1
|
He XB, Guo F, Li K, Yan J, Lee SH. Timing of MeCP2 Expression Determines Midbrain Dopamine Neuron Phenotype Specification. Stem Cells 2022; 40:1043-1055. [PMID: 36041430 DOI: 10.1093/stmcls/sxac061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 08/22/2022] [Indexed: 11/14/2022]
Abstract
Midbrain dopamine (DA) neurons are associated with locomotor and psychiatric disorders. DA phenotype is specified in ancestral neural precursor cells (NPCs) and maintained throughout neuronal differentiation. Here we show that endogenous expression of MeCP2 coincides with DA phenotype specification in mouse mesencephalon, and premature expression of MeCP2 prevents in vitro cultured NPCs from acquiring DA phenotype through interfering NURR1 transactivation of DA phenotype genes. By contrast, ectopic MeCP2 expression does not disturb DA phenotype in the DA neurons. By analyzing the dynamic change of DNA methylation along DA neuronal differentiation at the promoter of DA phenotype gene tyrosine hydroxylase (Th), we show that Th expression is determined by TET1-mediated de-methylation of NURR1 binding sites within Th promoter. Chromatin immunoprecipitation assays demonstrate that premature MeCP2 dominates the DNA binding of the corresponding sites thereby blocking TET1 function in DA NPCs, whereas TET1-mediated de-methylation prevents excessive MeCP2 binding in DA neurons. The significance of temporal DNA methylation status is further confirmed by targeted methylation/demethylation experiments showing that targeted de-methylation in DA NPCs protects DA phenotype specification from ectopic MeCP2 expression, whereas targeted methylation disturbs phenotype maintenance in MeCP2-overexpressed DA neurons. These findings suggest the appropriate timing of MeCP2 expression as a novel determining factor for guiding NPCs into DA lineage.
Collapse
Affiliation(s)
- Xi-Biao He
- Laboratory of Stem Cell Biology and Epigenetics, College of Basic Medical Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, People's Republic of China
| | - Fang Guo
- Laboratory of Stem Cell Biology and Epigenetics, College of Basic Medical Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, People's Republic of China
| | - Kexuan Li
- Laboratory of Stem Cell Biology and Epigenetics, College of Basic Medical Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, People's Republic of China
| | - Jiaqing Yan
- Laboratory of Stem Cell Biology and Epigenetics, College of Basic Medical Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, People's Republic of China
| | - Sang-Hun Lee
- Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Wang X, Ma S, Wu H, Shen X, Xu S, Guo X, Bolick ML, Wu S, Wang F. Macrophage migration inhibitory factor mediates peripheral nerve injury-induced hypersensitivity by curbing dopaminergic descending inhibition. Exp Mol Med 2018; 50:e445. [PMID: 29504609 PMCID: PMC5903823 DOI: 10.1038/emm.2017.271] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/25/2017] [Accepted: 09/12/2017] [Indexed: 12/21/2022] Open
Abstract
Our previous works disclosed the contributing role of macrophage migration inhibitory factor (MIF) and dopaminergic inhibition by lysine dimethyltransferase G9a/Glp complex in peripheral nerve injury-induced hypersensitivity. We herein propose that the proinflammatory cytokine MIF participates in the regulation of neuropathic hypersensitivity by interacting with and suppressing the descending dopaminergic system. The lumbar spinal cord (L-SC) and ventral tegmental area (VTA) are two major locations with significant upregulation of MIF after chronic constriction injury (CCI) of the sciatic nerve, and they display time-dependent changes, along with a behavioral trajectory. Correspondingly, dopamine (DA) content shows the reverse characteristic change to MIF with a time-dependent curve in post-surgical behavior. The levels of both MIF and DA are reversed by the MIF tautomerase inhibitor ISO-1, and a negative relationship exists between MIF and DA. The reversed role of ISO-1 also affects tyrosine hydroxylase expression. Furthermore, CCI induces Th promoter CpG site methylation in the L-SC and VTA areas, and this effect could be abated by ISO-1 administration. G9a/SUV39H1 and H3K9me2/H3K9me3 enrichment within the Th promoter region following CCI in the L-SC and VTA was also decreased by ISO-1. In cultured dopaminergic neurons, rMIF enhanced the recruitment of G9a and SUV39H1, followed by an increase in H3K9me2/H3K9me3. These molecular changes correspondingly exhibited alterations in Th promoter CpG site methylation and pain behaviors. In summary, MIF functions as a braking factor in curbing dopaminergic descending inhibition in peripheral nerve injury-induced hypersensitivity by mediating Th gene methylation through G9a/SUV39H1-associated H3K9 methylation.
Collapse
Affiliation(s)
- Xian Wang
- Department of Anesthesiology, Obstetrics and Gynecology Hospital, Affiliated to Nanjing Medical University, Nanjing, China
| | - Shaolei Ma
- Department of Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Haibo Wu
- Department of Anesthesiology, Obstetrics and Gynecology Hospital, Affiliated to Nanjing Medical University, Nanjing, China
| | - Xiaofeng Shen
- Department of Anesthesiology, Obstetrics and Gynecology Hospital, Affiliated to Nanjing Medical University, Nanjing, China
| | - Shiqin Xu
- Department of Anesthesiology, Obstetrics and Gynecology Hospital, Affiliated to Nanjing Medical University, Nanjing, China
| | - Xirong Guo
- Institute of Pediatrics, Obstetrics and Gynecology Hospital, Affiliated to Nanjing Medical University, Nanjing, China
| | - Maria L Bolick
- Group of Neuropharmacology and Neurophysiology, Division of Neuroscience, The Bonoi Academy of Science and Education, Chapel Hill, NC, USA
| | - Shizheng Wu
- Department of Neurology, Qinghai Provincial People's Hospital, Xining, China
| | - Fuzhou Wang
- Department of Anesthesiology, Obstetrics and Gynecology Hospital, Affiliated to Nanjing Medical University, Nanjing, China.,Group of Neuropharmacology and Neurophysiology, Division of Neuroscience, The Bonoi Academy of Science and Education, Chapel Hill, NC, USA
| |
Collapse
|
3
|
Conserved Upstream Regulatory Regions in Mammalian Tyrosine Hydroxylase. Mol Neurobiol 2018; 55:7340-7351. [PMID: 29404959 DOI: 10.1007/s12035-018-0936-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 01/25/2018] [Indexed: 10/18/2022]
Abstract
Tyrosine hydroxylase (Th) encodes the rate-limiting enzyme in catecholamine biosynthesis, and the regulation of its transcription is critical for the specification and maintenance of catecholaminergic neuron phenotypes. For many genes, regulatory genomic DNA sequences that are upstream of the proximal promoter control expression levels as well as region-specific expression patterns. The regulatory architecture of the genomic DNA upstream of the Th proximal promoter, however, is poorly understood. In this study, we examined the 11 kb upstream nucleotide sequence of Th from nine mammalian species and identified five highly conserved regions. Using cultured human cells and mouse olfactory bulb tissue, chromatin immunoprecipitation (ChIP) assays show that these conserved regions recruit transcription factors that are established regulators of Th transcription (such as NURR1, PITX3, FOXA2, MEIS2, and PAX6). This analysis also identified a conserved binding site for CTCF, and functional studies in cultured human cells and ChIP assays with mouse tissue show that CTCF is a novel regulator of Th transcription in the forebrain. Together, the findings in this study provide key insights into the upstream regulatory genomic architecture and regulatory mechanisms controlling mammalian Th gene transcription.
Collapse
|
4
|
Leão AHFF, Meurer YSR, da Silva AF, Medeiros AM, Campêlo CLC, Abílio VC, Engelberth RCGK, Cavalcante JS, Izídio GS, Ribeiro AM, Silva RH. Spontaneously Hypertensive Rats (SHR) Are Resistant to a Reserpine-Induced Progressive Model of Parkinson's Disease: Differences in Motor Behavior, Tyrosine Hydroxylase and α-Synuclein Expression. Front Aging Neurosci 2017; 9:78. [PMID: 28396635 PMCID: PMC5366354 DOI: 10.3389/fnagi.2017.00078] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 03/13/2017] [Indexed: 01/01/2023] Open
Abstract
Reserpine is an irreversible inhibitor of vesicular monoamine transporter-2 (VMAT2) used to study Parkinson’s disease (PD) and screening for antiparkinsonian treatments in rodents. Recently, the repeated treatment with a low-dose of reserpine was proposed as a progressive model of PD. Rats under this treatment show progressive catalepsy behavior, oral movements and spontaneous motor activity decrement. In parallel, compared to Wistar rats, spontaneously hypertensive rats (SHR) are resistant to acute reserpine-induced oral dyskinesia. We aimed to assess whether SHR would present differential susceptibility to repeated reserpine-induced deficits in the progressive model of PD. Male Wistar and SHR rats were administered 15 subcutaneously (s.c.) injections of reserpine (0.1 mg/kg) or vehicle, every other day and motor activity was assessed by the catalepsy, oral movements and open field tests. Only reserpine-treated Wistar rats presented increased latency to step down in the catalepsy test and impaired spontaneous activity in the open field. On the other hand, there was an increase in oral movements in both reserpine-treated strains, although with reduced magnitude and latency to instauration in SHR. After a 15-day withdrawn period, both strains recovered from motor impairment, but SHR animals expressed reduced latencies to reach control levels. Finally, we performed immunohistochemistry for tyrosine hydroxylase (TH) and α-synuclein (α-syn) 48 h after the last injection or 15 days after withdrawn. Reserpine-treated animals presented a reduction in TH and an increase in α-syn immunoreactivity in the substantia nigra and dorsal striatum (dSTR), which were both recovered after 15 days of withdraw. Furthermore, SHR rats were resistant to reserpine-induced TH decrement in the substantia nigra, and presented reduced immunoreactivity to α-syn in the dSTR relative to Wistar rats, irrespective of treatment. This effect was accompanied by increase of malondaldhyde (MDA) in the striatum of reserpine-treated Wistar rats, while SHR presented reduced MDA in both control and reserpine conditions relative to Wistar strain. In conclusion, the current results show that SHR are resilient to motor and neurochemical impairments induced by the repeated low-dose reserpine protocol. These findings indicate that the neurochemical, molecular and genetic differences in the SHR strain are potential relevant targets to the study of susceptibility to PD.
Collapse
Affiliation(s)
- Anderson H F F Leão
- Memory Studies Laboratory, Department of Physiology, Federal University of Rio Grande do NorteNatal, Brazil; Brain Institute, Federal University of Rio Grande do NorteNatal, Brazil; Behavioral Neuroscience Laboratory, Department of Pharmacology, Federal University of São PauloSão Paulo, Brazil
| | - Ywlliane S R Meurer
- Memory Studies Laboratory, Department of Physiology, Federal University of Rio Grande do Norte Natal, Brazil
| | | | - André M Medeiros
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Federal University of São Paulo São Paulo, Brazil
| | - Clarissa L C Campêlo
- Memory Studies Laboratory, Department of Physiology, Federal University of Rio Grande do Norte Natal, Brazil
| | - Vanessa C Abílio
- Department of Pharmacology, Federal University of São Paulo São Paulo, Brazil
| | - Rovena C G K Engelberth
- Neurochemical Studies Laboratory, Department of Physiology, Federal University of Rio Grande do Norte Natal, Brazil
| | - Jeferson S Cavalcante
- Neurochemical Studies Laboratory, Department of Physiology, Federal University of Rio Grande do Norte Natal, Brazil
| | - Geison S Izídio
- Laboratory of Behavioral Genetics, Department of Cellular Biology, Embryology and Genetics, Federal University of Santa Catarina Florianopolis, Brazil
| | | | - Regina H Silva
- Memory Studies Laboratory, Department of Physiology, Federal University of Rio Grande do NorteNatal, Brazil; Behavioral Neuroscience Laboratory, Department of Pharmacology, Federal University of São PauloSão Paulo, Brazil
| |
Collapse
|
5
|
Differential regulation of expression of RNA-editing enzymes, ADAR1 and ADAR2, by 5-aza-2'-deoxycytidine and trichostatin A in human neuronal SH-SY5Y cells. Neuroreport 2016; 26:1089-94. [PMID: 26485095 DOI: 10.1097/wnr.0000000000000474] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Adenosine deaminase acting on RNA (ADAR) enzymes, ADAR1 and ADAR2, mediates adenosine-to-inosine RNA editing, and their mRNA expressions are altered during developmental, physiological, and pathophysiological processes in the nervous system. The present study attempted to investigate the involvement of epigenetic modifying enzymes, such as DNA methyltransferase (DNMT) and histone deacetylase (HDAC), in the regulation of ADAR1 and ADAR2 mRNA expressions in neuronal cells. Using human neuronal SH-SY5Y cells, we found that the DNMT inhibitor 5-aza-2'-deoxycytidine led to an increase in ADAR2, but not ADAR1, mRNA expression in a concentration-dependent and time-dependent manner. However, treatment with HDAC inhibitor trichostatin A elicited an increase in ADAR2 mRNA expression and a decrease in ADAR1 mRNA expression, and these changes were blocked by actinomycin D, a transcription inhibitor. Taken together, these findings suggest that ADAR1 and ADAR2 expressions are subject to different regulations by DNMT and HDAC enzymes in neuronal SH-SY5Y cells.
Collapse
|
6
|
Huang HY, Chiu TL, Chang HF, Hsu HR, Pang CY, Liew HK, Wang MJ. Epigenetic regulation contributes to urocortin-enhanced midbrain dopaminergic neuron differentiation. Stem Cells 2016; 33:1601-17. [PMID: 25641682 DOI: 10.1002/stem.1949] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 12/18/2014] [Indexed: 01/08/2023]
Abstract
The production of midbrain dopaminergic (mDA) neurons requires precise extrinsic inductive signals and intrinsic transcriptional cascade at a specific time point in development. Urocortin (UCN) is a peptide of the corticotropin-releasing hormone family that mediates various responses to stress. UCN was first cloned from adult rat midbrain. However, the contribution of UCN to the development of mDA neurons is poorly understood. Here, we show that UCN is endogenously expressed in the developing ventral midbrain (VM) and its receptors are exhibited in Nurr1(+) postmitotic mDA precursors and TH(+) neurons, suggesting possible roles in regulating their terminal differentiation. UCN treatment increased DA cell numbers in rat VM precursor cultures by promoting the conversion of Nurr1(+) precursors into DA neurons. Furthermore, neutralization of secreted UCN with anti-UCN antibody resulted in a reduction in the number of DA neurons. UCN induced an abundance of acetylated histone H3 and enhanced late DA regulator Nurr1, Foxa2, and Pitx3 expressions. Using pharmacological and RNA interference approaches, we further demonstrated that histone deacetylase (HDAC) inhibition and late transcriptional factors upregulation contribute to UCN-mediated DA neuron differentiation. Chromatin immunoprecipitation analyses revealed that UCN promoted histone acetylation of chromatin surrounding the TH promoter by directly inhibiting HDAC and releasing of methyl CpG binding protein 2-CoREST-HDAC1 repressor complex from the promoter, ultimately leading to an increase in Nurr1/coactivators-mediated transcription of TH gene. Moreover, UCN treatment in vivo also resulted in increased DA neuron differentiation. These findings suggest that UCN might contribute to regulate late mDA neuron differentiation during VM development.
Collapse
Affiliation(s)
- Hsin-Yi Huang
- Department of Medical Research, Neuro-Medical Scientific Center, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | | | | | | | | | | | | |
Collapse
|
7
|
Protein content and methyl donors in maternal diet interact to influence the proliferation rate and cell fate of neural stem cells in rat hippocampus. Nutrients 2014; 6:4200-17. [PMID: 25317634 PMCID: PMC4210914 DOI: 10.3390/nu6104200] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 09/22/2014] [Accepted: 09/24/2014] [Indexed: 02/02/2023] Open
Abstract
Maternal diet during pregnancy and early postnatal life influences the setting up of normal physiological functions in the offspring. Epigenetic mechanisms regulate cell differentiation during embryonic development and may mediate gene/environment interactions. We showed here that high methyl donors associated with normal protein content in maternal diet increased the in vitro proliferation rate of neural stem/progenitor cells isolated from rat E19 fetuses. Gene expression on whole hippocampi at weaning confirmed this effect as evidenced by the higher expression of the Nestin and Igf2 genes, suggesting a higher amount of undifferentiated precursor cells. Additionally, protein restriction reduced the expression of the insulin receptor gene, which is essential to the action of IGFII. Inhibition of DNA methylation in neural stem/progenitor cells in vitro increased the expression of the astrocyte-specific Gfap gene and decreased the expression of the neuron-specific Dcx gene, suggesting an impact on cell differentiation. Our data suggest a complex interaction between methyl donors and protein content in maternal diet that influence the expression of major growth factors and their receptors and therefore impact the proliferation and differentiation capacities of neural stem cells, either through external hormone signals or internal genomic regulation.
Collapse
|
8
|
Yi SH, He XB, Rhee YH, Park CH, Takizawa T, Nakashima K, Lee SH. Foxa2 acts as a co-activator potentiating expression of the Nurr1-induced DA phenotype via epigenetic regulation. Development 2014; 141:761-72. [PMID: 24496614 DOI: 10.1242/dev.095802] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Understanding how dopamine (DA) phenotypes are acquired in midbrain DA (mDA) neuron development is important for bioassays and cell replacement therapy for mDA neuron-associated disorders. Here, we demonstrate a feed-forward mechanism of mDA neuron development involving Nurr1 and Foxa2. Nurr1 acts as a transcription factor for DA phenotype gene expression. However, Nurr1-mediated DA gene expression was inactivated by forming a protein complex with CoREST, and then recruiting histone deacetylase 1 (Hdac1), an enzyme catalyzing histone deacetylation, to DA gene promoters. Co-expression of Nurr1 and Foxa2 was established in mDA neuron precursor cells by a positive cross-regulatory loop. In the presence of Foxa2, the Nurr1-CoREST interaction was diminished (by competitive formation of the Nurr1-Foxa2 activator complex), and CoREST-Hdac1 proteins were less enriched in DA gene promoters. Consequently, histone 3 acetylation (H3Ac), which is responsible for open chromatin structures, was strikingly increased at DA phenotype gene promoters. These data establish the interplay of Nurr1 and Foxa2 as the crucial determinant for DA phenotype acquisition during mDA neuron development.
Collapse
Affiliation(s)
- Sang-Hoon Yi
- Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seoul 133-791, Korea
| | | | | | | | | | | | | |
Collapse
|
9
|
van Heesbeen HJ, Mesman S, Veenvliet JV, Smidt MP. Epigenetic mechanisms in the development and maintenance of dopaminergic neurons. Development 2013; 140:1159-69. [PMID: 23444349 DOI: 10.1242/dev.089359] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Mesodiencephalic dopaminergic (mdDA) neurons are located in the ventral mesodiencephalon and are involved in psychiatric disorders and severely affected in neurodegenerative diseases such as Parkinson's disease. mdDA neuronal development has received much attention in the last 15 years and many transcription factors involved in mdDA specification have been discovered. More recently however, the impact of epigenetic regulation has come into focus, and it's emerging that the processes of histone modification and DNA methylation form the basis of genetic switches that operate during mdDA development. Here, we review the epigenetic control of mdDA development, maturation and maintenance. As we highlight, epigenetic mechanisms play a pivotal role in all of these processes and the knowledge gathered from studying epigenetics in these contexts may aid our understanding of mdDA-related pathologies.
Collapse
Affiliation(s)
- Hendrikus J van Heesbeen
- Swammerdam Institute for Life Sciences, Science Park, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
10
|
Banerjee K, Akiba Y, Baker H, Cave JW. Epigenetic control of neurotransmitter expression in olfactory bulb interneurons. Int J Dev Neurosci 2012; 31:415-23. [PMID: 23220178 DOI: 10.1016/j.ijdevneu.2012.11.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 11/21/2012] [Accepted: 11/22/2012] [Indexed: 12/24/2022] Open
Abstract
Defining the molecular mechanisms that underlie development and maintenance of neuronal phenotypic diversity in the CNS is a fundamental challenge in developmental neurobiology. The vast majority of olfactory bulb (OB) interneurons are GABAergic and this neurotransmitter phenotype is specified in migrating neuroblasts by transcription of either or both glutamic acid decarboxylase 1 (Gad1) and Gad2. A subset of OB interneurons also co-express dopamine, but transcriptional repression of tyrosine hydroxylase (Th) suppresses the dopaminergic phenotype until these neurons terminally differentiate. In mature OB interneurons, GABA and dopamine levels are modulated by odorant-induced synaptic activity-dependent regulation of Gad1 and Th transcription. The molecular mechanisms that specify and maintain the GABAergic and dopaminergic phenotypes in the OB are not clearly delineated. In this report, we review previous studies and present novel findings that provide insight into the contribution of epigenetic regulatory mechanisms for controlling expression of these neurotransmitter phenotypes in the OB. We show that HDAC enzymes suppress the dopaminergic phenotype in migrating neuroblasts by repressing Th transcription. In the mature interneurons, both Th and Gad1 transcription levels are modulated by synaptic activity-dependent recruitment of acetylated Histone H3 on both the Th and Gad1 proximal promoters. We also show that HDAC2 has the opposite transcriptional response to odorant-induced synaptic activity when compared to Th and Gad1. These findings suggest that HDAC2 mediates, in part, the activity-dependent chromatin remodeling of the Th and Gad1 proximal promoters in mature OB interneurons.
Collapse
Affiliation(s)
- Kasturi Banerjee
- Burke Medical Research Institute, 785 Mamaroneck Avenue, White Plains, NY 10605, United States
| | | | | | | |
Collapse
|