1
|
Kump DS. Mechanisms Underlying the Rarity of Skeletal Muscle Cancers. Int J Mol Sci 2024; 25:6480. [PMID: 38928185 PMCID: PMC11204341 DOI: 10.3390/ijms25126480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Skeletal muscle (SKM), despite comprising ~40% of body mass, rarely manifests cancer. This review explores the mechanisms that help to explain this rarity, including unique SKM architecture and function, which prohibits the development of new cancer as well as negates potential metastasis to SKM. SKM also presents a unique immune environment that may magnify the anti-tumorigenic effect. Moreover, the SKM microenvironment manifests characteristics such as decreased extracellular matrix stiffness and altered lactic acid, pH, and oxygen levels that may interfere with tumor development. SKM also secretes anti-tumorigenic myokines and other molecules. Collectively, these mechanisms help account for the rarity of SKM cancer.
Collapse
Affiliation(s)
- David S Kump
- Department of Biological Sciences, Winston-Salem State University, 601 Martin Luther King Jr. Dr., Winston-Salem, NC 27110, USA
| |
Collapse
|
2
|
Ling H, Li Y, Peng C, Yang S, Seto E. HDAC10 inhibition represses melanoma cell growth and BRAF inhibitor resistance via upregulating SPARC expression. NAR Cancer 2024; 6:zcae018. [PMID: 38650694 PMCID: PMC11034028 DOI: 10.1093/narcan/zcae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/08/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024] Open
Abstract
Secreted protein acidic and rich in cysteine (SPARC), a conserved secreted glycoprotein, plays crucial roles in regulating various biological processes. SPARC is highly expressed and has profound implications in several cancer types, including melanoma. Understanding the mechanisms that govern SPARC expression in cancers has the potential to lead to improved cancer diagnosis, prognosis, treatment strategies, and patient outcomes. Here, we demonstrate that histone deacetylase 10 (HDAC10) is a key regulator of SPARC expression in melanoma cells. Depletion or inhibition of HDAC10 upregulates SPARC expression, whereas overexpression of HDAC10 downregulates it. Mechanistically, HDAC10 coordinates with histone acetyltransferase p300 to modulate the state of acetylation of histone H3 at lysine 27 (H3K27ac) at SPARC regulatory elements and the recruitment of bromodomain-containing protein 4 (BRD4) to these regions, thereby fine-tuning SPARC transcription. HDAC10 depletion and resultant SPARC upregulation repress melanoma cell growth primarily by activating AMPK signaling and inducing autophagy. Moreover, SPARC upregulation due to HDAC10 depletion partly accounts for the resensitization of resistant cells to a BRAF inhibitor. Our work reveals the role of HDAC10 in gene regulation through indirect histone modification and suggests a potential therapeutic strategy for melanoma or other cancers by targeting HDAC10 and SPARC.
Collapse
Affiliation(s)
- Hongbo Ling
- George Washington Cancer Center, Department of Biochemistry & Molecular Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC 20037, USA
| | - Yixuan Li
- George Washington Cancer Center, Department of Biochemistry & Molecular Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC 20037, USA
| | - Changmin Peng
- George Washington Cancer Center, Department of Biochemistry & Molecular Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC 20037, USA
| | - Shengyu Yang
- Department of Cellular and Molecular Physiology, Penn State Cancer Institute, The Penn State University, 400 University Drive, Hershey, PA 17033, USA
| | - Edward Seto
- George Washington Cancer Center, Department of Biochemistry & Molecular Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC 20037, USA
| |
Collapse
|
3
|
Ji Q, Zhu H, Qin Y, Zhang R, Wang L, Zhang E, Zhou X, Meng R. GP60 and SPARC as albumin receptors: key targeted sites for the delivery of antitumor drugs. Front Pharmacol 2024; 15:1329636. [PMID: 38323081 PMCID: PMC10844528 DOI: 10.3389/fphar.2024.1329636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/08/2024] [Indexed: 02/08/2024] Open
Abstract
Albumin is derived from human or animal blood, and its ability to bind to a large number of endogenous or exogenous biomolecules makes it an ideal drug carrier. As a result, albumin-based drug delivery systems are increasingly being studied. With these in mind, detailed studies of the transport mechanism of albumin-based drug carriers are particularly important. As albumin receptors, glycoprotein 60 (GP60) and secreted protein acidic and rich in cysteine (SPARC) play a crucial role in the delivery of albumin-based drug carriers. GP60 is expressed on vascular endothelial cells and enables albumin to cross the vascular endothelial cell layer, and SPARC is overexpressed in many types of tumor cells, while it is minimally expressed in normal tissue cells. Thus, this review supplements existing articles by detailing the research history and specific biological functions of GP60 or SPARC and research advances in the delivery of antitumor drugs using albumin as a carrier. Meanwhile, the deficiencies and future perspectives in the study of the interaction of albumin with GP60 and SPARC are also pointed out.
Collapse
Affiliation(s)
- Qingzhi Ji
- School of Pharmacy, Yancheng Teachers University, Yancheng, China
| | - Huimin Zhu
- Sheyang County Comprehensive Inspection and Testing Center, Yancheng, China
| | - Yuting Qin
- School of Pharmacy, Yancheng Teachers University, Yancheng, China
| | - Ruiya Zhang
- Department of Immunology, Medical School, Nantong University, Nantong, China
| | - Lei Wang
- Department of Immunology, Medical School, Nantong University, Nantong, China
| | - Erhao Zhang
- Department of Immunology, Medical School, Nantong University, Nantong, China
| | - Xiaorong Zhou
- Department of Immunology, Medical School, Nantong University, Nantong, China
| | - Run Meng
- Department of Immunology, Medical School, Nantong University, Nantong, China
| |
Collapse
|
4
|
Ling H, Li Y, Peng C, Yang S, Seto E. HDAC10 blockade upregulates SPARC expression thereby repressing melanoma cell growth and BRAF inhibitor resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.05.570182. [PMID: 38106051 PMCID: PMC10723323 DOI: 10.1101/2023.12.05.570182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Secreted Protein Acidic and Rich in Cysteine (SPARC), a highly conserved secreted glycoprotein, is crucial for various bioprocesses. Here we demonstrate that histone deacetylase 10 (HDAC10) is a key regulator of SPARC expression. HDAC10 depletion or inhibition upregulates, while overexpression of HDAC10 downregulates, SPARC expression. Mechanistically, HDAC10 coordinates with histone acetyltransferase p300 to modulate the acetylation state of histone H3 lysine 27 (H3K27ac) at SPARC regulatory elements and the recruitment of bromodomain-containing protein 4 (BRD4) to these regions, thereby tuning SPARC transcription. HDAC10 depletion and resultant SPARC upregulation repress melanoma cell growth, primarily by induction of autophagy via activation of AMPK signaling. Moreover, SPARC upregulation due to HDAC10 depletion partly accounts for the resensitivity of resistant cells to a BRAF inhibitor. Our work reveals the role of HDAC10 in gene regulation through epigenetic modification and suggests a potential therapeutic strategy for melanoma or other cancers by targeting HDAC10 and SPARC. Highlights HDAC10 is the primary HDAC member that tightly controls SPARC expression. HDAC10 coordinates with p300 in modulating the H3K27ac state at SPARC regulatory elements and the recruitment of BRD4 to these regions. HDAC10 depletion and resultant SPARC upregulation inhibit melanoma cell growth by inducing autophagy via activation of AMPK signaling.SPARC upregulation as a result of HDAC10 depletion resensitizes resistant cells to BRAF inhibitors.
Collapse
|
5
|
Huang Q, Wu M, Wu X, Zhang Y, Xia Y. Muscle-to-tumor crosstalk: The effect of exercise-induced myokine on cancer progression. Biochim Biophys Acta Rev Cancer 2022; 1877:188761. [PMID: 35850277 DOI: 10.1016/j.bbcan.2022.188761] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 02/07/2023]
Abstract
Physical exercise has gradually become a focus in cancer treatment due to its pronounced role in reducing cancer risk, enhancing therapeutic efficacy, and improving prognosis. In recent decades, skeletal muscles have been considered endocrine organs, exerting their biological functions via the endocrine, autocrine, and paracrine systems by secreting various types of myokines. The amount of myokines secreted varies depending on the intensity, type, and duration of exercise. Recent studies have shown that muscle-derived myokines are highly involved the effects of exercise on cancer. Multiple myokines, such as interleukin-6 (IL-6), oncostatin M (OSM), secreted protein acidic and rich in cysteine (SPARC), and irisin, directly mediate cancer progression by influencing the proliferation, apoptosis, stemness, drug resistance, metabolic reprogramming, and epithelial-mesenchymal transformation (EMT) of cancer cells. In addition, IL-6, interleukin-8 (IL-8), interleukin-15 (IL-15), brain-derived neurotrophic factor (BDNF), and irisin can improve obesity-induced inflammation by stimulating lipolysis of adipose tissues, promoting glucose uptake, and accelerating the browning of white fat. Furthermore, some myokines could regulate the tumor microenvironment, such as angiogenesis and the immune microenvironment. Cancer cachexia occurs in up to 80% of cancer patients and is responsible for 22%-30% of patient deaths. It is characterized by systemic inflammation and decreased muscle mass. Exercise-induced myokine production is important in regulating cancer cachexia. This review summarizes the roles and underlying mechanisms of myokines, such as IL-6, myostatin, IL-15, irisin, fibroblast growth factor 21 (FGF21) and musclin, in cancer cachexia. Through comprehensive analysis, we conclude that myokines are potential targets for inhibiting cancer progression and the associated cachexia.
Collapse
Affiliation(s)
- Qianrui Huang
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Mengling Wu
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xuyi Wu
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Rehabilitation Medicine in Sichuan Province/Rehabilitation Medicine Research Institute, Chengdu 610041, China
| | - Yiwen Zhang
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Yong Xia
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Rehabilitation Medicine in Sichuan Province/Rehabilitation Medicine Research Institute, Chengdu 610041, China.
| |
Collapse
|
6
|
STAT3 in medulloblastoma: a key transcriptional regulator and potential therapeutic target. Mol Biol Rep 2022; 49:10635-10652. [PMID: 35716286 DOI: 10.1007/s11033-022-07694-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/08/2022] [Indexed: 10/18/2022]
Abstract
Medulloblastoma is the most common malignant brain tumor of childhood accounting for about 60% of all pediatric embryonal tumors. Despite improvements in the overall survival rate, this tumor still lacks an efficient, reliable, and less toxic therapeutic approach. Characterization of the molecular mechanisms involved in medulloblastoma initiation and progression is a crucial step for the development of effective therapies. Signal transducer and activator of transcription 3 is a convergence point for several signaling cascades that are implicated in medulloblastoma tumorigenesis. Accumulated evidence has revealed the pivotal role of signal transducer and activator of transcription 3 in medulloblastoma pathogenesis such as proliferation, survival, angiogenesis, and immunosuppression as well as maintenance, drug resistance, and recurrence. In this review, we focus on the role of signal transducer and activator of transcription 3 in medulloblastoma tumorigenesis and discuss the recent advances of signal transducer and activator of transcription 3 inhibition as a promising developed strategy for medulloblastoma therapy.
Collapse
|
7
|
Binay S, Kaptan E. Transcription factor Runx2 changes the expression of some matricellular proteins in metastatic breast cancer cells. Mol Biol Rep 2022; 49:6433-6441. [PMID: 35441354 DOI: 10.1007/s11033-022-07457-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/05/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Runx2 is one of the runt-related genes that are overexpressed in human cancers and contribute to metastasis. The cancer cell metastasis requires modifications of the extracellular matrix (ECM) and reduction in ECM-cell interaction. This process is performed by various enzymes and proteins secreted by cancer and surrounding cells. This study aimed to investigate the effect of the Runx2 transcription factor on the expression of matricellular proteins such as HPA1, LOX, SPARC, and OPN, which have important roles in ECM modification and ECM-cell interaction in human breast cancer. Also, the changes in their associated oncogenic pathways including Akt, Erk, FAK activities, and c-jun protein expression were investigated. METHODS AND RESULTS Runx2 knockdown model was created using runx2 siRNA in MDA-MB-231 human metastatic breast cancer cells. The changes in the mRNA and protein expressions of ECM proteins were shown by the qPCR and Western blotting, respectively. The results showed that there was a decrease in both mRNA and protein expressions of HPA1, SPARC, and LOX, whereas there was no change in those of OPN. Phosphorylated Akt, Erk, FAK levels, and protein expression of c-jun, however, decreased in the cells. CONCLUSION Our results revealed that Runx2 affected matricellular protein expression, which is important for metastasis and invasion of breast cancer. Hence, we have concluded that runx2 appears to be efficient for regulating breast cancer metastasis through an expression of matricellular proteins.
Collapse
Affiliation(s)
- Sevgi Binay
- Faculty of Science, Department of Biology, Istanbul University, Vezneciler, 34134, Istanbul, Turkey
| | - Engin Kaptan
- Faculty of Science, Department of Biology, Istanbul University, Vezneciler, 34134, Istanbul, Turkey.
| |
Collapse
|
8
|
Fan J, Zhang X, Jiang Y, Chen L, Sheng M, Chen Y. SPARC knockdown attenuated TGF-β1-induced fibrotic effects through Smad2/3 pathways in human pterygium fibroblasts. Arch Biochem Biophys 2021; 713:109049. [PMID: 34624278 DOI: 10.1016/j.abb.2021.109049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE Secreted protein acidic and rich in cysteine (SPARC), a matricellular glycoprotein, has been found to regulate processes involved in fibrotic diseases. The aim of this study was to investigate the anti-fibrotic effects of SPARC in primary human pterygium fibroblasts (HPFs) and elucidate the underlying mechanisms. METHODS The expression of SPARC in HPFs was knocked down by RNA interference-based approach. Subsequently, we examined the expression of profibrotic markers induced by transforming growth factor-β1 (TGF-β1), including type 1 collagen (COL1), α-smooth muscle actin (α-SMA), and fibronectin (FN). The changes in signaling pathways and matrix metalloproteinases (MMPs) were also detected by western blotting. The cellular migration ability, proliferation ability, apoptosis, and contractile phenotype were detected using the wound healing assay, Cell Counting Kit-8 assay, flow cytometry, and collagen gel contraction assay, respectively. The interaction between SPARC and TGF-β RII was detected by Co-IP RESULTS: Silencing of SPARC inhibited the basal and TGF-β1-induced expression of COL1, α-SMA, and FN in HPFs, and suppressed the expression of p-Smad2, p-Smad3, Smad4 and MMP2, MMP9. The downregulation of SPARC also attenuated the cell migration and contractile phenotype of HPFs. SPARC could bind to TGF-βRII under TGF-β1 treatment. However, knockdown of SPARC did not affect the proliferation and apoptosis of HPFs. CONCLUSION SPARC knockdown attenuated the fibrotic effect induced by TGF-β1 at least in part by inactivating the Smad2/3 pathways in HPFs. Therefore, SPARC may be a promising therapeutic target for the treatment of pterygium.
Collapse
Affiliation(s)
- Jianwu Fan
- Department of Ophthalmology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, China; Center for Clinical Research and Translational Medicine, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, China
| | - Xin Zhang
- Department of Ophthalmology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, China
| | - Yaping Jiang
- Department of Ophthalmology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, China
| | - Li Chen
- Department of Ophthalmology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, China
| | - Minjie Sheng
- Department of Ophthalmology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, China.
| | - Yihui Chen
- Department of Ophthalmology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, China.
| |
Collapse
|
9
|
Pan PJ, Liu JX. Diagnostic and prognostic value of secreted protein acidic and rich in cysteine in the diffuse large B-cell lymphoma. World J Clin Cases 2021; 9:6287-6299. [PMID: 34434995 PMCID: PMC8362571 DOI: 10.12998/wjcc.v9.i22.6287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/29/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Secreted protein acidic and rich in cysteine (SPARC) is an extracellular matrix-associated protein. Studies have revealed that SPARC is involved in the cell interaction and function including proliferation, differentiation, and apoptosis. However, the role of SPARC in cancer is controversial, as it was reported as the promoter or suppressor in different cancers. Further, the role of SPARC in lymphoma is unclear.
AIM To identify the expression and significance of SPARC in lymphoma, especially in diffuse large B-cell lymphoma (DLBCL).
METHODS The expression analysis of SPARC in different cancers was evaluated with Oncomine. The Brune, Eckerle, Piccaluga, Basso, Compagno, Alizadeh, and Rosenwald datasets were included to evaluate the mRNA expression of SPARC in lymphoma. The Cancer Genome Atlas (TCGA)-DLBCL was used to analyze the diagnostic value of SPARC in DLBCL. The Compagno and Brune DLBCL datasets were used for validation. Then, the diagnostic value was evaluated with the receiver operating characteristic (ROC) curve. The Kaplan-Meier plot was conducted with TCGA-DLBCL, and the ROC analysis was performed based on the survival time. Further, the overall survival analysis based on the level of SPARC expression was performed with the GSE4475 and E-TABM-346. The Gene Set Enrichment Analyses (GSEA) was performed to make the underlying mechanism-regulatory networks.
RESULTS The pan-cancer analysis of SPARC showed that SPARC was highly expressed in the brain and central nervous system, breast, colon, esophagus, stomach, head and neck, pancreas, and sarcoma, especially in lymphoma. The overexpression of SPARC in lymphoma, especially DLBCL, was confirmed in several datasets. The ROC analysis revealed that SPARC was a valuable diagnostic biomarker. More importantly, compared with DLBCL patients with low SPARC expression, those with higher SPARC expression represented a higher overall survival rate. The ROC analysis showed that SPARC was a favorable prognostic biomarker for DLBCL. Results of the GSEA confirmed that the high expression of SPARC was closely associated with focal adhesion, extracellular matrix receptor interaction, and leukocyte transendothelial migration, which suggested that SPARC may be involved in the regulation of epithelial-mesenchymal transition, KRAS, and myogenesis in DLBCL.
CONCLUSION SPARC was highly expressed in DLBCL, and the overexpression of SPARC showed sound diagnostic value. More interestingly, the overexpression of SPARC might be a favorable prognostic biomarker for DLBCL, suggesting that SPARC might be an inducible factor in the development of DLBCL, and inducible SPARC was negative in some oncogenic pathways. All the evidence suggested that inducible SPARC might be a good diagnostic and prognostic biomarker for DLBCL.
Collapse
Affiliation(s)
- Peng-Ji Pan
- Department of Hematology, Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, China
| | - Jun-Xia Liu
- Department of Oncology, Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, China
| |
Collapse
|
10
|
Li J, Wang Y, Li L, Or PMY, Wai Wong C, Liu T, Ho WLH, Chan AM. Tumour-derived substrate-adherent cells promote neuroblastoma survival through secreted trophic factors. Mol Oncol 2021; 15:2011-2025. [PMID: 33932101 PMCID: PMC8334291 DOI: 10.1002/1878-0261.12969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 02/10/2021] [Accepted: 04/14/2021] [Indexed: 12/17/2022] Open
Abstract
Neuroblastoma (NB) is the most common extracranial solid tumour in children. NB is highly heterogeneous and is comprised of a mixture of neuroblastic cancer cells and stromal cells. We previously reported that N‐type cells (neuroblastic cells) and S‐type cells (substrate‐adherent cells) in the SK‐N‐SH cell line shared almost identical genetic backgrounds. Sublines of N‐ and S‐type cells were isolated from an early passage (P35) of SK‐N‐SH. Sequencing analysis revealed that all sublines harboured the anaplastic lymphoma kinase (ALK) F1174L mutation, indicating that they were tumour derived. Surprisingly, over 74% resembled S‐type cells. In coculture experiments, S‐type cells protected N‐type cells from apoptosis induced by the oncogenic ALK inhibitor TAE684. Western blotting analyses showed that ALK, protein kinase A (AKT) and STAT3 signalling were stimulated in the cocultures. Furthermore, the conditioned medium from S‐type cells activated these downstream signalling molecules in the N‐type cells. The activation of STAT3 in the N‐type cells was ALK‐independent, while AKT was regulated by the ALK activation status. To identify the responsible soluble factors, we used a combination of transcriptomic and proteomic analysis and found that plasminogen activator inhibitor 1, secreted protein acidic and cysteine rich, periostin and galectin‐1 were potential mediators of STAT3 signalling. The addition of recombinant proteins to the tumour cells treated with the ALK inhibitor partially enhanced cell viability. Overall, the tumour‐derived S‐type cells prevented apoptosis in the N‐type cells via ALK‐independent STAT3 activation triggered by secreted factors. The inhibition of these factors in combination with ALK inhibition could provide a new direction for targeted therapies to treat high‐risk NB.
Collapse
Affiliation(s)
- Jing Li
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yubing Wang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Lisha Li
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Penelope M-Y Or
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chi Wai Wong
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Tian Liu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wayne L H Ho
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Andrew M Chan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
11
|
SPARCL1 Influences Bovine Skeletal Muscle-Derived Satellite Cell Migration and Differentiation through an ITGB1-Mediated Signaling Pathway. Animals (Basel) 2020; 10:ani10081361. [PMID: 32781616 PMCID: PMC7460340 DOI: 10.3390/ani10081361] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/01/2020] [Accepted: 08/04/2020] [Indexed: 12/27/2022] Open
Abstract
Simple Summary It is known that cell migration and differentiation have a very important yet simple basis for muscle development and muscle disease treatment. Secreted protein acidic and rich in cysteine like 1 (SPARCL1), one of the components of extracellular matrix, has been proved to regulate bovine skeletal muscle-derived satellite cell differentiation. However, the exact mechanism is not yet clear. This study reveals that SPARCL1 promotes muscle-derived satellite cell early differentiation through integrin β1, thereby providing a new insight into the role of SPARCL1 in muscle development. Abstract As an extracellular matrix protein, secreted protein acidic and rich in cysteine (SPARC)-like 1 (SPARCL1) is involved in various cell functions. It was previously implicated in bovine skeletal muscle-derived satellite cell (MDSC) differentiation; however, the underlying mechanism remains unknown. In this study, immunoprecipitation and mass spectrometry revealed that integrin β1 (ITGB1) combines with SPARCL1. Further, co-immunoprecipitation demonstrated that SPARCL1 interacts with ITGB1. Cell scratch assays explored the influence of SPARCL1 on MDSC migration through ITGB1. In addition, desmin staining for myotube fusion rate and MyoD protein expression results showed that SPARCL1 promotes MDSC early differentiation through ITGB1. Furthermore, Western blotting results demonstrated that SPARCL1 regulates the expression of p-FAK, p-paxillin, vinculin, Cdc42, and Arp2/3 through ITGB1. These findings indicate that SPARCL1 may influence bovine MDSC migration and differentiation through an ITGB1-mediated cell signaling pathway. Herein, we elucidated the mechanism through which SPARCL1 affects MDSC differentiation. Our results provide insight into the molecular mechanism of muscle development and may in the future facilitate skeletal muscle regeneration and treatment.
Collapse
|
12
|
Abstract
Cancer is a complex disease with high incidence and mortality rates. The important role played by the tumor microenvironment in regulating oncogenesis, tumor growth, and metastasis is by now well accepted in the scientific community. SPARC is known to participate in tumor-stromal interactions and impact cancer growth in ambiguous ways, which either enhance or suppress cancer aggressiveness, in a context-dependent manner. p53 transcription factor, a well-established tumor suppressor, has been reported to promote tumor growth in certain situations, such as hypoxia, thus displaying a duality in its action. Although both proteins are being tested in clinical trials, the synergistic relation between them is yet to be explored in clinical practice. In this review, we address the controversial roles of SPARC and p53 as double agents in cancer, briefly summarizing the interaction found between these two molecules and its importance in cancer.
Collapse
|
13
|
Yang Y, Li G. Retracted: Icariin inhibits proliferation, migration, and invasion of medulloblastoma DAOY cells by regulation of SPARC. Phytother Res 2020; 34:591-600. [PMID: 32011040 DOI: 10.1002/ptr.6545] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/12/2019] [Accepted: 10/22/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Yan Yang
- Department of NeurosurgeryJining No.1 People's Hospital Jining China
| | - Guifang Li
- Department of Occupational MedicineWeifang People's Hospital Weifang China
| |
Collapse
|
14
|
Wang Y, Liu S, Yan Y, Li S, Tong H. SPARCL1 promotes C2C12 cell differentiation via BMP7-mediated BMP/TGF-β cell signaling pathway. Cell Death Dis 2019; 10:852. [PMID: 31699966 PMCID: PMC6838091 DOI: 10.1038/s41419-019-2049-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/23/2019] [Accepted: 10/07/2019] [Indexed: 12/21/2022]
Abstract
The extracellular matrix (ECM) is known to regulate tissue development and cell morphology, movement, and differentiation. SPARCL1 is an ECM protein, but its role in mouse cell differentiation has not been widely investigated. The results of western blotting and immunofluorescence showed that SPARCL1 is associated with the repair of muscle damage in mice and that SPARCL1 binds to bone morphogenetic protein 7 (BMP7) by regulating BMP/transforming growth factor (TGF)-β cell signaling. This pathway promotes the differentiation of C2C12 cells. Using CRISPR/Cas9 technology, we also showed that SPARCL1 activates BMP/TGF-β to promote the differentiation of C2C12 cells. BMP7 molecules were found to interact with SPARCL1 by immunoprecipitation analysis. Western blotting and immunofluorescence were performed to verify the effect of BMP7 on C2C12 cell differentiation. Furthermore, SPARCL1 was shown to influence the expression of BMP7 and activity of the BMP/TGF-β signaling pathway. Finally, SPARCL1 activation was accompanied by BMP7 inhibition in C2C12 cells, which confirmed that SPARCL1 affects BMP7 expression and can promote C2C12 cell differentiation through the BMP/TGF-β pathway. The ECM is essential for muscle regeneration and damage repair. This study intends to improve the understanding of the molecular mechanisms of muscle development and provide new treatment ideas for muscle injury diseases.
Collapse
Affiliation(s)
- YuXin Wang
- The Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - ShuaiYu Liu
- The Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - YunQin Yan
- The Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - ShuFeng Li
- The Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - HuiLi Tong
- The Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China. .,Life Science and Biotechnology Research Center, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
| |
Collapse
|
15
|
Sun W, Feng J, Yi Q, Xu X, Chen Y, Tang L. SPARC acts as a mediator of TGF-β1 in promoting epithelial-to-mesenchymal transition in A549 and H1299 lung cancer cells. Biofactors 2018; 44:453-464. [PMID: 30346081 DOI: 10.1002/biof.1442] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/25/2018] [Indexed: 12/14/2022]
Abstract
Migration and metastasis of tumor cells greatly contributes to the failure of cancer treatment. Recently, the extracellular protein secreted protein acidic and rich in cysteine (SPARC) has been reported closely related to tumorigenesis. Some articles have suggested that SPARC promoted metastasis in several highly metastatic tumors. However, there are also some studies shown that SPARC acted as an antitumor factor. SPARC-induced epithelial-to-mesenchymal transition (EMT) in melanoma cells and promoted EMT in hepatocellular carcinoma. Therefore, the role of SPARC in tumorigenesis and its relationship with EMT is still unclear. In this study, we investigated the expression change of SPARC in A549 and H1299 lung cancer cells undergoing EMT process. Our study indicated that SPARC was upregulated in A549 and H1299 cells EMT process. We further investigated the function of SPARC on proliferation, migration, and EMT process of A549 and H1299 cells. Overexpression of SPARC promoted the migration and EMT of A549 and H1299 cells. Knockdown SPARC inhibited the EMT of A549 cells. Overexpression of SPARC induced the increased expression of p-Akt and P-ERK. Furthermore, exogenous SPARC peptide promoted transforming growth factor (TGF)-β1-induced EMT of A549 and H1299 cells. SPARC knockdown partially eliminated TGF-β1 function in inducing EMT of A549 cells. SPARC follistatin-like functional domain reduced the expression of E-cadherin, but had no effect on the expression of p-Akt and p-ERK. In conclusion, we elucidated that SPARC contributes to tumorigenesis by promoting migration and EMT of A549 and H1299 lung cancer cells. These results will provide some new suggestion for lung cancer treatment. © 2018 BioFactors, 44(5):453-464, 2018.
Collapse
Affiliation(s)
- Weichao Sun
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Jianguo Feng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Qian Yi
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- Department of Physiology, College of Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan Province, Luzhou, Sichuan Province, China
| | - Xichao Xu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Ying Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
16
|
Abstract
Medulloblastoma is the most common malignant brain tumor in children. SPARC (secreted protein acidic and rich in cysteine), a multicellular non-structural glycoprotein is known to be involved in multiple processes in various cancers. Previously, we reported that SPARC expression significantly impairs medulloblastoma tumor growth in vitro and in vivo and also alters chemo sensitivity. MicroRNAs are a class of post-transcriptional gene regulators with critical functions in tumor progression. In addition, microRNA (miRNA) expression changes are also involved in chemo-resistance. Herein, we assessed microRNA (miRNA) profiling to identify the functional network and biological pathways altered in SPARC-overexpressed medulloblastoma cells. A total of 27 differentially expressed miRNAs were identified between the control and SPARC-overexpressed samples. Potential messenger RNA (mRNA) targets of the differentially expressed miRNA were identified using Ingenuity Pathway Analysis (IPA). Network-based functional analyses were performed on the available human protein interaction and miRNA-gene association data to highlight versatile miRNAs among the significantly deregulated miRNAs using the IPA, and the biological pathway analysis using the PANTHER web-based tool. We have identified six miRNAs (miR-125b1*, miR-146a-5p, miR-181a-5p, miR-204-5p, miR-219-5p and miR-509-3p) that are associated with SPARC sensitivity by comparison of miRNA expression patterns from the SPARC treated cells with the control cells. Furthermore, pathway enrichment analysis outline that these six microRNAs mainly belong to biological processes related to cancer related signaling pathways. Collectively, these studies have the potential to indicate novel biomarkers for treatment response and can also be applied to develop novel therapeutic treatment for medulloblastoma.
Collapse
|
17
|
The relationship between SPARC expression in primary tumor and metastatic lymph node of resected pancreatic cancer patients and patients' survival. Hepatobiliary Pancreat Dis Int 2017; 16:104-109. [PMID: 28119265 DOI: 10.1016/s1499-3872(16)60168-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Previous researches in pancreatic cancer demonstrated a negative correlation between secreted protein acidic and rich in cysteine (SPARC) expression in primary tumor and survival, but not for SPARC expression in lymph node. In the present study, we aimed to evaluate the SPARC expression in various types of tissues and its impact on patients' prognosis. METHODS The expression of SPARC was examined by immunohistochemistry in resected pancreatic cancer specimens. Kaplan-Meier analyses and Cox proportional hazards regression were applied to assess the mortality risk. RESULTS A total of 222 tissue samples from 73 patients were collected to evaluate the SPARC expression, which included 73 paired primary tumor and adjacent normal tissues, 38 paired metastatic and normal lymph nodes. The proportion of positive SPARC expression in metastatic lymph node was high (32/38), whereas in normal lymph node it was negative (0/38). Positive SPARC expression in primary tumor cells was associated with a significantly decreased overall survival (P=0.007) and disease-free survival (P=0.003), whereas in other types of tissues it did not show a predictive role for prognosis. Univariate and multivariate analyses both confirmed this significance. CONCLUSION SPARC can serve a dual function role as both predictor for prognosis and potentially biomarker for lymph node metastasis in resected pancreatic cancer patients.
Collapse
|
18
|
Wang YX, Cai H, Jiang G, Zhou TB, Wu H. Silibinin Inhibits Proliferation, Induces Apoptosis and Causes Cell Cycle Arrest in Human Gastric Cancer MGC803 Cells Via STAT3 Pathway Inhibition. Asian Pac J Cancer Prev 2014; 15:6791-8. [DOI: 10.7314/apjcp.2014.15.16.6791] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
19
|
miR-let-7f-1 regulates SPARC mediated cisplatin resistance in medulloblastoma cells. Cell Signal 2014; 26:2193-201. [PMID: 25014664 DOI: 10.1016/j.cellsig.2014.06.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 06/17/2014] [Indexed: 01/07/2023]
Abstract
Our previous studies indicate that Secreted Protein Acidic and Rich in Cysteine (SPARC) expression suppressed medulloblastoma tumor growth in vitro and in vivo. Here we sought to determine the effect of SPARC expression in medulloblastoma cells to chemotherapeutic agents. In this study, we show that SPARC expression induces cisplatin resistance in medulloblastoma cells. We also demonstrate that the autophagy was involved in SPARC expression mediated resistance to cisplatin. Suppression of autophagy by either autophagy inhibitor, 3-methyladenosine (3MA) or Atg5 siRNA enhanced cisplatin sensitivity in SPARC expressed cells. Further, SPARC expression suppressed miR-let-7f-1 expression which resulted in disrupted repression of High Mobility Group Box 1 (HMGB1), a critical regulator of autophagy. We also show that HMGB1 is a direct target of miR-let-7f-1 and forced expression of HMGB1 cDNA enhanced cisplatin sensitivity in SPARC expressed cells. In summary, our results suggest that SPARC modulates cisplatin resistance by modulating the Let-7f-1 miRNA/HMGB1 axis in medulloblastoma cells.
Collapse
|
20
|
Nagaraju GP, Dontula R, El-Rayes BF, Lakka SS. Molecular mechanisms underlying the divergent roles of SPARC in human carcinogenesis. Carcinogenesis 2014; 35:967-73. [PMID: 24675529 DOI: 10.1093/carcin/bgu072] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Communication between the cell and its surrounding environment, consisting of proteinaceous (non-living material) and extracellular matrix (ECM), is important for biophysiological and chemical signaling. This signaling results in a range of cellular activities, including cell division, adhesion, differentiation, invasion, migration and angiogenesis. The ECM non-structural secretory glycoprotein called secreted protein, acidic and rich in cysteine (SPARC), plays a significant role in altering cancer cell activity and the tumor's microenvironment (TME). However, the role of SPARC in cancer research has been the subject of controversy. This review mainly focuses on recent advances in understanding the contradictory nature of SPARC in relation to ECM assembly, cancer cell proliferation, adhesion, migration, apoptosis and tumor growth.
Collapse
Affiliation(s)
- Ganji Purnachandra Nagaraju
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA and
| | | | | | | |
Collapse
|
21
|
Kelly KJ, Liu Y, Zhang J, Goswami C, Lin H, Dominguez JH. Comprehensive genomic profiling in diabetic nephropathy reveals the predominance of proinflammatory pathways. Physiol Genomics 2013; 45:710-9. [PMID: 23757392 DOI: 10.1152/physiolgenomics.00028.2013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Despite advances in the treatment of diabetic nephropathy (DN), currently available therapies have not prevented the epidemic of progressive chronic kidney disease (CKD). The morbidity of CKD, and the inexorable increase in the prevalence of end-stage renal disease, demands more effective approaches to prevent and treat progressive CKD. We undertook next-generation sequencing in a rat model of diabetic nephropathy to study in depth the pathogenic alterations involved in DN with progressive CKD. We employed the obese, diabetic ZS rat, a model that develops diabetic nephropathy, characterized by progressive CKD, inflammation, and fibrosis, the hallmarks of human disease. We then used RNA-seq to examine the combined effects of renal cells and infiltrating inflammatory cells acting as a pathophysiological unit. The comprehensive systems biology analysis of progressive CKD revealed multiple interactions of altered genes that were integrated into morbid networks. These pathological gene assemblies lead to renal inflammation and promote apoptosis and cell cycle arrest in progressive CKD. Moreover, in what is clearly a major therapeutic challenge, multiple and redundant pathways were found to be linked to renal fibrosis, a major cause of kidney loss. We conclude that systems biology applied to progressive CKD in DN can be used to develop novel therapeutic strategies directed to restore critical anomalies in affected gene networks.
Collapse
Affiliation(s)
- K J Kelly
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | | | | | | | | |
Collapse
|
22
|
SPARC is involved in the maintenance of mitotically inactivated mouse embryonic fibroblast cells. In Vitro Cell Dev Biol Anim 2013; 49:458-64. [PMID: 23661086 DOI: 10.1007/s11626-013-9601-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 03/13/2013] [Indexed: 10/26/2022]
Abstract
Mitotically inactivated feeder cells such as mouse embryonic fibroblast (MEFs) cells have been widely applied for physical and physiological support in the pluripotency maintenance of human pluripotent stem cells (hPSCs). However, accurate supporting mechanism or factors of feeder cells are poorly understood. Here, we isolated differentially expressed genes between wild-type MEFs and mitotically inactivated MEFs (miMEFs) by employing annealing control primer-based GeneFishing polymerase chain reaction. We identified a secreted protein acidic cysteine-rich glycoprotein (SPARC) gene that is upregulated in miMEFs. Suppression of SPARC expression in miMEFs using small interference RNA (siRNA) displayed gradual detachment of miMEFs. Furthermore, we found a significant reduction of OCT4- and SSEA3-positive hPS cell population maintained on SPARC siRNA-miMEFs compared to on miMEFs by flow cytometrical analysis. These findings suggest that SPARC plays a critical role in the maintenance of miMEFs without loss of cell number and might be a key component for supporting the culture of hPSCs.
Collapse
|