therapy. Cerebellar ataxias, a heterogeneous group of currently untreatable conditions, have not been identified to have a shared physiology that is a target of therapy. In this review, we propose that perturbations in cerebellar Purkinje neuron intrinsic membrane excitability, a result of ion channel dysregulation, is a common pathophysiologic mechanism that drives motor impairment and vulnerability to degeneration in cerebellar ataxias of widely differing genetic etiologies. We further propose that treatments aimed at restoring Purkinje neuron intrinsic membrane excitability have the potential to be a shared therapy in cerebellar ataxia akin to levodopa for Parkinson's disease.
Collapse
Affiliation(s)
- Haoran Huang
- Medical Scientist Training Program, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Vikram G Shakkottai
- Department of Neurology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
2
|
Kessi M, Chen B, Peng J, Yan F, Yang L, Yin F. Calcium channelopathies and intellectual disability: a systematic review. Orphanet J Rare Dis 2021; 16:219. [PMID: 33985586 PMCID: PMC8120735 DOI: 10.1186/s13023-021-01850-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 05/04/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Calcium ions are involved in several human cellular processes including corticogenesis, transcription, and synaptogenesis. Nevertheless, the relationship between calcium channelopathies (CCs) and intellectual disability (ID)/global developmental delay (GDD) has been poorly investigated. We hypothesised that CCs play a major role in the development of ID/GDD and that both gain- and loss-of-function variants of calcium channel genes can induce ID/GDD. As a result, we performed a systematic review to investigate the contribution of CCs, potential mechanisms underlying their involvement in ID/GDD, advancements in cell and animal models, treatments, brain anomalies in patients with CCs, and the existing gaps in the knowledge. We performed a systematic search in PubMed, Embase, ClinVar, OMIM, ClinGen, Gene Reviews, DECIPHER and LOVD databases to search for articles/records published before March 2021. The following search strategies were employed: ID and calcium channel, mental retardation and calcium channel, GDD and calcium channel, developmental delay and calcium channel. MAIN BODY A total of 59 reports describing 159 cases were found in PubMed, Embase, ClinVar, and LOVD databases. Variations in ten calcium channel genes including CACNA1A, CACNA1C, CACNA1I, CACNA1H, CACNA1D, CACNA2D1, CACNA2D2, CACNA1E, CACNA1F, and CACNA1G were found to be associated with ID/GDD. Most variants exhibited gain-of-function effect. Severe to profound ID/GDD was observed more for the cases with gain-of-function variants as compared to those with loss-of-function. CACNA1E, CACNA1G, CACNA1F, CACNA2D2 and CACNA1A associated with more severe phenotype. Furthermore, 157 copy number variations (CNVs) spanning calcium genes were identified in DECIPHER database. The leading genes included CACNA1C, CACNA1A, and CACNA1E. Overall, the underlying mechanisms included gain- and/ or loss-of-function, alteration in kinetics (activation, inactivation) and dominant-negative effects of truncated forms of alpha1 subunits. Forty of the identified cases featured cerebellar atrophy. We identified only a few cell and animal studies that focused on the mechanisms of ID/GDD in relation to CCs. There is a scarcity of studies on treatment options for ID/GDD both in vivo and in vitro. CONCLUSION Our results suggest that CCs play a major role in ID/GDD. While both gain- and loss-of-function variants are associated with ID/GDD, the mechanisms underlying their involvement need further scrutiny.
Collapse
Affiliation(s)
- Miriam Kessi
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, Hunan, China
- Kilimanjaro Christian Medical University College, Moshi, Tanzania
- Mawenzi Regional Referral Hospital, Moshi, Tanzania
| | - Baiyu Chen
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, Hunan, China
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, Hunan, China
| | - Fangling Yan
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, Hunan, China
| | - Lifen Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, Hunan, China
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, Hunan, China.
| |
Collapse
|
3
|
Novel Missense CACNA1G Mutations Associated with Infantile-Onset Developmental and Epileptic Encephalopathy. Int J Mol Sci 2020; 21:ijms21176333. [PMID: 32878331 PMCID: PMC7503748 DOI: 10.3390/ijms21176333] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/29/2020] [Accepted: 08/29/2020] [Indexed: 11/17/2022] Open
Abstract
The CACNA1G gene encodes the low-voltage-activated Cav3.1 channel, which is expressed in various areas of the CNS, including the cerebellum. We studied two missense CACNA1G variants, p.L208P and p.L909F, and evaluated the relationships between the severity of Cav3.1 dysfunction and the clinical phenotype. The presentation was of a developmental and epileptic encephalopathy without evident cerebellar atrophy. Both patients exhibited axial hypotonia, developmental delay, and severe to profound cognitive impairment. The patient with the L909F mutation had initially refractory seizures and cerebellar ataxia, whereas the L208P patient had seizures only transiently but was overall more severely affected. In transfected mammalian cells, we determined the biophysical characteristics of L208P and L909F variants, relative to the wild-type channel and a previously reported gain-of-function Cav3.1 variant. The L208P mutation shifted the activation and inactivation curves to the hyperpolarized direction, slowed the kinetics of inactivation and deactivation, and reduced the availability of Ca2+ current during repetitive stimuli. The L909F mutation impacted channel function less severely, resulting in a hyperpolarizing shift of the activation curve and slower deactivation. These data suggest that L909F results in gain-of-function, whereas L208P exhibits mixed gain-of-function and loss-of-function effects due to opposing changes in the biophysical properties. Our study expands the clinical spectrum associated with CACNA1G mutations, corroborating further the causal association with distinct complex phenotypes.
Collapse
|
4
|
Lory P, Nicole S, Monteil A. Neuronal Cav3 channelopathies: recent progress and perspectives. Pflugers Arch 2020; 472:831-844. [PMID: 32638069 PMCID: PMC7351805 DOI: 10.1007/s00424-020-02429-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/08/2020] [Accepted: 06/26/2020] [Indexed: 12/22/2022]
Abstract
T-type, low-voltage activated, calcium channels, now designated Cav3 channels, are involved in a wide variety of physiological functions, especially in nervous systems. Their unique electrophysiological properties allow them to finely regulate neuronal excitability and to contribute to sensory processing, sleep, and hormone and neurotransmitter release. In the last two decades, genetic studies, including exploration of knock-out mouse models, have greatly contributed to elucidate the role of Cav3 channels in normal physiology, their regulation, and their implication in diseases. Mutations in genes encoding Cav3 channels (CACNA1G, CACNA1H, and CACNA1I) have been linked to a variety of neurodevelopmental, neurological, and psychiatric diseases designated here as neuronal Cav3 channelopathies. In this review, we describe and discuss the clinical findings and supporting in vitro and in vivo studies of the mutant channels, with a focus on de novo, gain-of-function missense mutations recently discovered in CACNA1G and CACNA1H. Overall, the studies of the Cav3 channelopathies help deciphering the pathogenic mechanisms of corresponding diseases and better delineate the properties and physiological roles Cav3 channels.
Collapse
Affiliation(s)
- Philippe Lory
- Institut de Génomique Fonctionnelle, CNRS, INSERM, University Montpellier, 141, rue de la Cardonille, 34094, Montpellier, France. .,LabEx 'Ion Channel Science and Therapeutics' (ICST), Montpellier, France.
| | - Sophie Nicole
- Institut de Génomique Fonctionnelle, CNRS, INSERM, University Montpellier, 141, rue de la Cardonille, 34094, Montpellier, France.,LabEx 'Ion Channel Science and Therapeutics' (ICST), Montpellier, France
| | - Arnaud Monteil
- Institut de Génomique Fonctionnelle, CNRS, INSERM, University Montpellier, 141, rue de la Cardonille, 34094, Montpellier, France.,LabEx 'Ion Channel Science and Therapeutics' (ICST), Montpellier, France
| |
Collapse
|
5
|
Jiménez-Jiménez FJ, Alonso-Navarro H, García-Martín E, Agúndez JA. An Update on the Neurochemistry of Essential Tremor. Curr Med Chem 2020; 27:1690-1710. [DOI: 10.2174/0929867325666181112094330] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 09/03/2018] [Accepted: 11/05/2018] [Indexed: 12/21/2022]
Abstract
Background:
The pathophysiology and neurochemical mechanisms of essential
tremor (ET) are not fully understood, because only a few post-mortem studies have been reported,
and there is a lack of good experimental model for this disease.
Objective:
The main aim of this review is to update data regarding the neurochemical features
of ET. Alterations of certain catecholamine systems, the dopaminergic, serotonergic,
GABAergic, noradrenergic, and adrenergic systems have been described, and are the object of
this revision.
Methods:
For this purpose, we performed a literature review on alterations of the neurotransmitter
or neuromodulator systems (catecholamines, gammaaminobutyric acid or GABA,
excitatory amino acids, adenosine, T-type calcium channels) in ET patients (both post-mortem
or in vivo) or in experimental models resembling ET.
Results and Conclusion:
The most consistent data regarding neurochemistry of ET are related
with the GABAergic and glutamatergic systems, with a lesser contribution of adenosine
and dopaminergic and adrenergic systems, while there is not enough evidence of a definite
role of other neurotransmitter systems in ET. The improvement of harmaline-induced tremor
in rodent models achieved with T-type calcium channel antagonists, cannabinoid 1 receptor,
sphingosine-1-phosphate receptor agonists, and gap-junction blockers, suggests a potential
role of these structures in the pathogenesis of ET.
Collapse
Affiliation(s)
| | | | - Elena García-Martín
- University Institute of Molecular Pathology Biomarkers, UNEx. ARADyAL Instituto de Salud Carlos III, Caceres, Spain
| | - José A.G. Agúndez
- University Institute of Molecular Pathology Biomarkers, UNEx. ARADyAL Instituto de Salud Carlos III, Caceres, Spain
| |
Collapse
|
6
|
Schaefer SM, Vives Rodriguez A, Louis ED. Brain circuits and neurochemical systems in essential tremor: insights into current and future pharmacotherapeutic approaches. Expert Rev Neurother 2017; 18:101-110. [PMID: 29206482 DOI: 10.1080/14737175.2018.1413353] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION There are few medications that are available for the treatment of essential tremor (ET) and they are only moderately effective. Areas covered: Data were obtained from a PubMed search. Original articles, review articles, and clinical guidelines were included. Two disease models for ET have been proposed: 1) the olivary model, which attributes ET to a pathological pacemaker in the inferior olivary nucleus, and 2) the cerebellar degeneration model, which postulates that ET originates in the cerebellum and could be related to deficient or abnormal Purkinje cell (PC) output. Underlying biochemical dysfunction in T-type calcium channels (T-tCaC) may loosely be linked to the first model and deficiency/abnormality in γ-aminobutyric acid (GABA) neurotransmission, to the second. Expert commentary: Human data points robustly to the role of GABA in ET. Numerous medications that target the GABA system have been tried, with variable success. Given the many different types of GABA-ergic neurons, and the multitude of GABAA receptor subtypes, a given medication could have competing/cancelling effects. It would seem that influencing GABA receptors broadly is not as effective as targeting certain GABAA receptor subtypes. Future research should seek to identify molecular candidates that have a more targeted effect within the GABA system.
Collapse
Affiliation(s)
- Sara M Schaefer
- a Department of Neurology , Yale School of Medicine, Yale University , New Haven , CT , USA
| | - Ana Vives Rodriguez
- a Department of Neurology , Yale School of Medicine, Yale University , New Haven , CT , USA
| | - Elan D Louis
- a Department of Neurology , Yale School of Medicine, Yale University , New Haven , CT , USA.,b Department of Chronic Disease Epidemiology , Yale School of Public Health, Yale University , New Haven , CT , USA.,c Center for Neuroepidemiology and Clinical Neurological Research, Yale School of Medicine , Yale University , New Haven , CT , USA
| |
Collapse
|
7
|
Coutelier M, Blesneac I, Monteil A, Monin ML, Ando K, Mundwiller E, Brusco A, Le Ber I, Anheim M, Castrioto A, Duyckaerts C, Brice A, Durr A, Lory P, Stevanin G. A Recurrent Mutation in CACNA1G Alters Cav3.1 T-Type Calcium-Channel Conduction and Causes Autosomal-Dominant Cerebellar Ataxia. Am J Hum Genet 2015; 97:726-37. [PMID: 26456284 DOI: 10.1016/j.ajhg.2015.09.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/18/2015] [Indexed: 12/20/2022] Open
Abstract
Hereditary cerebellar ataxias (CAs) are neurodegenerative disorders clinically characterized by a cerebellar syndrome, often accompanied by other neurological or non-neurological signs. All transmission modes have been described. In autosomal-dominant CA (ADCA), mutations in more than 30 genes are implicated, but the molecular diagnosis remains unknown in about 40% of cases. Implication of ion channels has long been an ongoing topic in the genetics of CA, and mutations in several channel genes have been recently connected to ADCA. In a large family affected by ADCA and mild pyramidal signs, we searched for the causative variant by combining linkage analysis and whole-exome sequencing. In CACNA1G, we identified a c.5144G>A mutation, causing an arginine-to-histidine (p.Arg1715His) change in the voltage sensor S4 segment of the T-type channel protein Cav3.1. Two out of 479 index subjects screened subsequently harbored the same mutation. We performed electrophysiological experiments in HEK293T cells to compare the properties of the p.Arg1715His and wild-type Cav3.1 channels. The current-voltage and the steady-state activation curves of the p.Arg1715His channel were shifted positively, whereas the inactivation curve had a higher slope factor. Computer modeling in deep cerebellar nuclei (DCN) neurons suggested that the mutation results in decreased neuronal excitability. Taken together, these data establish CACNA1G, which is highly expressed in the cerebellum, as a gene whose mutations can cause ADCA. This is consistent with the neuropathological examination, which showed severe Purkinje cell loss. Our study further extends our knowledge of the link between calcium channelopathies and CAs.
Collapse
|
8
|
Zamponi GW, Striessnig J, Koschak A, Dolphin AC. The Physiology, Pathology, and Pharmacology of Voltage-Gated Calcium Channels and Their Future Therapeutic Potential. Pharmacol Rev 2015; 67:821-70. [PMID: 26362469 PMCID: PMC4630564 DOI: 10.1124/pr.114.009654] [Citation(s) in RCA: 745] [Impact Index Per Article: 82.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Voltage-gated calcium channels are required for many key functions in the body. In this review, the different subtypes of voltage-gated calcium channels are described and their physiologic roles and pharmacology are outlined. We describe the current uses of drugs interacting with the different calcium channel subtypes and subunits, as well as specific areas in which there is strong potential for future drug development. Current therapeutic agents include drugs targeting L-type Ca(V)1.2 calcium channels, particularly 1,4-dihydropyridines, which are widely used in the treatment of hypertension. T-type (Ca(V)3) channels are a target of ethosuximide, widely used in absence epilepsy. The auxiliary subunit α2δ-1 is the therapeutic target of the gabapentinoid drugs, which are of value in certain epilepsies and chronic neuropathic pain. The limited use of intrathecal ziconotide, a peptide blocker of N-type (Ca(V)2.2) calcium channels, as a treatment of intractable pain, gives an indication that these channels represent excellent drug targets for various pain conditions. We describe how selectivity for different subtypes of calcium channels (e.g., Ca(V)1.2 and Ca(V)1.3 L-type channels) may be achieved in the future by exploiting differences between channel isoforms in terms of sequence and biophysical properties, variation in splicing in different target tissues, and differences in the properties of the target tissues themselves in terms of membrane potential or firing frequency. Thus, use-dependent blockers of the different isoforms could selectively block calcium channels in particular pathologies, such as nociceptive neurons in pain states or in epileptic brain circuits. Of important future potential are selective Ca(V)1.3 blockers for neuropsychiatric diseases, neuroprotection in Parkinson's disease, and resistant hypertension. In addition, selective or nonselective T-type channel blockers are considered potential therapeutic targets in epilepsy, pain, obesity, sleep, and anxiety. Use-dependent N-type calcium channel blockers are likely to be of therapeutic use in chronic pain conditions. Thus, more selective calcium channel blockers hold promise for therapeutic intervention.
Collapse
Affiliation(s)
- Gerald W Zamponi
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada (G.W.Z.); Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria (J.S., A.K.); and Department of Neuroscience, Physiology, and Pharmacology, Division of Biosciences, University College London, London, United Kingdom (A.C.D.)
| | - Joerg Striessnig
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada (G.W.Z.); Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria (J.S., A.K.); and Department of Neuroscience, Physiology, and Pharmacology, Division of Biosciences, University College London, London, United Kingdom (A.C.D.)
| | - Alexandra Koschak
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada (G.W.Z.); Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria (J.S., A.K.); and Department of Neuroscience, Physiology, and Pharmacology, Division of Biosciences, University College London, London, United Kingdom (A.C.D.)
| | - Annette C Dolphin
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada (G.W.Z.); Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria (J.S., A.K.); and Department of Neuroscience, Physiology, and Pharmacology, Division of Biosciences, University College London, London, United Kingdom (A.C.D.)
| |
Collapse
|
9
|
Park YG, Choi JH, Lee C, Kim S, Kim Y, Chang KY, Paek SH, Kim D. Heterogeneity of tremor mechanisms assessed by tremor-related cortical potential in mice. Mol Brain 2015; 8:3. [PMID: 25588467 PMCID: PMC4304607 DOI: 10.1186/s13041-015-0093-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 01/06/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Identifying a neural circuit mechanism that is differentially involved in tremor would aid in the diagnosis and cure of such cases. Here, we demonstrate that tremor-related cortical potential (TRCP) is differentially expressed in two different mouse models of tremor. RESULTS Hybrid tremor analysis of harmaline-induced and genetic tremor in mice revealed that two authentic tremor frequencies for each type of tremor were conserved and showed an opposite dependence on CaV3.1 T-type Ca(2+) channels. Electroencephalogram recordings revealed that α1(-/-);α1G(-/-) mice double-null for the GABA receptor α1 subunit (Gabra1) and CaV3.1 T-type Ca(2+) channels (Cacna1g), in which the tremor caused by the absence of Gabra1 is potentiated by the absence of Cacna1g, showed a coherent TRCP that exhibited an onset that preceded the initiation of behavioral tremor by 3 ms. However, harmaline-induced tremor, which is known to be abolished by α1G(-/-), showed no TRCP. CONCLUSIONS Our results demonstrate that the α1(-/-);α1G(-/-) double-knockout tremor model is useful for studying cortical mechanisms of tremor.
Collapse
Affiliation(s)
- Young-Gyun Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 335 Gwahak-ro, Yuseong-gu, Daejeon, 305-701, Republic of Korea.
| | - Jee Hyun Choi
- Center for Neural Science, Division of Life Science, Korea Institute of Science and Technology, Seoul, 136-79, Republic of Korea.
| | - Chungki Lee
- Center for Neural Science, Division of Life Science, Korea Institute of Science and Technology, Seoul, 136-79, Republic of Korea.
| | - Sehyun Kim
- Department of Physics, KAIST, Daejeon, 305-701, Republic of Korea.
| | - Youngsoo Kim
- Department of Medical Science and Engineering, KAIST, Daejeon, 305-701, Republic of Korea.
| | - Ki-Young Chang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 335 Gwahak-ro, Yuseong-gu, Daejeon, 305-701, Republic of Korea.
| | - Sun Ha Paek
- Department of Neurosurgery, Hypoxia/Ischemia Disease Institute, Seoul National University College of Medicine, Seoul, 110-744, Republic of Korea.
| | - Daesoo Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 335 Gwahak-ro, Yuseong-gu, Daejeon, 305-701, Republic of Korea.
| |
Collapse
|
10
|
Schmouth JF, Dion PA, Rouleau GA. Genetics of essential tremor: From phenotype to genes, insights from both human and mouse studies. Prog Neurobiol 2014; 119-120:1-19. [DOI: 10.1016/j.pneurobio.2014.05.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 04/16/2014] [Accepted: 05/02/2014] [Indexed: 11/30/2022]
|
11
|
Hsieh WT, Chiang BH. A well-refined in vitro model derived from human embryonic stem cell for screening phytochemicals with midbrain dopaminergic differentiation-boosting potential for improving Parkinson's disease. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:6326-6336. [PMID: 24933592 DOI: 10.1021/jf501640a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Stimulation of endogenous neurogenesis is a potential approach to compensate for loss of dopaminergic neurons of substantia nigra compacta nigra (SNpc) in patients with Parkinson's disease (PD). This objective was to establish an in vitro model by differentiating pluripotent human embryonic stem cells (hESCs) into midbrain dopaminergic (mDA) neurons for screening phytochemicals with mDA neurogenesis-boosting potentials. Consequently, a five-stage differentiation process was developed. The derived cells expressed many mDA markers including tyrosine hydroxylase (TH), β-III tubulin, and dopamine transporter (DAT). The voltage-gated ion channels and dopamine release were also examined for verifying neuron function, and the dopamine receptor agonists bromocriptine and 7-hydroxy-2-(dipropylamino)tetralin (7-OH-DPAT) were used to validate our model. Then, several potential phytochemicals including green tea catechins and ginsenosides were tested using the model. Finally, ginsenoside Rb1 was identified as the most potent phytochemical which is capable of upregulating neurotrophin expression and inducing mDA differentiation.
Collapse
Affiliation(s)
- Wen-Ting Hsieh
- Institute of Food Science and Technology, National Taiwan University , No. 1, Roosevelt Road, Section 4, Taipei, Taiwan ROC
| | | |
Collapse
|
12
|
|