1
|
Non-Coding RNAs Regulate Spontaneous Abortion: A Global Network and System Perspective. Int J Mol Sci 2022; 23:ijms23084214. [PMID: 35457031 PMCID: PMC9028476 DOI: 10.3390/ijms23084214] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 12/25/2022] Open
Abstract
Spontaneous abortion is a common pregnancy complication that negatively impacts women’s health and commercial pig production. It has been demonstrated that non-coding RNA (ncRNA) is involved in SA by affecting cell proliferation, invasion, apoptosis, epithelial-mesenchymal transformation (EMT), migration, and immune response. Over the last decade, research on ncRNAs in SA has primarily concentrated on micro RNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). In this review, we discuss recent ncRNA studies focused on the function and mechanism of miRNAs, lncRNAs, and circRNAs in regulating SA. Meanwhile, we suggest that a ceRNA regulatory network exists in the onset and development of SA. A deeper understanding of this network will accelerate the process of the quest for potential RNA markers for SA diagnosis and treatment.
Collapse
|
2
|
Circulating miR-455-3p, miR-5787, and miR-548a-3p as potential noninvasive biomarkers in the diagnosis of acute graft-versus-host disease: a validation study. Ann Hematol 2021; 100:2621-2631. [PMID: 34247256 DOI: 10.1007/s00277-021-04573-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/07/2021] [Indexed: 10/20/2022]
Abstract
Currently, acute graft-versus-host disease (aGVHD) diagnosis is based on clinical features and pathological findings. Until now, there is no non-invasive diagnostic test for aGVHD. MicroRNAs may act as promising predictive, diagnostic, or prognostic biomarkers for aGVHD. The purpose of the current study was to validate circulating microRNAs as diagnostic biomarkers to assist clinicians in promptly diagnosing aGVHD, so that treatment can be initiated earlier. In the present study, we evaluated six microRNAs (miR-455-3p, miR-5787, miR-6729-5p, miR-6776-5p, miR-548a-3p, and miR-6732-5p) selected from miRNA array data in 40 aGVHD patients compared to 40 non-GVHD patients with RT-qPCR. Target genes of differentially expressed microRNAs (DEMs) were predicted using Targetscan, miRanda, miRDB, miRWalk, PICTAR5, miRmap, DIANA, and miRTarBase algorithms, and their functions were analyzed using EnrichNet, Metascape, and DIANA-miRPath databases. The expressions of plasma miR-455-3p and miR-5787 were significantly downregulated, whereas miR-548a-3p was significantly upregulated in aGVHD patients compared to non-GVHD patients. Moreover, DEMs showed potentially high diagnostic accuracy for aGVHD. In silico analysis of DEMs provided valuable information on the role of DEMs in GVHD, immune regulation, and inflammatory response. Our study suggested that miR-455-3p, miR-5787, and miR-548a-3p could be used as potential noninvasive biomarkers in the diagnosis of aGVHD in addition to possible therapeutic targets in aGVHD.
Collapse
|
3
|
MiR-5787 Attenuates Macrophages-Mediated Inflammation by Targeting TLR4/NF-κB in Ischemic Cerebral Infarction. Neuromolecular Med 2020; 23:363-370. [DOI: 10.1007/s12017-020-08628-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 10/28/2020] [Indexed: 01/26/2023]
|
4
|
Yao Z, Jia C, Tai Y, Liang H, Zhong Z, Xiong Z, Deng M, Zhang Q. Serum exosomal long noncoding RNAs lnc-FAM72D-3 and lnc-EPC1-4 as diagnostic biomarkers for hepatocellular carcinoma. Aging (Albany NY) 2020; 12:11843-11863. [PMID: 32554864 PMCID: PMC7343450 DOI: 10.18632/aging.103355] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 05/01/2020] [Indexed: 12/23/2022]
Abstract
Long noncoding RNAs (lncRNAs), such as LINC00462, HOTAIR, and MALAT1, are significantly upregulated in hepatocellular carcinoma (HCC) tissues. However, lncRNA expression in the serum of HCC patients is still unclear. To identify candidate lncRNAs for HCC diagnosis, we purified exosomal total RNA from the serum of healthy volunteers (controls) and hepatitis, cirrhosis, and HCC patients. To assess the function of lncRNAs, small interfering RNAs and overexpression vectors were designed and cell viability and cell apoptosis assays conducted. The exosomes of the control group had a larger number of lncRNAs with a high amount of alternative splicing compared to hepatic disease patients. qPCR assays showed that lnc-FAM72D-3, lnc-GPR89B-15, lncZEB2-19, and lnc-EPC1-4 are differentially expressed in HCC. Furthermore, the expression level of lnc-EPC1-4 correlated with age. While the expression levels of lnc-GPR89B-15 and lnc-EPC1-4 correlated with serum alpha-fetoprotein level. lnc-FAM72D-3 knockdown decreased cell viability and promoted cell apoptosis, indicating that lnc-FAM72D-3 functions as an oncogene in HCC. In contrast, lnc-EPC1-4 overexpression inhibited cell proliferation and induced cell apoptosis, indicating that it functions as a tumor suppressor gene. Collectively, these findings show that lnc-FAM72D-3 and lnc-EPC1-4 play a novel role that might contribute to hepatocarcinogenesis and identify potential candidate biomarkers for HCC diagnosis.
Collapse
Affiliation(s)
- Zhicheng Yao
- Department of General Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China
| | - Changchang Jia
- Department of Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China
| | - Yan Tai
- Department of Liver Disease Lab, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China
| | - Hao Liang
- Department of General Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China
| | - Zhaozhong Zhong
- Department of Hepatobilliary Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China
| | - Zhiyong Xiong
- Department of General Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China
| | - Meihai Deng
- Department of Hepatobilliary Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China
| | - Qi Zhang
- Department of Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China
| |
Collapse
|
5
|
Jin G, Wang Q, Hu X, Li X, Pei X, Xu E, Li M. Profiling and functional analysis of differentially expressed circular RNAs in high glucose-induced human umbilical vein endothelial cells. FEBS Open Bio 2019; 9:1640-1651. [PMID: 31369204 PMCID: PMC6722901 DOI: 10.1002/2211-5463.12709] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/07/2019] [Accepted: 07/31/2019] [Indexed: 12/18/2022] Open
Abstract
Dysfunction of vascular endothelial cells often results in diabetic vascular complications. Circular RNAs (circRNAs) have been implicated in the pathogenesis of various diseases, including diabetes and many vascular diseases. This study aimed to explore the roles of circRNAs in high glucose‐induced human umbilical vein endothelial cells (HUVECs) to elucidate the contributions of circRNAs to diabetic vascular complications. We subjected control and high glucose‐induced HUVECs to RNA sequencing and identified 214 differentially expressed circRNAs (versus control HUVECs, fold change ≥ 2.0, P < 0.05). We then validated seven of these differentially expressed circRNAs by qPCR (hsa_circ_0008360, hsa_circ_0005741, hsa_circ_0003250, hsa_circ_0045462, hsa_circ_0064772, hsa_circ_0007976, and hsa_circ_0005263). A representative circRNA–microRNA (miRNA) network was constructed using the three most up‐regulated circRNAs (hsa_circ_0008360, hsa_circ_0000109, and hsa_circ_0002317) and their putative miRNA. Bioinformatic analysis indicated that these circRNAs regulate the expressions of genes involved in vascular endothelial function and angiogenesis through targeting miRNAs. Our work highlights the potential regulatory mechanisms of three crucial circRNAs in diabetes‐associated endothelial dysfunction.
Collapse
Affiliation(s)
- Guoxi Jin
- Department of Endocrinology, First Affiliated Hospital of Bengbu Medical College, Anhui, China
| | - Qiong Wang
- Department of Endocrinology, First Affiliated Hospital of Bengbu Medical College, Anhui, China
| | - Xiaolei Hu
- Department of Endocrinology, First Affiliated Hospital of Bengbu Medical College, Anhui, China
| | - Xiaoli Li
- Department of Endocrinology, First Affiliated Hospital of Bengbu Medical College, Anhui, China
| | - Xiaoyan Pei
- Department of Endocrinology, First Affiliated Hospital of Bengbu Medical College, Anhui, China
| | - Erqin Xu
- Room of Physical Diagnostics, Bengbu Medical College, Anhui, China
| | - Minglong Li
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| |
Collapse
|
6
|
Zhang S, Wang L, Cheng L. Aberrant ERG expression associates with downregulation of miR-4638-5p and selected genomic alterations in a subset of diffuse large B-cell lymphoma. Mol Carcinog 2019; 58:1846-1854. [PMID: 31237044 DOI: 10.1002/mc.23074] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/22/2019] [Accepted: 05/31/2019] [Indexed: 12/19/2022]
Abstract
ERG (avian v-ets erythroblastosis virus E26 oncogene homolog), an oncoprotein in prostate carcinoma and Ewing's sarcoma is associated with poor prognosis in patients with acute myeloid leukemia and T lymphoblastic leukemia. However little is known about ERG in lymphoma. Here we studied ERG in diffuse large B-cell lymphoma (DLBCL) by immunohistochemistry, fluorescence in situ hybridization (FISH), genome-wide microRNA (miRNA) expression profiling, real-time reverse-transcriptase polymerase chain reaction (RT-PCR) and whole exome sequencing (WES). Approximately 30% of de novo DLBCLs (37 of 118) expressed ERG (ERG+). ERG expression showed no significant correlation with DLBCL cell-of-origin classification, patient's age, sex, nodal, or extranodal disease status, tumor expression of p53 or p63. There was no ERG rearrangement in 10 randomly selected ERG+ DLBCLs by FISH. Forty-three miRNAs showed significant differential expression between ERG+ and ERG- DLBCLs. Downregulation of miR-4638-5p was confirmed by real-time RT-PCR. WES not only confirmed known gene mutations in DLBCLs but also revealed multiple novel gene mutations in POLA1, E2F1, PSMD8, AXIN1, GAB2, and GNB2L1, which occur more frequently in ERG+ DLBCLs. In conclusion, our studies demonstrated aberrant ERG expression in a subset of DLBCL, which is associated with downregulation of miR-4638-5p. In comparison with ERG-negative DLBCL, ERG+ DLBCL more likely harbors mutations in genes important in cell cycle control, B-cell receptor-mediated signaling and degradation of β-catenin. Further clinicopathological correlation and functional studies of ERG-related miRNAs and pathways may provide new insight into the pathogenesis of DLBCL and reveal novel targets for better management of patients with DLBCL.
Collapse
Affiliation(s)
- Shanxiang Zhang
- Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Lin Wang
- Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Liang Cheng
- Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
7
|
Yoo JK, Lee JM, Kang SH, Jeon SH, Kim CM, Oh SH, Kim CH, Kim NK, Kim JK. The novel microRNA hsa-miR-CHA1 regulates cell proliferation and apoptosis in human lung cancer by targeting XIAP. Lung Cancer 2019; 132:99-106. [DOI: 10.1016/j.lungcan.2018.04.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 04/04/2018] [Accepted: 04/12/2018] [Indexed: 12/29/2022]
|
8
|
Liaqat K, Chiu I, Lee K, Chakchouk I, Andrade-Elizondo PB, Santos-Cortez RLP, Hussain S, Nawaz S, Ansar M, Khan MN, Basit S, Schrauwen I, Ahmad W, Leal SM. Novel missense and 3'-UTR splice site variants in LHFPL5 cause autosomal recessive nonsyndromic hearing impairment. J Hum Genet 2018; 63:1099-1107. [PMID: 30177809 PMCID: PMC6202120 DOI: 10.1038/s10038-018-0502-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/08/2018] [Accepted: 08/09/2018] [Indexed: 02/07/2023]
Abstract
LHFPL5, the gene for DFNB67, underlies autosomal recessive nonsyndromic hearing impairment. We identified seven Pakistani families that mapped to 6p21.31, which includes the LHFPL5 gene. Sanger sequencing of LHFPL5 using DNA samples from hearing impaired and unaffected members of these seven families identified four variants. Among the identified variants, two were novel: one missense c.452 G > T (p.Gly151Val) and one splice site variant (c.*16 + 1 G > A) were each identified in two families. Two known variants: c.250delC (p.Leu84*) and c.380 A > G (p.Tyr127Cys) were also observed in two families and a single family, respectively. Nucleotides c.452G and c.*16 + 1G and amino-acid residue p.Gly151 are under strong evolutionary conservation. In silico bioinformatics analyses predicted these variants to be damaging. The splice site variant (c.*16 + 1 G > A) is predicted to affect pre-mRNA splicing and a loss of the 5' donor splice site in the 3'-untranslated region (3'-UTR). Further analysis supports the activation of a cryptic splice site approximately 357-bp downstream, leading to an extended 3'-UTR with additional regulatory motifs. In conclusion, we identified two novel variants in LHFPL5, including a unique 3'-UTR splice site variant that is predicted to impact pre-mRNA splicing and regulation through an extended 3'-UTR.
Collapse
Affiliation(s)
- Khurram Liaqat
- Department of Biotechnology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ilene Chiu
- Bobby R Alford Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Kwanghyuk Lee
- Center for Statistical Genetics, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Imen Chakchouk
- Center for Statistical Genetics, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Paula B Andrade-Elizondo
- Center for Statistical Genetics, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Regie Lyn P Santos-Cortez
- Center for Statistical Genetics, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Shabir Hussain
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Shoaib Nawaz
- Department of Biotechnology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Ansar
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Nasim Khan
- Department of Zoology, University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| | - Sulman Basit
- Center for Genetics and Inherited Diseases, Taibah University, Almadinah Almunawwarah, Saudi Arabia
| | - Isabelle Schrauwen
- Center for Statistical Genetics, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Wasim Ahmad
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Suzanne M Leal
- Center for Statistical Genetics, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
9
|
Li D, Li J, Jia B, Wang Y, Zhang J, Liu G. Genome-wide identification of microRNAs in decidual natural killer cells from patients with unexplained recurrent spontaneous abortion. Am J Reprod Immunol 2018; 80:e13052. [PMID: 30339301 DOI: 10.1111/aji.13052] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 08/19/2018] [Accepted: 09/04/2018] [Indexed: 12/17/2022] Open
Abstract
PROBLEM This study revealed miRNA regulation and functional microarray-based profiles of miRNAs in the natural killer (NK) cells of the decidual tissue obtained from patients with unexplained recurrent spontaneous abortion (URSA). METHOD OF STUDY Patients with URSA were categorized based on the occurrence of at least two or more successive spontaneous abortions between 7th and 10th gestational week. Total RNA was isolated from the NK cells of the decidual tissue obtained from patients with induced abortion at about the 8th gestational week. The potential contribution of regulatory miRNAs to a genetic predisposition to URSA was characterized by comparison with healthy and fertile controls and bioinformatics analyses. RESULTS Analysis of the miRNA expression profiles identified 50 miRNAs that were differentially expressed, including one down-regulated and 49 up-regulated miRNAs in the URSA group. MiRNA-Gene-Network, miRNA-GO-Network and miRNA-Gene-TF-Network were constructed. The key miRNAs, genes, GOs and core TFs in the network were determined. CONCLUSION Our results suggest that a close relationship exists between the aberrant miRNAs and URSA. Furthermore, these findings support the notion that altered expression of miRNAs may contribute to the clinical diagnosis of URSA and the potential to develop novel strategies for therapeutic targets against URSA.
Collapse
Affiliation(s)
- Dandan Li
- Department of Obstetrics and Gynecology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jian Li
- Family Planning Department, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Bin Jia
- Department of Urology, the Third People's Provincial Hospital of Henan Province, Zhengzhou, Henan, China
| | - Yue Wang
- Department of Obstetrics and Gynecology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Juxin Zhang
- Department of Obstetrics and Gynecology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Guangzhi Liu
- Department of Obstetrics and Gynecology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
10
|
Ren W, Shen S, Sun Z, Shu P, Shen X, Bu C, Ai F, Zhang X, Tang A, Tian L, Li G, Li X, Ma J. Jak-STAT3 pathway triggers DICER1 for proteasomal degradation by ubiquitin ligase complex of CUL4A(DCAF1) to promote colon cancer development. Cancer Lett 2016; 375:209-220. [PMID: 26965998 DOI: 10.1016/j.canlet.2016.02.055] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/06/2016] [Accepted: 02/29/2016] [Indexed: 12/13/2022]
Abstract
Chronic intestinal inflammation is closely associated with colon cancer development and STAT3 seems to take center stage in bridging chronic inflammation to colon cancer progress. Here, we discovered that DICER1 was significantly downregulated in response to IL-6 or LPS stimulation and identified a novel mechanism for DICER1 downregulation via proteasomal degradation by ubiquitin ligase complex of CUL4A(DCAF1) in colon cancer cells. Meanwhile, PI3K-AKT signaling pathway phosphorylated DICER1 and contributed to its proteasomal degradation. The regulation of DICER1 by CUL4A(DCAF1) affected cell growth and apoptosis which is controlled by IL-6 activated Jak-STAT3 pathway. Intervention of CUL4A(DCAF1) ubiquitin ligase complex led to fluctuation in expression levels of DICER1 and microRNAs, and thus affected tumor growth in a mouse xenograft model. A panel of microRNAs that were downregulated by IL-6 stimulation was rescued by siRNA-CUL4A, and their predicated functions are involved in regulation of cell proliferation, apoptosis and motility. Furthermore, clinical specimen analysis revealed that decreased DICER1 expression was negatively correlated with STAT3 activation and cancer progression in human colon cancers. DICER1 and p-STAT3 expression levels correlated with 5-year overall survival of colon cancer patients. Consequently, this study proposes that inflammation-induced Jak-STAT3 signaling leads to colon cancer development through proteasomal degradation of DICER1 by ubiquitin ligase complex of CUL4A(DCAF1), which suggests a novel therapeutic opportunity for colon cancer.
Collapse
Affiliation(s)
- Weiguo Ren
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, China; Cancer Research Institute, Central South University, Key Laboratory of Carcinogenesis, Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha, Hunan, China
| | - Shourong Shen
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, China
| | - Zhenqiang Sun
- Cancer Research Institute, Central South University, Key Laboratory of Carcinogenesis, Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha, Hunan, China
| | - Peng Shu
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiaohua Shen
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Chibin Bu
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Feiyan Ai
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, China
| | - Xuemei Zhang
- Cancer Research Institute, Central South University, Key Laboratory of Carcinogenesis, Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha, Hunan, China
| | - Anliu Tang
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, China
| | - Li Tian
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, China
| | - Guiyuan Li
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, China; Cancer Research Institute, Central South University, Key Laboratory of Carcinogenesis, Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha, Hunan, China
| | - Xiayu Li
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, China.
| | - Jian Ma
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, China; Cancer Research Institute, Central South University, Key Laboratory of Carcinogenesis, Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha, Hunan, China.
| |
Collapse
|
11
|
Yu C, Luo C, Qu B, Khudhair N, Gu X, Zang Y, Wang C, Zhang N, Li Q, Gao X. Molecular network including eIF1AX, RPS7, and 14-3-3γ regulates protein translation and cell proliferation in bovine mammary epithelial cells. Arch Biochem Biophys 2014; 564:142-55. [DOI: 10.1016/j.abb.2014.09.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 09/21/2014] [Accepted: 09/23/2014] [Indexed: 02/07/2023]
|
12
|
From Protein Synthesis to Molecular Biology: The Appealing Tale of eIF-5A. MOLECULAR THERAPY. NUCLEIC ACIDS 2014; 3:e199. [PMID: 25291141 PMCID: PMC4217077 DOI: 10.1038/mtna.2014.53] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
13
|
Lee JM, Yoo JK, Yoo H, Jung HY, Lee DR, Jeong HC, Oh SH, Chung HM, Kim JK. The novel miR-7515 decreases the proliferation and migration of human lung cancer cells by targeting c-Met. Mol Cancer Res 2012; 11:43-53. [PMID: 23087254 DOI: 10.1158/1541-7786.mcr-12-0355] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
MicroRNAs (miRNA) are small noncoding RNAs that regulate gene expression in human diseases, including lung cancer. miRNAs have oncogenic and nononcogenic functions in lung cancer. In this study, we report the identification of a novel miRNA, miR-7515, from lung cancer cells. The novel miR-7515 was characterized using various predictive programs and experimental methods. miR-7515 was able to forming a stem-loop structure and its sequence was conserved in mammals. The expression level of miR-7515 in lung cancer cells and tissues was profiled using TaqMan miRNA assays. miR-7515 was downregulated in lung cancer compared with normal human lung cells and tissues. The target of miR-7515 was determined using a dual luciferase reporter assay. Expression of the target gene was determined by quantitative RT-PCR and Western blot analysis after transfection with miR-7515. miR-7515 directly suppressed human mesenchymal-epithelial transition factor (c-Met) by binding to the 3' untranslated region (UTR). Overexpression of miR-7515 significantly decreased cell-cycle-related proteins downstream of c-Met through c-Met inhibition. Cell proliferation and migration were examined using the XTT proliferation assay and the Transwell migration assay. miR-7515 led to decreased cell proliferation, migration and invasion in a lung cancer cell line. These results suggest that miR-7515 plays an important role in the proliferation and migration of lung cancer cells through c-Met regulation.
Collapse
Affiliation(s)
- Ji Min Lee
- Department of Pharmacy, College of Pharmacy, CHA University, Yatap-dong, Bundang-gu, Seongnam-si, Gyeonggi-do 463836, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|