1
|
Ma L, Zhu Y, Zhu La ALT, Lourenco JM, Callaway TR, Bu D. Schizochytrium sp. and lactoferrin supplementation alleviates Escherichia coli K99-induced diarrhea in preweaning dairy calves. J Dairy Sci 2024; 107:1603-1619. [PMID: 37769949 DOI: 10.3168/jds.2023-23466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 09/04/2023] [Indexed: 10/03/2023]
Abstract
Calf diarrhea, a common disease mainly induced by Escherichia coli infection, is one of the main reasons for nonpredator losses. Hence, an effective nonantibacterial approach to prevent calf diarrhea has become an emerging requirement. This study evaluated the microalgae Schizochytrium sp. (SZ) and lactoferrin (LF) as a nutrient intervention approach against E. coli O101:K99-induced preweaning calve diarrhea. Fifty 1-d-old male Holstein calves were randomly divided into 5 groups (n = 10): (1) control, (2) blank (no supplement or challenge), (3) 1 g/d LF, (4) 20 g/d SZ, or (5) 1 g/d LF plus 20 g/d SZ (LFSZ). The experimental period lasted 14 d. On the morning of d 7, calves were challenged with 1 × 1011 cfu of E. coli O101:K99, and rectum feces were collected on 3, 12, 24, and 168 h postchallenge for the control, LF, SZ, and LFSZ groups. The rectal feces of the blank group were collected on d 14. Data were analyzed using the mixed procedure of SAS (version 9.4; SAS Institute Inc.). The E. coli K99 challenge decreased the average daily gain (ADG) and increased feed-to-gain ratio (F:G) and diarrhea frequency (control vs. blank). Compared with the control group, the LFSZ group had a higher ADG and lower F:G, and the LFSZ and SZ groups had lower diarrhea frequency compared with the control group. In addition, the LFSZ and SZ groups have no differences in diarrhea frequency compared with the blank group. Compared with the control group, the blank group had lower serum nitric oxide (NO), endothelin-1, d-lactic acid (D-LA), and lipopolysaccharide (LPS) concentrations, as well as serum IgG, IL-1β, IL-6, IL-10, and TNF-α levels on d 7 and 14. On d 7, compared with the control group, all treatment groups had lower serum NO level, the SZ group had a lower serum D-LA concentration, and the LF and LFSZ groups had lower serum LPS concentration. On d 14, compared with the control group, the fecal microbiota of the blank group had lower Shannon, Simpson, Chao1, and ACE indexes, the LFSZ group had lower Shannon and Simpson indexes, the SZ and LFSZ groups had a higher Chao1 index, and all treatment groups had a higher ACE index. In fecal microbiota, Bifidobacterium and Actinobacteria were negatively associated with IL-10 and d-lactate, while Akkermansia was negatively associated with endothelin-1 and positively correlated with LPS, fecal scores, and d-lactate levels. Our results indicated that LF and SZ supplements could alleviate E. coli O101:K99-induced calf diarrhea individually or in combination. Supplementing 1 g/d LF and 20 g/d SZ could be a potential nutrient intervention approach to prevent bacterial diarrhea in calves.
Collapse
Affiliation(s)
- Lu Ma
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yingkun Zhu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; School of Agriculture & Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - A La Teng Zhu La
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - J M Lourenco
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - T R Callaway
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - Dengpan Bu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; CAAS-ICRAF Joint Lab on Agroforestry and Sustainable Animal Husbandry, World Agroforestry Centre, East and Central Asia, Beijing 100193, China.
| |
Collapse
|
2
|
Kiser JN, Wang Z, Zanella R, Scraggs E, Neupane M, Cantrell B, Van Tassell CP, White SN, Taylor JF, Neibergs HL. Functional Variants Surrounding Endothelin 2 Are Associated With Mycobacterium avium Subspecies paratuberculosis Infection. Front Vet Sci 2021; 8:625323. [PMID: 34026885 PMCID: PMC8131860 DOI: 10.3389/fvets.2021.625323] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/04/2021] [Indexed: 02/04/2023] Open
Abstract
Bovine paratuberculosis, caused by Mycobacterium avium subspecies paratuberculosis (MAP), continues to impact the dairy industry through increased morbidity, mortality, and lost production. Although genome-wide association analyses (GWAAs) have identified loci associated with susceptibility to MAP, limited progress has been made in identifying mutations that cause disease susceptibility. A 235-kb region on Bos taurus chromosome 3 (BTA3), containing a 70-kb haplotype block surrounding endothelin 2 (EDN2), has previously been associated with the risk of MAP infection. EDN2 is highly expressed in the gut and is involved in intracellular calcium signaling and a wide array of biological processes. The objective of this study was to identify putative causal mutations for disease susceptibility in the region surrounding EDN2 in Holstein and Jersey cattle. Using sequence data from 10 Holstein and 10 Jersey cattle, common variants within the 70-kb region containing EDN2 were identified. A custom SNP genotyping array fine-mapped the region using 221 Holstein and 51 Jersey cattle and identified 17 putative causal variants (P < 0.01) located in the 5′ region of EDN2 and a SNP in the 3′ UTR (P = 0.00009) associated with MAP infection. MicroRNA interference assays, mRNA stability assays, and electrophoretic mobility shift assays were performed to determine if allelic changes at each SNP resulted in differences in EDN2 stability or expression. Two SNPs [rs109651404 (G/A) and rs110287192 (G/T)] located within the promoter region of EDN2 displayed differential binding affinity for transcription factors in binding sequences harboring the alternate SNP alleles. The luciferase reporter assay revealed that the transcriptional activity of the EDN2 promoter was increased (P < 0.05) with the A allele for rs109651404 and the G allele for rs110287192. These results suggest that the variants rs109651404 and rs110287192 are mutations that alter transcription and thus may alter susceptibility to MAP infection in Holstein and Jersey cattle.
Collapse
Affiliation(s)
- Jennifer N Kiser
- Department of Animal Sciences, Washington State University, Pullman, WA, United States
| | - Zeping Wang
- Department of Animal Sciences, Washington State University, Pullman, WA, United States
| | - Ricardo Zanella
- Department of Animal Sciences, Washington State University, Pullman, WA, United States
| | - Erik Scraggs
- Department of Animal Sciences, Washington State University, Pullman, WA, United States
| | - Mahesh Neupane
- Department of Animal Sciences, Washington State University, Pullman, WA, United States
| | - Bonnie Cantrell
- Department of Animal Sciences, Washington State University, Pullman, WA, United States
| | - Curtis P Van Tassell
- Animal Genomics and Improvement Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD, United States
| | - Stephen N White
- Animal Disease Research, United States Department of Agriculture, Agricultural Research Service, Pullman, WA, United States.,Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States.,Center for Reproductive Biology, Washington State University, Pullman, WA, United States
| | - Jeremy F Taylor
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
| | - Holly L Neibergs
- Department of Animal Sciences, Washington State University, Pullman, WA, United States
| |
Collapse
|
3
|
Parker A, Vaux L, Patterson AM, Modasia A, Muraro D, Fletcher AG, Byrne HM, Maini PK, Watson AJM, Pin C. Elevated apoptosis impairs epithelial cell turnover and shortens villi in TNF-driven intestinal inflammation. Cell Death Dis 2019; 10:108. [PMID: 30728350 PMCID: PMC6365534 DOI: 10.1038/s41419-018-1275-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/05/2018] [Accepted: 12/03/2018] [Indexed: 12/27/2022]
Abstract
The intestinal epithelial monolayer, at the boundary between microbes and the host immune system, plays an important role in the development of inflammatory bowel disease (IBD), particularly as a target and producer of pro-inflammatory TNF. Chronic overexpression of TNF leads to IBD-like pathology over time, but the mechanisms driving early pathogenesis events are not clear. We studied the epithelial response to inflammation by combining mathematical models with in vivo experimental models resembling acute and chronic TNF-mediated injury. We found significant villus atrophy with increased epithelial cell death along the crypt-villus axis, most dramatically at the villus tips, in both acute and chronic inflammation. In the acute model, we observed overexpression of TNF receptor I in the villus tip rapidly after TNF injection and concurrent with elevated levels of intracellular TNF and rapid shedding at the tip. In the chronic model, sustained villus atrophy was accompanied by a reduction in absolute epithelial cell turnover. Mathematical modelling demonstrated that increased cell apoptosis on the villus body explains the reduction in epithelial cell turnover along the crypt-villus axis observed in chronic inflammation. Cell destruction in the villus was not accompanied by changes in proliferative cell number or division rate within the crypt. Epithelial morphology and immunological changes in the chronic setting suggest a repair response to cell damage although the villus length is not recovered. A better understanding of how this state is further destabilised and results in clinical pathology resembling IBD will help identify suitable pathways for therapeutic intervention.
Collapse
Affiliation(s)
- Aimée Parker
- Gut Health and Food Safety Research Programme, Quadram Institute Bioscience, Norwich, United Kingdom
| | - Laura Vaux
- Gut Health and Food Safety Research Programme, Quadram Institute Bioscience, Norwich, United Kingdom
| | - Angela M Patterson
- Gut Health and Food Safety Research Programme, Quadram Institute Bioscience, Norwich, United Kingdom
| | - Amisha Modasia
- Gut Health and Food Safety Research Programme, Quadram Institute Bioscience, Norwich, United Kingdom
| | | | - Alexander G Fletcher
- School of Mathematics and Statistics, University of Sheffield, Sheffield, United Kingdom.,Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Helen M Byrne
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | - Philip K Maini
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | | | - Carmen Pin
- Gut Health and Food Safety Research Programme, Quadram Institute Bioscience, Norwich, United Kingdom. .,Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge, United Kingdom.
| |
Collapse
|
4
|
The Role of the Endothelin System in the Vascular Dysregulation Involved in Retinitis Pigmentosa. J Ophthalmol 2015; 2015:405234. [PMID: 26613048 PMCID: PMC4647052 DOI: 10.1155/2015/405234] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 10/18/2015] [Indexed: 12/31/2022] Open
Abstract
Retinitis pigmentosa is a clinical and genetic group of inherited retinal disorders characterized by alterations of photoreceptors and retinal pigment epithelium leading to a progressive concentric visual field restriction, which may bring about severe central vision impairment. Haemodynamic studies in patients with retinitis pigmentosa have demonstrated ocular blood flow abnormalities both in retina-choroidal and in retroocular vascular system. Moreover, several investigations have studied the augmentation of endothelin-1 plasma levels systemically in the body and locally in the eye. This might account for vasoconstriction and ischemia, typical in vascular dysregulation syndrome, which can be considered an important factor of reduction of the ocular blood flow in subjects affected by retinitis pigmentosa.
Collapse
|
5
|
Cacioppo JA, Koo Y, Lin PCP, Gal A, Ko C. Generation and characterization of an endothelin-2 iCre mouse. Genesis 2015; 53:245-56. [PMID: 25604013 DOI: 10.1002/dvg.22845] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 01/14/2015] [Accepted: 01/15/2015] [Indexed: 12/16/2022]
Abstract
A novel transgenic mouse line that expresses codon-improved Cre recombinase (iCre) under regulation of the Endothelin-2 gene (edn2) promoter was developed for the conditional deletion of genes in Endothelin-2 lineage cells and for the spatial and temporal localization of Endothelin-2 expression. Endothelin-2 (EDN2, ET-2, previously VIC) is a transcriptionally regulated 21 amino acid peptide implicated in vascular homeostasis, and more recently in female reproduction, gastrointestinal function, immunology, and cancer pathogenesis that acts through membrane receptors and G-protein signaling. A cassette (edn2-iCre) was constructed that contained iCre, a polyadenylation sequence, and a neomycin selection marker in front of the endogenous start codon of the edn2 gene in a mouse genome BAC clone. The cassette was introduced into the C57BL/6 genome by pronuclear injection, and two lines of edn2-iCre positive mice were produced. The edn2-iCre mice were bred with ROSA26-lacZ and Ai9 reporter mice to visualize areas of functional iCre expression. Strong expression was seen in the periovulatory ovary, stomach and small intestine, and colon. Uniquely, we report punctate expression in the corneal epithelium, the liver, the lung, the pituitary, the uterus, and the heart. In the embryo, expression is localized in developing hair follicles and the dermis. Therefore, edn2-iCre mice will serve as a novel line for conditional gene deletion in these tissues.
Collapse
Affiliation(s)
- Joseph A Cacioppo
- Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana-Campaign, Illinois
| | | | | | | | | |
Collapse
|
6
|
Cacioppo JA, Oh SW, Kim HY, Cho J, Lin PCP, Yanagisawa M, Ko C. Loss of function of endothelin-2 leads to reduced ovulation and CL formation. PLoS One 2014; 9:e96115. [PMID: 24763822 PMCID: PMC3999112 DOI: 10.1371/journal.pone.0096115] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 04/03/2014] [Indexed: 12/17/2022] Open
Abstract
Endothelin-2 (EDN2), a potent vasoconstrictive peptide, is transiently produced by periovulatory follicles at the time of ovulation when corpus luteum (CL) formation begins. EDN2 induces contraction of ovarian smooth muscles ex vivo via an endothelin receptor A-mediated pathway. In this study, we aimed to determine if EDN2 is required for normal ovulation and subsequent CL formation in?vivo. In the ovaries of a mouse model that globally lacks the Edn2 gene (Edn2 knockout mouse; Edn2KO), histology showed that post-pubertal Edn2KO mice possess follicles of all developmental stages, but no corpora lutea. When exogenous gonadotropins were injected to induce super-ovulation, Edn2KO mice exhibited significantly impaired ovulation and CL formation compared to control littermates. Edn2KO ovaries that did ovulate in response to gonadotropins did not contain histologically and functionally identifiable CL. Intra-ovarian injection of EDN2 peptide results suggest partial induction of ovulation in Edn2KO mice. Endothelin receptor antagonism in wild type mice similarly disrupted ovulation, CL formation, and progesterone secretion. Overall, this study suggests that EDN2 is necessary for normal ovulation and CL formation.
Collapse
Affiliation(s)
- Joseph A. Cacioppo
- Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana-Champaign, Illinois, United States of America
| | - Sang Wook Oh
- Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana-Champaign, Illinois, United States of America
- Department of Biology Education, Institute of Fusion Science, Chonbuk National University, Jeonju, South Korea
| | - Hey-young Kim
- Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana-Champaign, Illinois, United States of America
| | - Jongki Cho
- Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana-Champaign, Illinois, United States of America
- College of Veterinary Medicine, Research Institute of Veterinary Medicine, Chungnam National University, Daejon, South Korea
| | - Po-Ching Patrick Lin
- Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana-Champaign, Illinois, United States of America
| | - Masashi Yanagisawa
- Howard Hughes Medical Institute and Departments of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - CheMyong Ko
- Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana-Champaign, Illinois, United States of America
- * E-mail:
| |
Collapse
|
7
|
Chang I, Bramall AN, Baynash AG, Rattner A, Rakheja D, Post M, Joza S, McKerlie C, Stewart DJ, McInnes RR, Yanagisawa M. Endothelin-2 deficiency causes growth retardation, hypothermia, and emphysema in mice. J Clin Invest 2013; 123:2643-53. [PMID: 23676500 DOI: 10.1172/jci66735] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 03/05/2013] [Indexed: 12/20/2022] Open
Abstract
To explore the physiological functions of endothelin-2 (ET-2), we generated gene-targeted mouse models. Global Et2 knockout mice exhibited severe growth retardation and juvenile lethality. Despite normal milk intake, they suffered from internal starvation characterized by hypoglycemia, ketonemia, and increased levels of starvation-induced genes. Although ET-2 is abundantly expressed in the gastrointestinal tract, the intestine was morphologically and functionally normal. Moreover, intestinal epithelium-specific Et2 knockout mice showed no abnormalities in growth and survival. Global Et2 knockout mice were also profoundly hypothermic. Housing Et2 knockout mice in a warm environment significantly extended their median lifespan. However, neuron-specific Et2 knockout mice displayed a normal core body temperature. Low levels of Et2 mRNA were also detected in the lung, with transient increases soon after birth. The lungs of Et2 knockout mice showed emphysematous structural changes with an increase in total lung capacity, resulting in chronic hypoxemia, hypercapnia, and increased erythropoietin synthesis. Finally, systemically inducible ET-2 deficiency in neonatal and adult mice fully reproduced the phenotype previously observed in global Et2 knockout mice. Together, these findings reveal that ET-2 is critical for the growth and survival of postnatal mice and plays important roles in energy homeostasis, thermoregulation, and the maintenance of lung morphology and function.
Collapse
Affiliation(s)
- Inik Chang
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas 75390-8584, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Furuya S, Furuya K. Roles of substance P and ATP in the subepithelial fibroblasts of rat intestinal villi. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 304:133-89. [PMID: 23809436 DOI: 10.1016/b978-0-12-407696-9.00003-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The ingestion of food and water induces chemical and mechanical signals that trigger peristaltic reflexes and also villous movement in the gut. In the intestinal villi, subepithelial fibroblasts under the epithelium form contractile cellular networks and closely contact to the varicosities of substance P and nonsubstance P afferent neurons. Subepithelial fibroblasts of the duodenal villi possess purinergic receptor P2Y1 and tachykinin receptor NK1. ATP and substance P induce increase in intracellular Ca(2+) and cell contraction in subepithelial fibroblasts. They are highly mechanosensitive and release ATP by mechanical stimuli. Released ATP spreads to form an ATP "cloud" with nearly 1μM concentration and activates the surroundings via P2Y1 and afferent neurons via P2X receptors. These findings suggest that villous subepithelial fibroblasts and afferent neurons interact via ATP and substance P. This mutual interaction may play important roles in the signal transduction of mechano reflex pathways including a coordinate villous movement and also in the maturation of the structure and function of the intestinal villi.
Collapse
Affiliation(s)
- Sonoko Furuya
- Section of Brain Structure Information, Supportive Center for Brain Research, National Institute for Physiological Sciences, Okazaki, Japan.
| | | |
Collapse
|
9
|
Wang R, Löhr CV, Fischer K, Dashwood WM, Greenwood JA, Ho E, Williams DE, Ashktorab H, Dashwood MR, Dashwood RH. Epigenetic inactivation of endothelin-2 and endothelin-3 in colon cancer. Int J Cancer 2012; 132:1004-12. [PMID: 22865632 DOI: 10.1002/ijc.27762] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 07/18/2012] [Indexed: 12/16/2022]
Abstract
Endothelin-1 (ET-1) and its receptors are overexpressed in human cancers, but much less is known about the roles of ET-2 and ET-3 in cancer etiology. We sought to examine human and rat colon tumors for dysregulation of ET-2 and ET-3 expression and determine the underlying mechanisms. Human primary colon cancers and carcinogen-induced rat colon tumors were subjected to real-time RT-PCR, immunoblotting and immunohistochemistry; EDN2 and EDN3 genes were examined by methylation-specific PCR, bisulfite sequencing and pyrosequencing; and forced expression of ET-2 and ET-3 was conducted in human colon cancer cells followed by real-time cell migration and invasion assays. Rat and human colon tumors had markedly reduced expression of ET-2 and ET-3 mRNA and protein compared with matched controls. Mechanistic studies revealed hypermethylation of EDN2 and EDN3 genes in human primary colon cancers and in a panel of human colon cancer cell lines. Forced expression of ET-2 and ET-3 attenuated significantly the migration and invasion of human colon cancer cells. We conclude that epigenetic inactivation of ET-2 and ET-3 occurs frequently in both rat and human colon cancers. Current therapeutic strategies target overexpressed members of the ET axis via small molecule inhibitors and receptor antagonists, but this work supports a complementary approach based on the re-expression of ET-2 and ET-3 as natural antagonists of ET-1 in colon cancer.
Collapse
Affiliation(s)
- Rong Wang
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|