1
|
Ciesielska S, Bil P, Gajda K, Poterala-Hejmo A, Hudy D, Rzeszowska-Wolny J. Cell type-specific differences in redox regulation and proliferation after low UVA doses. PLoS One 2019; 14:e0205215. [PMID: 30682016 PMCID: PMC6347369 DOI: 10.1371/journal.pone.0205215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/04/2019] [Indexed: 01/09/2023] Open
Abstract
Ultraviolet A (UVA) radiation is harmful for living organisms but in low doses may stimulate cell proliferation. Our aim was to examine the relationships between exposure to different low UVA doses, cellular proliferation, and changes in cellular reactive oxygen species levels. In human colon cancer (HCT116) and melanoma (Me45) cells exposed to UVA doses comparable to environmental, the highest doses (30–50 kJ/m2) reduced clonogenic potential but some lower doses (1 and 10 kJ/m2) induced proliferation. This effect was cell type and dose specific. In both cell lines the levels of reactive oxygen species and nitric oxide fluctuated with dynamics which were influenced differently by UVA; in Me45 cells decreased proliferation accompanied the changes in the dynamics of H2O2 while in HCT116 cells those of superoxide. Genes coding for proteins engaged in redox systems were expressed differently in each cell line; transcripts for thioredoxin, peroxiredoxin and glutathione peroxidase showed higher expression in HCT116 cells whereas those for glutathione transferases and copper chaperone were more abundant in Me45 cells. We conclude that these two cell types utilize different pathways for regulating their redox status. Many mechanisms engaged in maintaining cellular redox balance have been described. Here we show that the different cellular responses to a stimulus such as a specific dose of UVA may be consequences of the use of different redox control pathways. Assays of superoxide and hydrogen peroxide level changes after exposure to UVA may clarify mechanisms of cellular redox regulation and help in understanding responses to stressing factors.
Collapse
Affiliation(s)
- Sylwia Ciesielska
- Biosystems Group, Institute of Automatic Control, Silesian University of Technology, Gliwice, Poland
| | - Patryk Bil
- Biosystems Group, Institute of Automatic Control, Silesian University of Technology, Gliwice, Poland
| | - Karolina Gajda
- Biosystems Group, Institute of Automatic Control, Silesian University of Technology, Gliwice, Poland
| | - Aleksandra Poterala-Hejmo
- Biosystems Group, Institute of Automatic Control, Silesian University of Technology, Gliwice, Poland
| | - Dorota Hudy
- Biosystems Group, Institute of Automatic Control, Silesian University of Technology, Gliwice, Poland
| | - Joanna Rzeszowska-Wolny
- Biosystems Group, Institute of Automatic Control, Silesian University of Technology, Gliwice, Poland
- * E-mail:
| |
Collapse
|
2
|
Kim G, Kim JY, Lim SC, Lee KY, Kim O, Choi HS. SUV39H1/DNMT3A-dependent methylation of the RB1 promoter stimulates PIN1 expression and melanoma development. FASEB J 2018; 32:5647-5660. [PMID: 29750576 DOI: 10.1096/fj.201700645rrrrr] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Melanoma is among the most aggressive and treatment-resistant human cancers. Aberrant histone H3 methylation at Lys 9 (H3K9) correlates with carcinogenic gene silencing, but the significance of suppressor of variegation 3-9 homolog 1 (SUV39H1), an H3K9-specific methyltransferase, in melanoma initiation and progression remains unclear. Here, we show that SUV39H1-mediated H3K9 trimethylation facilitates retinoblastoma ( RB) 1 promoter CpG island methylation by interacting with DNA methyltransferase 3A and decreasing RB mRNA and protein in melanoma cells. Reduced RB abundance, in turn, impairs E2F1 transcriptional inhibition, leading to increased peptidyl-prolyl cis-trans isomerase never-in-mitosis A (NIMA)-interacting 1 (PIN1) levels, human keratinocyte neoplastic cell transformation, and melanoma tumorigenesis via enhanced rapidly accelerated fibrosarcoma 1(RAF1)-MEK-ERK signaling pathway activation. In a synergistic model with B16-F1 murine melanoma cells, SUV39H1 and PIN1 overexpression increased melanoma growth, which was abrogated by their inhibition in SUV39H1-overexpressing B16-F1 mice. SUV39H1 also positively correlated with PIN1 expression in human melanoma. Our studies establish SUV39H1 as an oncogene in melanoma and underscore the role of chromatin factors in regulating tumorigenesis.-Kim, G., Kim, J.-Y., Lim, S.-C., Lee, K. Y., Kim, O., Choi, H. S. SUV39H1/DNMT3A-dependent methylation of the RB1 promoter stimulates PIN1 expression and melanoma development.
Collapse
Affiliation(s)
- Garam Kim
- College of Pharmacy, Chosun University, Gwangju, South Korea
| | - Jin-Young Kim
- College of Pharmacy, Chosun University, Gwangju, South Korea
| | - Sung-Chul Lim
- Department of Pathology, School of Medicine, Chosun University, Gwangju, South Korea
| | - Kwang Youl Lee
- College of Pharmacy, Chonnam National University, Gwangju, South Korea
| | - Okyun Kim
- College of Pharmacy, Chosun University, Gwangju, South Korea
| | - Hong Seok Choi
- College of Pharmacy, Chosun University, Gwangju, South Korea
| |
Collapse
|
3
|
Niculiţe CM, Nechifor MT, Urs AO, Olariu L, Ceafalan LC, Leabu M. Keratinocyte Motility Is Affected by UVA Radiation-A Comparison between Normal and Dysplastic Cells. Int J Mol Sci 2018; 19:E1700. [PMID: 29880745 PMCID: PMC6032280 DOI: 10.3390/ijms19061700] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/01/2018] [Accepted: 06/05/2018] [Indexed: 01/17/2023] Open
Abstract
UVA radiation induces multiple and complex changes in the skin, affecting epidermal cell behavior. This study reports the effects of UVA exposure on normal (HaCaT) and dysplastic (DOK) keratinocytes. The adherence, spreading and proliferation were investigated by time-lapse measurement of cell layer impedance on different matrix proteins. Prior to UVA exposure, the time required for adherence and spreading did not differ significantly for HaCaT and DOK cells, while spreading areas were larger for HaCaT cells. Under UVA exposure, HaCaT and DOK cells behavior differed in terms of movement and proliferation. The cells' ability to cover the denuded surface and individual cell trajectories were recorded by time-lapse videomicroscopy, during wound healing experiments. Dysplastic keratinocytes showed more sensitivity to UVA, exhibiting transient deficiencies in directionality of movement and a delay in re-coating the denuded area. The actin cytoskeleton displayed a cortical organization immediately after irradiation, in both cell lines, similar to mock-irradiated cells. Post-irradiation, DOK cells displayed a better organization of stress fibers, persistent filopodia, and new, stronger focal contacts. In conclusion, after UVA exposure HaCaT and DOK cells showed a different behavior in terms of adherence, spreading, motility, proliferation, and actin cytoskeleton dynamics, with the dyplastic keratinocytes being more sensitive.
Collapse
Affiliation(s)
- Cristina M Niculiţe
- Victor Babeș National Institute of Pathology, 99-101, Splaiul Independentei, 050096 Bucharest, Romania.
- Department of Morphological Sciences, University of Medicine and Pharmacy Carol Davila, 8, Blvd. Eroilor Sanitari, 050474 Bucharest, Romania.
| | - Marina T Nechifor
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95, Splaiul Independentei, 050095 Bucharest, Romania.
| | - Andreea O Urs
- Victor Babeș National Institute of Pathology, 99-101, Splaiul Independentei, 050096 Bucharest, Romania.
| | - Laura Olariu
- SC Biotehnos SA, 3-5, Gorunului Street, 075100 Otopeni, Romania.
| | - Laura C Ceafalan
- Victor Babeș National Institute of Pathology, 99-101, Splaiul Independentei, 050096 Bucharest, Romania.
- Department of Morphological Sciences, University of Medicine and Pharmacy Carol Davila, 8, Blvd. Eroilor Sanitari, 050474 Bucharest, Romania.
| | - Mircea Leabu
- Victor Babeș National Institute of Pathology, 99-101, Splaiul Independentei, 050096 Bucharest, Romania.
- Department of Morphological Sciences, University of Medicine and Pharmacy Carol Davila, 8, Blvd. Eroilor Sanitari, 050474 Bucharest, Romania.
| |
Collapse
|
4
|
Wahedi HM, Park YU, Moon EY, Kim SY. Juglone ameliorates skin wound healing by promoting skin cell migration through Rac1/Cdc42/PAK pathway. Wound Repair Regen 2016; 24:786-794. [PMID: 27283994 DOI: 10.1111/wrr.12452] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 06/02/2016] [Indexed: 01/03/2023]
Abstract
Skin cell regeneration and wound healing are key processes in the recovery from skin injuries. Rapid cell migration and regeneration of skin cells lead to faster and better healing of wounded skin. In the present study, we aimed to investigate the wound healing potential of juglone, a naturally occurring Pin1 inhibitor found in walnuts. Cultured skin cells (NHDF and HaCaT) and hairless mice were treated with juglone after wound creation to examine its effects on cell migration and wound healing rate. The expressions of cell migration related proteins (Rac1, Cdc42, and α-PAK), collagen deposition, and angiogenesis were analyzed. Juglone treatment resulted in faster rate of growth and migration and recovered cell morphology, particularly at a concentration of 5 µM, in skin cells compared to the untreated group. In vivo experiments showed that mice treated with juglone showed faster wound healing rate with better skin morphology and collagen deposition than the vehicle group. Furthermore, juglone increased the activation and/or expression of Cdc42, Rac1, and α-pak in HaCaT cells, and resulted in enhanced angiogenesis in endothelial cells (HUVECs). Juglone also activated MAPKs signaling by activation of ERK, JNK, and p38 proteins. Taken together, these data suggest that juglone may be a potential candidate for wound healing and skin regeneration which ameliorates wound healing mainly by promoting skin cell migration through Rac1/Cdc42/PAK pathway.
Collapse
Affiliation(s)
- Hussain M Wahedi
- Department of Pharmacognosy, College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Yong U Park
- Department of Pharmacognosy, College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Eun-Yi Moon
- Department of Bioscience and Biotechnology, Sejong University, Seoul, Republic of Korea
| | - Sun Y Kim
- Department of Pharmacognosy, College of Pharmacy, Gachon University, Incheon, Republic of Korea. .,Gachon Institute of Pharmaceutical Science, Gachon University, Incheon, Republic of Korea. .,Gachon Medical Research Institute, Gil Medical Center, Incheon, Republic of Korea.
| |
Collapse
|
5
|
Lei M, Lai X, Bai X, Qiu W, Yang T, Liao X, Chuong CM, Yang L, Lian X, Zhong JL. Prolonged overexpression of Wnt10b induces epidermal keratinocyte transformation through activating EGF pathway. Histochem Cell Biol 2015; 144:209-21. [PMID: 25995040 DOI: 10.1007/s00418-015-1330-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2015] [Indexed: 01/25/2023]
Abstract
Wnt10b is a signaling protein regulating skin development and homeostasis, and the expression of Wnt10b is restricted to epidermal keratinocytes in embryonic and postnatal skin. Recent studies indicate an elevated expression of Wnt10b in skin tumors. However, how Wnt10b regulates skin tumorigenesis remains largely unknown. Here we report that continuous expression of Wnt10b mediates transformation of epidermal keratinocytes through activating genes involved in EGF/MAPK signaling pathways. We first established a prolonged Wnt10b overexpression system in JB6P- cells to represent the elevated Wnt10b expression level in skin keratinocytes. Through expression assays and observations under phase-contrast microscopy, prolonged expression of Wnt10b activated Wnt/β-catenin pathway and induced morphological changes of cells showing longer protrusions and multilayer growth, indicating early-stage cell transformation. Wnt10b also increased cellular proliferation and migration according to BrdU incorporation and cell mobility assays. Furthermore, multi-doses of AdWnt10b treatment to JB6P- cells induced colony formation, stronger invasive ability in transwell system, and anchorage-independent growth in agar gel. In molecular level, AdWnt10b treatment induced increased transcriptional expressions of Egf, downstream Mapk pathway factors, and MMPs. Administration of Wnt antagonist DKK1 blocked the tumor promotion process induced by Wnt10b. Taken together, these findings clearly demonstrate that Wnt10b promotes epidermal keratinocyte transformation through induced Egf pathway.
Collapse
Affiliation(s)
- Mingxing Lei
- Department of Cell Biology, the Third Military Medical University, Chongqing, 400038, People's Republic of China,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Cho YA, Jue SS, Bae WJ, Heo SH, Shin SI, Kwon IK, Lee SC, Kim EC. PIN1 inhibition suppresses osteoclast differentiation and inflammatory responses. J Dent Res 2014; 94:371-80. [PMID: 25512367 DOI: 10.1177/0022034514563335] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Inflammatory responses and osteoclast differentiation play pivotal roles in the pathogenesis of osteolytic bone diseases such as periodontitis. Although overexpression or inhibition of peptidyl-prolyl cis/trans isomerase NIMA-interacting 1 (PIN1) offers a possible therapeutic strategy for chronic inflammatory diseases, the role of PIN1 in periodontal disease is unclear. The aim of the present study was to evaluate PIN1 expression in periodontitis patients as well as the effects of PIN1 inhibition by juglone or PIN1 small-interfering RNA (siRNA) and of PIN1 overexpression using a recombinant adenovirus encoding PIN1 (Ad-PIN1) on the inflammatory response and osteoclastic differentiation in lipopolysaccharide (LPS)- and nicotine-stimulated human periodontal ligament cells (PDLCs). PIN1 was up-regulated in chronically inflamed PDLCs from periodontitis patients and in LPS- and nicotine-exposed PDLCs. Inhibition of PIN1 by juglone or knockdown of PIN1 gene expression by siRNA markedly attenuated LPS- and nicotine-stimulated prostaglandin E2 (PGE2) and nitric oxide (NO) production, as well as cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expression, whereas PIN1 overexpression by Ad-PIN1 increased it. LPS- and nicotine-induced nuclear factor (NF)-κB activation was blocked by juglone and PIN1 siRNA but increased by Ad-PIN1. Conditioned medium prepared from LPS- and nicotine-treated PDLCs increased the number of tartrate-resistant acid phosphatase-stained osteoclasts and osteoclast-specific gene expression. These responses were blocked by PIN1 inhibition and silencing but stimulated by Ad-PIN1. Furthermore, juglone and PIN1 siRNA inhibited LPS- and nicotine-induced osteoclastogenic cytokine expression in PDLCs. This study is the first to demonstrate that PIN1 inhibition exhibits anti-inflammatory effects and blocks osteoclastic differentiation in LPS- and nicotine-treated PDLCs. PIN1 inhibition may be a therapeutic strategy for inflammatory osteolysis in periodontal disease.
Collapse
Affiliation(s)
- Y-A Cho
- Department of Oral and Maxillofacial Pathology, Research Center for Tooth and Periodontal Regeneration (MRC), School of Dentistry and Institute of Oral Biology, Kyung Hee University, Seoul, Republic of Korea
| | - S-S Jue
- Department of Oral Anatomy and Developmental Biology, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - W-J Bae
- Department of Oral and Maxillofacial Pathology, Research Center for Tooth and Periodontal Regeneration (MRC), School of Dentistry and Institute of Oral Biology, Kyung Hee University, Seoul, Republic of Korea
| | - S-H Heo
- Department of Oral and Maxillofacial Pathology, Research Center for Tooth and Periodontal Regeneration (MRC), School of Dentistry and Institute of Oral Biology, Kyung Hee University, Seoul, Republic of Korea
| | - S-I Shin
- Department of Periodontology, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - I-K Kwon
- Department of Maxillofacial Biomedical Engineering, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - S-C Lee
- Department of Maxillofacial Biomedical Engineering, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - E-C Kim
- Department of Oral and Maxillofacial Pathology, Research Center for Tooth and Periodontal Regeneration (MRC), School of Dentistry and Institute of Oral Biology, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
7
|
Lee KH, Lin FC, Hsu TI, Lin JT, Guo JH, Tsai CH, Lee YC, Lee YC, Chen CL, Hsiao M, Lu PJ. MicroRNA-296-5p (miR-296-5p) functions as a tumor suppressor in prostate cancer by directly targeting Pin1. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1843:2055-2066. [PMID: 24915000 DOI: 10.1016/j.bbamcr.2014.06.001] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 05/29/2014] [Accepted: 06/02/2014] [Indexed: 12/15/2022]
Abstract
Upregulation of Pin1 was shown to advance the functioning of several oncogenic pathways. It was recently shown that Pin1 is potentially an excellent prognostic marker and can also serve as a novel therapeutic target for prostate cancer. However, the molecular mechanism of Pin1 overexpression in prostate cancer is still unclear. In the present study, we showed that the mRNA expression levels of Pin1 were not correlated with Pin1 protein levels in prostate cell lines which indicated that Pin1 may be regulated at the post-transcriptional level. A key player in post-transcriptional regulation is represented by microRNAs (miRNAs) that negatively regulate expressions of protein-coding genes at the post-transcriptional level. A bioinformatics analysis revealed that miR-296-5p has a conserved binding site in the Pin1 3'-untranslated region (UTR). A luciferase reporter assay demonstrated that the seed region of miR-296-5p directly interacts with the 3'-UTR of Pin1 mRNA. Moreover, miR-296-5p expression was found to be inversely correlated with Pin1 expression in prostate cancer cell lines and prostate cancer tissues. Furthermore, restoration of miR-296-5p or the knockdown of Pin1 had the same effect on the inhibition of the ability of cell proliferation and anchorage-independent growth of prostate cancer cell lines. Our results support miR-296-5p playing a tumor-suppressive role by targeting Pin1 and implicate potential effects of miR-296-5p on the prognosis and clinical application to prostate cancer therapy.
Collapse
Affiliation(s)
- Kuen-Haur Lee
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Forn-Chia Lin
- Institute of Clinical Medicine, Medical College, National Cheng Kung University, Tainan, Taiwan; Department of Radiation Oncology, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Tai-I Hsu
- Institute of Basic Medical Sciences, Medical College, National Cheng Kung University, Tainan, Taiwan
| | - Jen-Tai Lin
- Institute of Clinical Medicine, Medical College, National Cheng Kung University, Tainan, Taiwan; Division of Urology, Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Jing-Hong Guo
- Institute of Clinical Medicine, Medical College, National Cheng Kung University, Tainan, Taiwan
| | - Chen-Hsun Tsai
- Institute of Basic Medical Sciences, Medical College, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Cheng Lee
- Institute of Basic Medical Sciences, Medical College, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Chieh Lee
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
| | - Chi-Long Chen
- Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Pei-Jung Lu
- Institute of Clinical Medicine, Medical College, National Cheng Kung University, Tainan, Taiwan; Institute of Basic Medical Sciences, Medical College, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
8
|
Zhang X, Zhang B, Gao J, Wang X, Liu Z. Regulation of the microRNA 200b (miRNA-200b) by transcriptional regulators PEA3 and ELK-1 protein affects expression of Pin1 protein to control anoikis. J Biol Chem 2013; 288:32742-32752. [PMID: 24072701 DOI: 10.1074/jbc.m113.478016] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
MicroRNA (miRNA) 200s regulate E-cadherin by directly targeting ZEB1/ZEB2, which are transcriptional repressors of E-cadherin. Decreased expression of E-cadherin results in cancer cells losing interaction with the extracellular matrix and detaching from the primary tumor. Normally, cells will undergo anoikis after losing interaction with the extracellular matrix. Cancer cells must, therefore, possess the ability to resist anoikis during the process of metastasis. Here we show that miRNA-200b regulates anoikis by directly targeting the 3' UTR of Pin1 mRNA and regulating Pin1 expression at the translational level. We found that down-regulation of miRNA-200b promotes cancer cells survival during metastasis, and the homeless state of these cells resulted in decreased expression of miRNA-200b in the MCF-7 cell line. We also found that expression of miRNA-200b is down-regulated in human breast cancer during lymph node metastasis, which has a significant negative correlation with Pin1 expression. Two members of the ETS (E-26) family (PEA3 and ELK-1) regulate the expression of miRNA-200b. PEA3 promotes the expression of miRNA-200b, and ELK-1 is a transcriptional repressor of miRNA-200b. In addition, miRNA-200b regulates the activity of PEA3 and ELK-1 via the Pin1-pERK pathway and forms self-regulated feedback loops. This study characterizes the role of miRNA-200b in the regulation of anoikis and demonstrates the regulation of its own expression in the process of metastasis.
Collapse
Affiliation(s)
- Xusen Zhang
- From the State Key Laboratory of Molecular Oncology
| | - Bailin Zhang
- Department of Abdominal Surgery, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jidong Gao
- Department of Abdominal Surgery, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xiang Wang
- Department of Abdominal Surgery, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zhihua Liu
- From the State Key Laboratory of Molecular Oncology.
| |
Collapse
|
9
|
Quyen BT, Choi HK, Kang KW. Pin1 is required for ultraviolet A-stimulated cyclooxygenase-2 induction in mouse epidermal cells. Cancer Lett 2013; 335:31-40. [DOI: 10.1016/j.canlet.2013.01.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 01/25/2013] [Accepted: 01/25/2013] [Indexed: 01/09/2023]
|
10
|
Lv L, Zhang J, Zhang L, Xue G, Wang P, Meng Q, Liang W. Essential role of Pin1 via STAT3 signalling and mitochondria-dependent pathways in restenosis in type 2 diabetes. J Cell Mol Med 2013; 17:989-1005. [PMID: 23750710 PMCID: PMC3780535 DOI: 10.1111/jcmm.12082] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 04/17/2013] [Indexed: 12/19/2022] Open
Abstract
Type 2 diabetes (T2D) is associated with accelerated restenosis rates after angioplasty. We have previously proved that Pin1 played an important role in vascular smooth muscle cell (VSMC) cycle and apoptosis. But neither the role of Pin1 in restenosis by T2D, nor the molecular mechanism of Pin1 in these processes has been elucidated. A mouse model of T2D was generated by the combination of high-fat diet (HFD) and streptozotocin (STZ) injections. Both Immunohistochemistry and Western blot revealed that Pin1 expression was up-regulated in the arterial wall in T2D mice and in VSMCs in culture conditions mimicking T2D. Next, increased activity of Pin1 was observed in neointimal hyperplasia after arterial injury in T2D mice. Further analysis confirmed that 10% serum of T2D mice and Pin1-forced expression stimulated proliferation, inhibited apoptosis, enhanced cell cycle progression and migration of VSMCs, whereas Pin1 knockdown resulted in the converse effects. We demonstrated that STAT3 signalling and mitochondria-dependent pathways played critical roles in the involvement of Pin1 in cell cycle regulation and apoptosis of VSMCs in T2D. In addition, VEGF expression was stimulated by Pin1, which unveiled part of the mechanism of Pin1 in regulating VSMC migration in T2D. Finally, the administration of juglone via pluronic gel onto injured common femoral artery resulted in a significant inhibition of the neointima/media ratio. Our findings demonstrated the vital effect of Pin1 on the VSMC proliferation, cell cycle progression, apoptosis and migration that underlie neointima formation in T2D and implicated Pin1 as a potential therapeutic target to prevent restenosis in T2D.
Collapse
Affiliation(s)
- Lei Lv
- Department of Vascular Surgery, Renji Hospital, Shanghai Jiaotong University, College of Medicine, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
11
|
Zhao JG, Ren KM, Tang J, Zhang L. Significance of C-Jun expression in esophageal squamous cell carcinoma. Shijie Huaren Xiaohua Zazhi 2012; 20:3580-3583. [DOI: 10.11569/wcjd.v20.i35.3580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the relationship between C-Jun protein expression and clinical biological behavior of esophageal squamous cell carcinoma (ESCC).
METHODS: Immunohistochemistry and RT-PCR were used to detect the expression of C-Jun protein and mRNA in 96 cases of ESCC tissue and matched tumor-adjacent esophageal tissue. The correlation between C-Jun protein expression and clinical biological behavior of ESCC was analyzed.
RESULTS: C-Jun expression in ESCC was significantly higher in ESCC tissue than in matched tumor-adjacent esophageal tissue (0.7703 ± 0.3330 vs 0.2546 ± 0.1328, t = -11.23, P < 0.05). C-Jun protein expression was correlated with lymph node metastasis and TNM stage in ESCC (both P < 0.05).
CONCLUSION: C-Jun protein is highly expressed in ESCC, which correlates with lymph node metastasis and TNM stage. This finding suggests that high expression C-Jun protein may be related to the occurrence and development of ESCC.
Collapse
|
12
|
Fasseas MK, Dimou M, Katinakis P. The Caenorhabditis elegans parvulin gene subfamily and their expression under cold or heat stress along with the fkb subfamily. Biochem Biophys Res Commun 2012; 423:520-5. [PMID: 22683625 DOI: 10.1016/j.bbrc.2012.05.157] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Accepted: 05/29/2012] [Indexed: 01/30/2023]
Abstract
Parvulins and FKBPs are members of the peptidyl-prolyl cis/trans isomerases (PPIase) enzyme family whose role is to catalyze the interconversion between the cis trans forms of a peptide bond preceding internal proline residues in a polypeptide substrate. Members of the parvulin subfamily have been found to be involved in a variety of diseases, including Alzheimer's disease and cancer and are also considered possible antiparasitic targets. Genes Y110A2AL.13 (pin-1) and Y48C3A.16 (pin-4) were found in the worm's genome, possibly encoding parvulins. One is homologous to human and fly PIN1 whereas the other is homologous to human and fly PIN4. Both were expressed in Escherichia coli, purified and found to have in vitro PPIase activity. Expression levels of both genes, as well as the fkb genes (that encode FK506-binding proteins) were measured during development and under cold or heat stress conditions. The results revealed a potential role for these genes under temperature-related stress. RNAi silencing was performed for wild type and mutant strain worms under normal and cold or heat stress conditions. A reduced lifespan was observed when pin-4 dsRNA was fed to the fkb-5 deficient worms. Our work presents a first attempt to characterize the Caenorhabditis elegans parvulins and may present an interesting starting point for further experimentation concerning their role, along with the FKBP subfamily, in nematode physiology and their possible use as antiparasitic targets.
Collapse
Affiliation(s)
- Michael K Fasseas
- Department of Biotechnology, Agricultural University of Athens, 75 Iera Odos, Athens 11855, Greece
| | | | | |
Collapse
|
13
|
Huang B, Liu B, Yang L, Li Y, Cheng M, Huang D, Wang H, Zhang X, Zheng J, Li Q, Ji W, Zhou Y, Lu J. Functional genetic variants of c-Jun and their interaction with smoking and drinking increase the susceptibility to lung cancer in southern and eastern Chinese. Int J Cancer 2012; 131:E744-58. [DOI: 10.1002/ijc.27407] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 11/24/2011] [Indexed: 01/30/2023]
|
14
|
Damsky WE, Curley DP, Santhanakrishnan M, Rosenbaum LE, Platt JT, Gould Rothberg BE, Taketo MM, Dankort D, Rimm DL, McMahon M, Bosenberg M. β-catenin signaling controls metastasis in Braf-activated Pten-deficient melanomas. Cancer Cell 2011; 20:741-54. [PMID: 22172720 PMCID: PMC3241928 DOI: 10.1016/j.ccr.2011.10.030] [Citation(s) in RCA: 281] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 08/04/2011] [Accepted: 10/27/2011] [Indexed: 11/17/2022]
Abstract
Malignant melanoma is characterized by frequent metastasis, however, specific changes that regulate this process have not been clearly delineated. Although it is well known that Wnt signaling is frequently dysregulated in melanoma, the functional implications of this observation are unclear. By modulating β-catenin levels in a mouse model of melanoma that is based on melanocyte-specific Pten loss and Braf(V600E) mutation, we demonstrate that β-catenin is a central mediator of melanoma metastasis to the lymph nodes and lungs. In addition to altering metastasis, β-catenin levels control tumor differentiation and regulate both MAPK/Erk and PI3K/Akt signaling. Highly metastatic tumors with β-catenin stabilization are very similar to a subset of human melanomas. Together these findings establish Wnt signaling as a metastasis regulator in melanoma.
Collapse
Affiliation(s)
- William E. Damsky
- Department of Dermatology, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Pathology, University of Vermont College of Medicine, Burlington, VT, 05405, USA
- Correspondence: ; , Phone: 203-737-3484, Fax: 203-785-7637
| | - David P. Curley
- Department of Pathology, University of Vermont College of Medicine, Burlington, VT, 05405, USA
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA, 02115,USA
| | | | - Lara E. Rosenbaum
- Department of Dermatology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - James T. Platt
- Department of Dermatology, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | - Makoto M. Taketo
- Department of Pharmacology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - David Dankort
- Department of Biology, McGill University, Montreal, Quebec, H3G 0B1, Canada
| | - David L. Rimm
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Martin McMahon
- Cancer Research Institute & Department of Cell and Molecular Pharmacology, Helen Diller Family of Comprehensive Cancer Center, University of California, San Francisco, CA, 94143, USA
| | - Marcus Bosenberg
- Department of Dermatology, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06510, USA
- Correspondence: ; , Phone: 203-737-3484, Fax: 203-785-7637
| |
Collapse
|