1
|
Sengar AS, Kumar M, Rai C, Chakraborti S, Kumar D, Kumar P, Mukherjee S, Mondal K, Stewart A, Maity B. RGS6 drives cardiomyocyte death following nucleolar stress by suppressing Nucleolin/miRNA-21. J Transl Med 2024; 22:204. [PMID: 38409136 PMCID: PMC10895901 DOI: 10.1186/s12967-024-04985-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 02/12/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Prior evidence demonstrated that Regulator of G protein Signaling 6 (RGS6) translocates to the nucleolus in response to cytotoxic stress though the functional significance of this phenomenon remains unknown. METHODS Utilizing in vivo gene manipulations in mice, primary murine cardiac cells, human cell lines and human patient samples we dissect the participation of a RGS6-nucleolin complex in chemotherapy-dependent cardiotoxicity. RESULTS Here we demonstrate that RGS6 binds to a key nucleolar protein, Nucleolin, and controls its expression and activity in cardiomyocytes. In the human myocyte AC-16 cell line, induced pluripotent stem cell derived cardiomyocytes, primary murine cardiomyocytes, and the intact murine myocardium tuning RGS6 levels via overexpression or knockdown resulted in diametrically opposed impacts on Nucleolin mRNA, protein, and phosphorylation.RGS6 depletion provided marked protection against nucleolar stress-mediated cell death in vitro, and, conversely, RGS6 overexpression suppressed ribosomal RNA production, a key output of the nucleolus, and triggered death of myocytes. Importantly, overexpression of either Nucleolin or Nucleolin effector miRNA-21 counteracted the pro-apoptotic effects of RGS6. In both human and murine heart tissue, exposure to the genotoxic stressor doxorubicin was associated with an increase in the ratio of RGS6/Nucleolin. Preventing RGS6 induction via introduction of RGS6-directed shRNA via intracardiac injection proved cardioprotective in mice and was accompanied by restored Nucleolin/miRNA-21 expression, decreased nucleolar stress, and decreased expression of pro-apoptotic, hypertrophy, and oxidative stress markers in heart. CONCLUSION Together, these data implicate RGS6 as a driver of nucleolar stress-dependent cell death in cardiomyocytes via its ability to modulate Nucleolin. This work represents the first demonstration of a functional role for an RGS protein in the nucleolus and identifies the RGS6/Nucleolin interaction as a possible new therapeutic target in the prevention of cardiotoxicity.
Collapse
Affiliation(s)
- Abhishek Singh Sengar
- Centre of Biomedical Research (CBMR), SGPGI Campus, Raebareli Road, Lucknow, Uttar Pradesh, 226014, India
| | - Manish Kumar
- Centre of Biomedical Research (CBMR), SGPGI Campus, Raebareli Road, Lucknow, Uttar Pradesh, 226014, India
| | - Chetna Rai
- Centre of Biomedical Research (CBMR), SGPGI Campus, Raebareli Road, Lucknow, Uttar Pradesh, 226014, India
| | - Sreemoyee Chakraborti
- Centre of Biomedical Research (CBMR), SGPGI Campus, Raebareli Road, Lucknow, Uttar Pradesh, 226014, India
- Forensic Science Laboratory, Department of Home and Hill Affairs, Kolkata, West Bengal, 700037, India
| | - Dinesh Kumar
- Centre of Biomedical Research (CBMR), SGPGI Campus, Raebareli Road, Lucknow, Uttar Pradesh, 226014, India
| | - Pranesh Kumar
- Institute of Pharmaceutical Science, University of Lucknow, Lucknow, Uttar Pradesh, 226007, India
| | - Sukhes Mukherjee
- Biochemistry, AIIMS Bhopal, Saket Nagar, Bhopal, Madhya Pradesh, 462026, India
| | - Kausik Mondal
- Zoology, University of Kalyani, Nadia, West Bengal, 741235, India
| | - Adele Stewart
- Biomedical Science, Florida Atlantic University, Jupiter, FL, 33458, USA
| | - Biswanath Maity
- Centre of Biomedical Research (CBMR), SGPGI Campus, Raebareli Road, Lucknow, Uttar Pradesh, 226014, India.
| |
Collapse
|
2
|
Chen C, Lin X, Tang Y, Sun H, Yin L, Luo Z, Wang S, Liang P, Jiang B. LncRNA Fendrr: involvement in the protective role of nucleolin against H 2O 2-induced injury in cardiomyocytes. Redox Rep 2023; 28:2168626. [PMID: 36719027 PMCID: PMC9891159 DOI: 10.1080/13510002.2023.2168626] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Background: Nucleolin is a multifunctional nucleolar protein with RNA-binding properties. Increased nucleolin expression protects cells from H2O2-induced damage, but the mechanism remains unknown. Long noncoding RNAs (lncRNAs) play crucial roles in cardiovascular diseases. However, the biological functions and underlying mechanisms of lncRNAs in myocardial injury remain unclear.Methods: In a nucleolin-overexpressing cardiac cell line, high-throughput technology was used to identify lncRNAs controlled by nucleolin. Cell counting kit-8 assay was used to determine cell viability, lactate dehydrogenase (LDH) assay to detect cell death, caspase activity assay and propidium iodide staining to confirm cell apoptosis, and RNA immunoprecipitation to examine the interaction between Fendrr and nucleolin.Results: We found that Fendrr expression was significantly downregulated in mouse hearts subjected to myocardial ischemia-reperfusion (MI/R) injury. High Fendrr expression abrogated H2O2-mediated injury in cardiomyocytes as evidenced by increased cell viability and decreased cell apoptosis. Conversely, Fendrr knockdown exacerbated the cardiomyocytes injury. Also, nucleolin overexpression inhibits Fendrr downregulation in H2O2-induced cardiomyocyte injury. Fendrr overexpression significantly reversed the role of the suppression of nucleolin expression in H2O2-induced cardiomyocytes.Conclusion: LncRNA Fendrr is involved in the cardioprotective effect of nucleolin against H2O2-induced injury and may be a potential therapeutic target for oxidative stress-induced myocardial injury.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, People’s Republic of China
| | - Xiaofang Lin
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, People’s Republic of China
| | - Yuting Tang
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, People’s Republic of China
| | - Hui Sun
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, People’s Republic of China
| | - Leijing Yin
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, People’s Republic of China
| | - Zhengyang Luo
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, People’s Republic of China
| | - Shuxin Wang
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, People’s Republic of China
| | - Pengfei Liang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Bimei Jiang
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, People’s Republic of China
| |
Collapse
|
3
|
Jiao L, Liu Y, Yu XY, Pan X, Zhang Y, Tu J, Song YH, Li Y. Ribosome biogenesis in disease: new players and therapeutic targets. Signal Transduct Target Ther 2023; 8:15. [PMID: 36617563 PMCID: PMC9826790 DOI: 10.1038/s41392-022-01285-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/01/2022] [Accepted: 12/08/2022] [Indexed: 01/10/2023] Open
Abstract
The ribosome is a multi-unit complex that translates mRNA into protein. Ribosome biogenesis is the process that generates ribosomes and plays an essential role in cell proliferation, differentiation, apoptosis, development, and transformation. The mTORC1, Myc, and noncoding RNA signaling pathways are the primary mediators that work jointly with RNA polymerases and ribosome proteins to control ribosome biogenesis and protein synthesis. Activation of mTORC1 is required for normal fetal growth and development and tissue regeneration after birth. Myc is implicated in cancer development by enhancing RNA Pol II activity, leading to uncontrolled cancer cell growth. The deregulation of noncoding RNAs such as microRNAs, long noncoding RNAs, and circular RNAs is involved in developing blood, neurodegenerative diseases, and atherosclerosis. We review the similarities and differences between eukaryotic and bacterial ribosomes and the molecular mechanism of ribosome-targeting antibiotics and bacterial resistance. We also review the most recent findings of ribosome dysfunction in COVID-19 and other conditions and discuss the consequences of ribosome frameshifting, ribosome-stalling, and ribosome-collision. We summarize the role of ribosome biogenesis in the development of various diseases. Furthermore, we review the current clinical trials, prospective vaccines for COVID-19, and therapies targeting ribosome biogenesis in cancer, cardiovascular disease, aging, and neurodegenerative disease.
Collapse
Affiliation(s)
- Lijuan Jiao
- grid.263761.70000 0001 0198 0694Institute for Cardiovascular Science and Department of Cardiovascular Surgery, First Affiliated Hospital and Medical College of Soochow University, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123 P. R. China
| | - Yuzhe Liu
- grid.452829.00000000417660726Department of Orthopedics, the Second Hospital of Jilin University, Changchun, Jilin 130000 P. R. China
| | - Xi-Yong Yu
- grid.410737.60000 0000 8653 1072Key Laboratory of Molecular Target & Clinical Pharmacology and the NMPA State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, Guangdong 511436 P. R. China
| | - Xiangbin Pan
- grid.506261.60000 0001 0706 7839Department of Structural Heart Disease, National Center for Cardiovascular Disease, China & Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China ,Key Laboratory of Cardiovascular Appratus Innovation, Beijing, 100037 P. R. China
| | - Yu Zhang
- grid.263761.70000 0001 0198 0694Institute for Cardiovascular Science and Department of Cardiovascular Surgery, First Affiliated Hospital and Medical College of Soochow University, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123 P. R. China
| | - Junchu Tu
- grid.263761.70000 0001 0198 0694Institute for Cardiovascular Science and Department of Cardiovascular Surgery, First Affiliated Hospital and Medical College of Soochow University, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123 P. R. China
| | - Yao-Hua Song
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, P. R. China. .,State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China.
| | - Yangxin Li
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery, First Affiliated Hospital and Medical College of Soochow University, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, 215123, P. R. China.
| |
Collapse
|
4
|
Yan D, Hua L. Nucleolar stress: Friend or foe in cardiac function? Front Cardiovasc Med 2022; 9:1045455. [PMID: 36386352 PMCID: PMC9659567 DOI: 10.3389/fcvm.2022.1045455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/17/2022] [Indexed: 03/14/2024] Open
Abstract
Studies in the past decades have uncovered an emerging role of the nucleolus in stress response and human disease progression. The disruption of ribosome biogenesis in the nucleolus causes aberrant nucleolar architecture and function, termed nucleolar stress, to initiate stress-responsive pathways via nucleolar release sequestration of various proteins. While data obtained from both clinical and basic investigations have faithfully demonstrated an involvement of nucleolar stress in the pathogenesis of cardiomyopathy, much remains unclear regarding its precise role in the progression of cardiac diseases. On the one hand, the initiation of nucleolar stress following acute myocardial damage leads to the upregulation of various cardioprotective nucleolar proteins, including nucleostemin (NS), nucleophosmin (NPM) and nucleolin (NCL). As a result, nucleolar stress plays an important role in facilitating the survival and repair of cardiomyocytes. On the other hand, abnormalities in nucleolar architecture and function are correlated with the deterioration of cardiac diseases. Notably, the cardiomyocytes of advanced ischemic and dilated cardiomyopathy display impaired silver-stained nucleolar organiser regions (AgNORs) and enlarged nucleoli, resembling the characteristics of tissue aging. Collectively, nucleolar abnormalities are critically involved in the development of cardiac diseases.
Collapse
Affiliation(s)
- Daliang Yan
- Department of Cardiovascular Surgery, Taizhou People’s Hospital, Taizhou, China
| | - Lu Hua
- Department of Oncology, Taizhou People’s Hospital, Taizhou, China
| |
Collapse
|
5
|
Guo N, Zheng D, Sun J, Lv J, Wang S, Fang Y, Zhao Z, Zeng S, Guo Q, Tong J, Wang Z. NAP1L5 Promotes Nucleolar Hypertrophy and Is Required for Translation Activation During Cardiomyocyte Hypertrophy. Front Cardiovasc Med 2021; 8:791501. [PMID: 34977198 PMCID: PMC8718910 DOI: 10.3389/fcvm.2021.791501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
Pathological growth of cardiomyocytes during hypertrophy is characterized by excess protein synthesis; however, the regulatory mechanism remains largely unknown. Using a neonatal rat ventricular myocytes (NRVMs) model, here we find that the expression of nucleosome assembly protein 1 like 5 (Nap1l5) is upregulated in phenylephrine (PE)-induced hypertrophy. Knockdown of Nap1l5 expression by siRNA significantly blocks cell size enlargement and pathological gene induction after PE treatment. In contrast, Adenovirus-mediated Nap1l5 overexpression significantly aggravates the pro-hypertrophic effects of PE on NRVMs. RNA-seq analysis reveals that Nap1l5 knockdown reverses the pro-hypertrophic transcriptome reprogramming after PE treatment. Whereas, immune response is dominantly enriched in the upregulated genes, oxidative phosphorylation, cardiac muscle contraction and ribosome-related pathways are remarkably enriched in the down-regulated genes. Although Nap1l5-mediated gene regulation is correlated with PRC2 and PRC1, Nap1l5 does not directly alter the levels of global histone methylations at K4, K9, K27 or K36. However, puromycin incorporation assay shows that Nap1l5 is both necessary and sufficient to promote protein synthesis in cardiomyocyte hypertrophy. This is attributable to a direct regulation of nucleolus hypertrophy and subsequent ribosome assembly. Our findings demonstrate a previously unrecognized role of Nap1l5 in translation control during cardiac hypertrophy.
Collapse
Affiliation(s)
- Ningning Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Di Zheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiaxin Sun
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jian Lv
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shun Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yu Fang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhenyi Zhao
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Health Science Center, School of Pharmacy, Shenzhen University, Shenzhen, China
| | - Sai Zeng
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiuxiao Guo
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingjing Tong
- School of Life Sciences, Central China Normal University, Wuhan, China
- *Correspondence: Jingjing Tong
| | - Zhihua Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Zhihua Wang
| |
Collapse
|
6
|
Ezzitouny M, Roselló-Lletí E, Portolés M, Sánchez-Lázaro I, Arnau-Vives MÁ, Tarazón E, Gil-Cayuela C, Lozano-Edo S, López-Vilella R, Almenar-Bonet L, Martínez-Dolz L. Value of SERCA2a as a Biomarker for the Identification of Patients with Heart Failure Requiring Circulatory Support. J Pers Med 2021; 11:jpm11111122. [PMID: 34834474 PMCID: PMC8622248 DOI: 10.3390/jpm11111122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/20/2021] [Accepted: 10/29/2021] [Indexed: 01/03/2023] Open
Abstract
Background: Heart failure (HF) alters the nucleo-cytoplasmic transport of cardiomyocytes and reduces SERCA2a levels, essential for intracellular calcium homeostasis. We consider in this study whether the molecules involved in these processes can differentiate those patients with advanced HF and the need for mechanical circulatory support (MCS) as a bridge to recovery or urgent heart transplantation from those who are clinically stable and who are transplanted in an elective code. Material and method: Blood samples from 29 patients with advanced HF were analysed by ELISA, and the plasma levels of Importin5, Nucleoporin153 kDa, RanGTPase-Activating Protein 1 and sarcoplasmic reticulum Ca2+ ATPase were compared between patients requiring MCS and those patients without a MCS need prior to heart transplantation. Results: SERCA2a showed significantly lower levels in patients who had MCS compared to those who did not require it (0.501 ± 0.530 ng/mL vs. 1.123 ± 0.661 ng/mL; p = 0.01). A SERCA2a cut-off point of 0.84 ng/mL (AUC 0.812 ± 0.085, 95% CI: 0.646–0.979; p = 0.004) provided a 92% sensitivity, 62% specificity, 91% negative predictive value and 67% positive predictive value. Conclusions: In this cohort, patients with advanced HF and a need for MCS have shown significantly lower levels of SERCA2a as compared to stable patients without a need for MCS prior to heart transplantation. This is a small study with preliminary findings, and larger-powered dedicated studies are required to confirm and validate these results.
Collapse
Affiliation(s)
- Meryem Ezzitouny
- Heart Failure and Transplant Unit, Cardiology Department, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain; (I.S.-L.); (M.Á.A.-V.); (S.L.-E.); (R.L.-V.); (L.A.-B.); (L.M.-D.)
- Correspondence: ; Fax: +34-96-124-58-49
| | - Esther Roselló-Lletí
- Myocardial Dysfunction and Heart Transplant Group, Health Research Institute La Fe, 46026 Valencia, Spain; (E.R.-L.); (M.P.); (E.T.); (C.G.-C.)
- Center for Biomedical Research Network on Cardiovascular Diseases (Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares: CIBERCV), 28029 Madrid, Spain
| | - Manuel Portolés
- Myocardial Dysfunction and Heart Transplant Group, Health Research Institute La Fe, 46026 Valencia, Spain; (E.R.-L.); (M.P.); (E.T.); (C.G.-C.)
- Center for Biomedical Research Network on Cardiovascular Diseases (Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares: CIBERCV), 28029 Madrid, Spain
| | - Ignacio Sánchez-Lázaro
- Heart Failure and Transplant Unit, Cardiology Department, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain; (I.S.-L.); (M.Á.A.-V.); (S.L.-E.); (R.L.-V.); (L.A.-B.); (L.M.-D.)
- Myocardial Dysfunction and Heart Transplant Group, Health Research Institute La Fe, 46026 Valencia, Spain; (E.R.-L.); (M.P.); (E.T.); (C.G.-C.)
- Center for Biomedical Research Network on Cardiovascular Diseases (Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares: CIBERCV), 28029 Madrid, Spain
| | - Miguel Ángel Arnau-Vives
- Heart Failure and Transplant Unit, Cardiology Department, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain; (I.S.-L.); (M.Á.A.-V.); (S.L.-E.); (R.L.-V.); (L.A.-B.); (L.M.-D.)
- Myocardial Dysfunction and Heart Transplant Group, Health Research Institute La Fe, 46026 Valencia, Spain; (E.R.-L.); (M.P.); (E.T.); (C.G.-C.)
- Center for Biomedical Research Network on Cardiovascular Diseases (Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares: CIBERCV), 28029 Madrid, Spain
| | - Estefanía Tarazón
- Myocardial Dysfunction and Heart Transplant Group, Health Research Institute La Fe, 46026 Valencia, Spain; (E.R.-L.); (M.P.); (E.T.); (C.G.-C.)
- Center for Biomedical Research Network on Cardiovascular Diseases (Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares: CIBERCV), 28029 Madrid, Spain
| | - Carolina Gil-Cayuela
- Myocardial Dysfunction and Heart Transplant Group, Health Research Institute La Fe, 46026 Valencia, Spain; (E.R.-L.); (M.P.); (E.T.); (C.G.-C.)
| | - Silvia Lozano-Edo
- Heart Failure and Transplant Unit, Cardiology Department, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain; (I.S.-L.); (M.Á.A.-V.); (S.L.-E.); (R.L.-V.); (L.A.-B.); (L.M.-D.)
| | - Raquel López-Vilella
- Heart Failure and Transplant Unit, Cardiology Department, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain; (I.S.-L.); (M.Á.A.-V.); (S.L.-E.); (R.L.-V.); (L.A.-B.); (L.M.-D.)
| | - Luis Almenar-Bonet
- Heart Failure and Transplant Unit, Cardiology Department, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain; (I.S.-L.); (M.Á.A.-V.); (S.L.-E.); (R.L.-V.); (L.A.-B.); (L.M.-D.)
- Myocardial Dysfunction and Heart Transplant Group, Health Research Institute La Fe, 46026 Valencia, Spain; (E.R.-L.); (M.P.); (E.T.); (C.G.-C.)
- Center for Biomedical Research Network on Cardiovascular Diseases (Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares: CIBERCV), 28029 Madrid, Spain
| | - Luis Martínez-Dolz
- Heart Failure and Transplant Unit, Cardiology Department, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain; (I.S.-L.); (M.Á.A.-V.); (S.L.-E.); (R.L.-V.); (L.A.-B.); (L.M.-D.)
- Myocardial Dysfunction and Heart Transplant Group, Health Research Institute La Fe, 46026 Valencia, Spain; (E.R.-L.); (M.P.); (E.T.); (C.G.-C.)
- Center for Biomedical Research Network on Cardiovascular Diseases (Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares: CIBERCV), 28029 Madrid, Spain
| |
Collapse
|
7
|
Lozano-Edo S, Sánchez-Lázaro I, Almenar-Bonet L, Portolés M, Ezzitouny M, Tarazón E, Roselló-Lleti E, Lopez-Vilella R, Martínez-Dolz L. Alterations in the Nucleocytoplasmic Transport in Heart Transplant Rejection. Transplant Proc 2021; 53:2718-2720. [PMID: 34674882 DOI: 10.1016/j.transproceed.2021.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Nucleocytoplasmic transport is a crucial process for cell function. Previous studies have observed alterations in different molecules involved in it, relating them to ventricular function. However, there are no published data evaluating possible differences in the expression of these molecules in heart transplantation (HT) recipients. Our objective is to evaluate whether its levels are related to the appearance of cellular rejection (CR) during the first year after HT. METHODS A prospective clinical cohort that included patients undergoing HT between January 2017 and January 2019 (n = 46). Blood samples for the analysis of importin 5 (IMP5), nucleoporin 153 (Nup153); RAN-GTPaseAP1 (RanGAP1), and sarcoplasmic reticulum calcium ATPase (ATP-aseCaTransp) were collected approximately 2 months post-HT. The levels obtained were correlated with the incidence of at least moderate CR during the first year of follow-up. RESULTS Results showed that 17.39% of the patients had at least moderate CR during the first year of follow-up. Higher levels of IMP5, Nup153, and RanGAP1 were observed in this group. This difference was statistically significant in the case of Nup153 and RanGAP1 (15.94 ± 14.00 vs 28.62 ± 23.61, P = .048; 21.95 ± 15.97 vs 40.90 ± 27.16, P = .026, respectively); there was an opposite trend in the ATP-aseCaTransp case. CONCLUSION Patients with at least a moderate degree of CR during follow-up showed higher serum levels of IMP5, Nup153, and RanGAP1. The prognostic usefulness of the determination of these biomarkers and whether their elevation during follow-up would facilitate early, noninvasive identification of patients with CR remains to be clarified.
Collapse
Affiliation(s)
- Silvia Lozano-Edo
- Heart Failure and Transplantation Unit, Cardiology Department, University and Polytechnic La Fe Hospital, Valencia, Spain; Myocardial Dysfunction and Cardiac Transplantation Unit, Health Research Institute Hospital La Fe (IIS La Fe), Valencia, Spain.
| | - Ignacio Sánchez-Lázaro
- Heart Failure and Transplantation Unit, Cardiology Department, University and Polytechnic La Fe Hospital, Valencia, Spain; Myocardial Dysfunction and Cardiac Transplantation Unit, Health Research Institute Hospital La Fe (IIS La Fe), Valencia, Spain; Consorcio Centro de Investigación Biomédica en Red, M.P (CIBERCV), Madrid, Spain
| | - Luis Almenar-Bonet
- Heart Failure and Transplantation Unit, Cardiology Department, University and Polytechnic La Fe Hospital, Valencia, Spain; Myocardial Dysfunction and Cardiac Transplantation Unit, Health Research Institute Hospital La Fe (IIS La Fe), Valencia, Spain; Consorcio Centro de Investigación Biomédica en Red, M.P (CIBERCV), Madrid, Spain
| | - Manuel Portolés
- Myocardial Dysfunction and Cardiac Transplantation Unit, Health Research Institute Hospital La Fe (IIS La Fe), Valencia, Spain; Consorcio Centro de Investigación Biomédica en Red, M.P (CIBERCV), Madrid, Spain
| | - Maryem Ezzitouny
- Heart Failure and Transplantation Unit, Cardiology Department, University and Polytechnic La Fe Hospital, Valencia, Spain; Myocardial Dysfunction and Cardiac Transplantation Unit, Health Research Institute Hospital La Fe (IIS La Fe), Valencia, Spain
| | - Estefanía Tarazón
- Myocardial Dysfunction and Cardiac Transplantation Unit, Health Research Institute Hospital La Fe (IIS La Fe), Valencia, Spain; Consorcio Centro de Investigación Biomédica en Red, M.P (CIBERCV), Madrid, Spain
| | - Esther Roselló-Lleti
- Myocardial Dysfunction and Cardiac Transplantation Unit, Health Research Institute Hospital La Fe (IIS La Fe), Valencia, Spain; Consorcio Centro de Investigación Biomédica en Red, M.P (CIBERCV), Madrid, Spain
| | - Raquel Lopez-Vilella
- Heart Failure and Transplantation Unit, Cardiology Department, University and Polytechnic La Fe Hospital, Valencia, Spain; Myocardial Dysfunction and Cardiac Transplantation Unit, Health Research Institute Hospital La Fe (IIS La Fe), Valencia, Spain
| | - Luis Martínez-Dolz
- Heart Failure and Transplantation Unit, Cardiology Department, University and Polytechnic La Fe Hospital, Valencia, Spain; Myocardial Dysfunction and Cardiac Transplantation Unit, Health Research Institute Hospital La Fe (IIS La Fe), Valencia, Spain; Consorcio Centro de Investigación Biomédica en Red, M.P (CIBERCV), Madrid, Spain
| |
Collapse
|
8
|
Tang Y, Lin X, Chen C, Tong Z, Sun H, Li Y, Liang P, Jiang B. Nucleolin Improves Heart Function During Recovery From Myocardial Infarction by Modulating Macrophage Polarization. J Cardiovasc Pharmacol Ther 2021; 26:386-395. [PMID: 33550832 DOI: 10.1177/1074248421989570] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Nucleolin has multiple functions within cell survival and proliferation pathways. Our previous studies have revealed that nucleolin can significantly reduce myocardial ischemia-reperfusion injury by promoting myocardial angiogenesis and reducing myocardial apoptosis. In this study, we attempted to determine the role of nucleolin in myocardial infarction (MI) injury recovery and the underlying mechanism. METHODS Male BALB/c mice aged 6-8 weeks were used to set up MI models by ligating the left anterior descending coronary artery. Nucleolin expression in the heart was downregulated by intramyocardial injection of a lentiviral vector expressing nucleolin-specific small interfering RNA. Macrophage infiltration and polarization were measured by real-time polymerase chain reaction, flow cytometry, and immunofluorescence. Cytokines were detected by enzyme-linked immunosorbent assay. RESULTS Nucleolin expression in myocardium after MI induction decreased a lot at early phase and elevated at late phase. Nucleolin knockdown impaired heart systolic and diastolic functions and decreased the survival rate after MI. Macrophage infiltration increased in the myocardium after MI. Most macrophages belonged to the M1 phenotype at early phase (2 days) and the M2 phenotype increased greatly at late phase after MI. Nucleolin knockdown in the myocardium led to a decrease in M2 macrophage polarization with no effect on macrophage infiltration after MI. Furthermore, Notch3 and STAT6, key regulators of M2 macrophage polarization, were upregulated by nucleolin in RAW 264.7 macrophages. CONCLUSIONS Lack of nucleolin impaired heart function during recovery after MI by reducing M2 macrophage polarization. This finding probably points to a new therapeutic option for ischemic heart disease.
Collapse
Affiliation(s)
- Yuting Tang
- Department of Pathophysiology, Xiangya School of Medicine, 12570Central South University, Changsha, Hunan, China
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, 12570Central South University, Changsha, Hunan, China
| | - Xiaofang Lin
- Department of Pathophysiology, Xiangya School of Medicine, 12570Central South University, Changsha, Hunan, China
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, 12570Central South University, Changsha, Hunan, China
| | - Cheng Chen
- Department of Pathophysiology, Xiangya School of Medicine, 12570Central South University, Changsha, Hunan, China
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, 12570Central South University, Changsha, Hunan, China
| | - Zhongyi Tong
- Department of Pathology, The Second Xiangya Hospital of 12570Central South University, Changsha, Hunan, China
| | - Hui Sun
- Department of Pathophysiology, Xiangya School of Medicine, 12570Central South University, Changsha, Hunan, China
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, 12570Central South University, Changsha, Hunan, China
| | - Yuanbin Li
- Department of Pathophysiology, Xiangya School of Medicine, 12570Central South University, Changsha, Hunan, China
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, 12570Central South University, Changsha, Hunan, China
| | - Pengfei Liang
- Department of Burns and Plastic Surgery, Xiangya Hospital, 12570Central South University, Changsha, Hunan, China
| | - Bimei Jiang
- Department of Pathophysiology, Xiangya School of Medicine, 12570Central South University, Changsha, Hunan, China
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, 12570Central South University, Changsha, Hunan, China
| |
Collapse
|
9
|
Mariero LH, Torp M, Heiestad CM, Baysa A, Li Y, Valen G, Vaage J, Stensløkken K. Inhibiting nucleolin reduces inflammation induced by mitochondrial DNA in cardiomyocytes exposed to hypoxia and reoxygenation. Br J Pharmacol 2019; 176:4360-4372. [PMID: 31412132 PMCID: PMC6887679 DOI: 10.1111/bph.14830] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/30/2019] [Accepted: 07/10/2019] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND AND PURPOSE Cellular debris causes sterile inflammation after myocardial infarction. Mitochondria constitute about 30 percent of the human heart. Mitochondrial DNA (mtDNA) is a damage-associated-molecular-pattern that induce injurious sterile inflammation. Little is known about mtDNA's inflammatory signalling pathways in cardiomyocytes and how mtDNA is internalized to associate with its putative receptor, toll-like receptor 9 (TLR9). EXPERIMENTAL APPROACH We hypothesized that mtDNA can be internalized in cardiomyocytes and induce an inflammatory response. Adult mouse cardiomyocytes were exposed to hypoxia-reoxygenation and extracellular DNA. Microscale thermophoresis was used to demonstrate binding between nucleolin and DNA. KEY RESULTS Expression of the pro-inflammatory cytokines IL-1β and TNFα were upregulated by mtDNA, but not by nuclear DNA (nDNA), in cardiomyocytes exposed to hypoxia-reoxygenation. Blocking the RNA/DNA binding protein nucleolin with midkine reduced expression of IL-1β/TNFα and the nucleolin inhibitor AS1411 reduced interleukin-6 release in adult mouse cardiomyocytes. mtDNA bound 10-fold stronger than nDNA to nucleolin. In HEK293-NF-κB reporter cells, mtDNA induced NF-κB activity in normoxia, while CpG-DNA and hypoxia-reoxygenation, synergistically induced TLR9-dependent NF-κB activity. Protein expression of nucleolin was found in the plasma membrane of cardiomyocytes and inhibition of nucleolin with midkine inhibited cellular uptake of CpG-DNA. Inhibition of endocytosis did not reduce CpG-DNA uptake in cardiomyocytes. CONCLUSION AND IMPLICATIONS mtDNA, but not nDNA, induce an inflammatory response in mouse cardiomyocytes during hypoxia-reoxygenation. In cardiomyocytes, nucleolin is expressed on the membrane and blocking nucleolin reduce inflammation. Nucleolin might be a therapeutic target to prevent uptake of immunogenic DNA and reduce inflammation. LINKED ARTICLES This article is part of a themed section on Mitochondrial Pharmacology: Featured Mechanisms and Approaches for Therapy Translation. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.22/issuetoc.
Collapse
Affiliation(s)
- Lars Henrik Mariero
- Department of Molecular Medicine, Division of Physiology, Institute of Basic Medical Sciences, Faculty of MedicineUniversity of OsloOsloNorway
- Center for Heart Failure Research, Faculty of MedicineUniversity of OsloOsloNorway
| | - May‐Kristin Torp
- Department of Molecular Medicine, Division of Physiology, Institute of Basic Medical Sciences, Faculty of MedicineUniversity of OsloOsloNorway
- Center for Heart Failure Research, Faculty of MedicineUniversity of OsloOsloNorway
| | - Christina Mathisen Heiestad
- Department of Molecular Medicine, Division of Physiology, Institute of Basic Medical Sciences, Faculty of MedicineUniversity of OsloOsloNorway
- Center for Heart Failure Research, Faculty of MedicineUniversity of OsloOsloNorway
| | - Anton Baysa
- Department of Molecular Medicine, Division of Physiology, Institute of Basic Medical Sciences, Faculty of MedicineUniversity of OsloOsloNorway
- Center for Heart Failure Research, Faculty of MedicineUniversity of OsloOsloNorway
| | - Yuchuan Li
- Department of Molecular Medicine, Division of Physiology, Institute of Basic Medical Sciences, Faculty of MedicineUniversity of OsloOsloNorway
| | - Guro Valen
- Department of Molecular Medicine, Division of Physiology, Institute of Basic Medical Sciences, Faculty of MedicineUniversity of OsloOsloNorway
- Center for Heart Failure Research, Faculty of MedicineUniversity of OsloOsloNorway
| | - Jarle Vaage
- Institute of Clinical MedicineUniversity of OsloOsloNorway
- Department of Emergency Medicine and Intensive CareOslo University HospitalOsloNorway
| | - Kåre‐Olav Stensløkken
- Department of Molecular Medicine, Division of Physiology, Institute of Basic Medical Sciences, Faculty of MedicineUniversity of OsloOsloNorway
- Center for Heart Failure Research, Faculty of MedicineUniversity of OsloOsloNorway
| |
Collapse
|
10
|
Villegas-Mercado CE, Agredano-Moreno LT, Bermúdez M, Segura-Valdez ML, Arzate H, Del Toro-Rangel EF, Jiménez-García LF. Cementum protein 1 transfection does not lead to ultrastructural changes in nucleolar organization of human gingival fibroblasts. J Periodontal Res 2018; 53:636-642. [PMID: 29704248 DOI: 10.1111/jre.12553] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND OBJECTIVE Transfection of cementum protein 1 (CEMP1) into human gingival fibroblasts (HGFs) notably increases cell metabolism and results in overexpression of molecules related to biomineralization at transcriptional and protein levels. Therefore, HGF-CEMP1 cells are considered as putative cementoblasts. This represents a significant advance in periodontal research because cementum neoformation is a key event in periodontal regeneration. In addition, it is well known that important changes in cell metabolism and protein expression are related to nucleolar structure and the function of this organelle, which is implicated in ribosome biogenesis. The aim of this study was to determine the effect of transfecting CEMP1 gene in human HGF on the ultrastructure of the nucleolus. MATERIAL AND METHODS Cells were processed using the conventional technique for transmission electron microscopy, fixed with glutaraldehyde, postfixed with osmium tetraoxide, and embedded in epoxy resin. Semi-thin sections were stained with Toluidine blue and observed by light microscopy. Thin sections were stained with uranyl acetate and lead citrate. For ribonucleoprotein detection, the staining method based on the regressive effect of EDTA was used. In addition, the osmium ammine technique was used for specific staining of DNA. RESULTS The results obtained in this study suggest that transfection of CEMP1 into HGFs does not produce changes in the general nucleolar ultrastructure because the different components of the organelle are present as fibrillary centers, and dense fibrillar and granular components compared with the control. CONCLUSION The transfection of CEMP1 into HGFs allows these cells to perform cementoblast-like functions without alteration of the ultrastructure of the nucleolus, evaluated by the presence of the different compartments of this organelle involved in ribosomal biogenesis.
Collapse
Affiliation(s)
- C E Villegas-Mercado
- Faculty of Sciences, Electron Microscopy Laboratory, National Autonomous University of México (UNAM), Ciudad de Mexico, Mexico.,Faculty of Sciences, Department of Cell Biology, Cell Nano-Biology Laboratory, National Autonomous University of México (UNAM), Ciudad de Mexico, Mexico
| | - L T Agredano-Moreno
- Faculty of Sciences, Electron Microscopy Laboratory, National Autonomous University of México (UNAM), Ciudad de Mexico, Mexico.,Faculty of Sciences, Department of Cell Biology, Cell Nano-Biology Laboratory, National Autonomous University of México (UNAM), Ciudad de Mexico, Mexico
| | - M Bermúdez
- School of Higher Education of Zaragoza, National Autonomous University of México (UNAM), Ciudad de Mexico, Mexico
| | - M L Segura-Valdez
- Faculty of Sciences, Electron Microscopy Laboratory, National Autonomous University of México (UNAM), Ciudad de Mexico, Mexico.,Faculty of Sciences, Department of Cell Biology, Cell Nano-Biology Laboratory, National Autonomous University of México (UNAM), Ciudad de Mexico, Mexico
| | - H Arzate
- Faculty of Dentistry, Periodontal Biology Laboratory, DEPeI, National Autonomous University of Mexico (UNAM), Ciudad de Mexico, Mexico
| | - E F Del Toro-Rangel
- Faculty of Sciences, Electron Microscopy Laboratory, National Autonomous University of México (UNAM), Ciudad de Mexico, Mexico.,Faculty of Sciences, Department of Cell Biology, Cell Nano-Biology Laboratory, National Autonomous University of México (UNAM), Ciudad de Mexico, Mexico
| | - L F Jiménez-García
- Faculty of Sciences, Electron Microscopy Laboratory, National Autonomous University of México (UNAM), Ciudad de Mexico, Mexico.,Faculty of Sciences, Department of Cell Biology, Cell Nano-Biology Laboratory, National Autonomous University of México (UNAM), Ciudad de Mexico, Mexico
| |
Collapse
|
11
|
Hariharan N, Sussman MA. Stressing on the nucleolus in cardiovascular disease. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1842:798-801. [PMID: 24514103 PMCID: PMC3972279 DOI: 10.1016/j.bbadis.2013.09.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 09/18/2013] [Indexed: 12/23/2022]
Abstract
The nucleolus is a multifunctional organelle with multiple roles involving cell proliferation, growth, survival, ribosome biogenesis and stress response signaling. Alteration of nucleolar morphology and architecture signifies an early response to increased cellular stress. This review briefly summarizes nucleolar response to cardiac stress signals and details the role played by nucleolar proteins in cardiovascular pathophysiology. This article is part of a Special Issue entitled: Role of the Nucleolus in Human Disease.
Collapse
Affiliation(s)
- Nirmala Hariharan
- Department of Biology, San Diego State University Heart Institute, San Diego State University, San Diego, CA 92182, USA
| | - Mark A Sussman
- Department of Biology, San Diego State University Heart Institute, San Diego State University, San Diego, CA 92182, USA.
| |
Collapse
|
12
|
Differential gene expression of cardiac ion channels in human dilated cardiomyopathy. PLoS One 2013; 8:e79792. [PMID: 24339868 PMCID: PMC3855055 DOI: 10.1371/journal.pone.0079792] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 09/25/2013] [Indexed: 11/23/2022] Open
Abstract
Background Dilated cardiomyopathy (DCM) is characterized by idiopathic dilation and systolic contractile dysfunction of the cardiac chambers. The present work aimed to study the alterations in gene expression of ion channels involved in cardiomyocyte function. Methods and Results Microarray profiling using the Affymetrix Human Gene® 1.0 ST array was performed using 17 RNA samples, 12 from DCM patients undergoing cardiac transplantation and 5 control donors (CNT). The analysis focused on 7 cardiac ion channel genes, since this category has not been previously studied in human DCM. SCN2B was upregulated, while KCNJ5, KCNJ8, CLIC2, CLCN3, CACNB2, and CACNA1C were downregulated. The RT-qPCR (21 DCM and 8 CNT samples) validated the gene expression of SCN2B (p < 0.0001), KCNJ5 (p < 0.05), KCNJ8 (p < 0.05), CLIC2 (p < 0.05), and CACNB2 (p < 0.05). Furthermore, we performed an IPA analysis and we found a functional relationship between the different ion channels studied in this work. Conclusion This study shows a differential expression of ion channel genes involved in cardiac contraction in DCM that might partly underlie the changes in left ventricular function observed in these patients. These results could be the basis for new genetic therapeutic approaches.
Collapse
|
13
|
Molina-Navarro MM, Roselló-Lletí E, Tarazón E, Ortega A, Sánchez-Izquierdo D, Lago F, González-Juanatey JR, García-Pavía P, Salvador A, Montero JA, Portolés M, Rivera M. Heart failure entails significant changes in human nucleocytoplasmic transport gene expression. Int J Cardiol 2013; 168:2837-43. [PMID: 23651824 DOI: 10.1016/j.ijcard.2013.03.192] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 03/26/2013] [Accepted: 03/30/2013] [Indexed: 01/04/2023]
Abstract
BACKGROUND Heart failure (HF) induces alterations in nucleocytoplasmic transport, which is essential to the cardiomyocyte biology. The objective of this study was to analyze the changes in gene expression in human HF, particularly focusing on nucleocytoplasmic transport-related genes. METHODS AND RESULTS 29 RNA heart samples from dilated cardiomyopathy (DCM, n = 12) and ischemic cardiomyopathy (ICM, n = 12) patients undergoing heart transplantation and control donors (CNT, n = 5) were extracted to perform a microarray profiling using Affymetrix Human Gene® 1.0 ST arrays. We focused on the study of 5 nucleocytoplasmic transport-related genes, since this functional category has not previously been studied in HF. XPO1, GABPB2, and RANBP17 were upregulated, while KALRN was downregulated in both DCM and ICM, and XPO5 only in DCM. Validation of the results by RT-qPCR increasing the total heart samples up to 41 showed a high degree of consistency with microarray results. Moreover, we observed a strong relationship between the XPO1 mRNA and robust left ventricular function parameters in ICM: left ventricular end-systolic (r = 0.81, p<0.0001) and end-diastolic diameters (r = 0.80, p<0.0001), and ejection fraction (r = -0.57, p<0.05). CONCLUSIONS We show that the expression of nucleocytoplasmic transport-related genes is altered in HF. Furthermore, XPO1 mRNA level is closely related with robust left ventricular function parameters in ICM patients. These changes may help to distinguish DCM and ICM in HF at the level of the transcriptome and provide a base for novel therapeutic approaches.
Collapse
|
14
|
Tarazón E, Rivera M, Roselló-Lletí E, Molina-Navarro MM, Sánchez-Lázaro IJ, España F, Montero JA, Lago F, González-Juanatey JR, Portolés M. Heart failure induces significant changes in nuclear pore complex of human cardiomyocytes. PLoS One 2012; 7:e48957. [PMID: 23152829 PMCID: PMC3495918 DOI: 10.1371/journal.pone.0048957] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 10/03/2012] [Indexed: 11/30/2022] Open
Abstract
Aims The objectives of this study were to analyse the effect of heart failure (HF) on several proteins of nuclear pore complex (NPC) and their relationship with the human ventricular function. Methods and Results A total of 88 human heart samples from ischemic (ICM, n = 52) and dilated (DCM, n = 36) patients undergoing heart transplant and control donors (CNT, n = 9) were analyzed by Western blot. Subcellular distribution of nucleoporins was analysed by fluorescence and immunocytochemistry. When we compared protein levels according to etiology, ICM showed significant higher levels of NDC1 (65%, p<0.0001), Nup160 (88%, p<0.0001) and Nup153 (137%, p = 0.004) than those of the CNT levels. Furthermore, DCM group showed significant differences for NDC1 (41%, p<0.0001), Nup160 (65%, p<0.0001), Nup153 (155%, p = 0.006) and Nup93 (88%, p<0.0001) compared with CNT. However, Nup155 and translocated promoter region (TPR) did not show significant differences in their levels in any etiology. Regarding the distribution of these proteins in cell nucleus, only NDC1 showed differences in HF. In addition, in the pathological group we obtained good relationship between the ventricular function parameters (LVEDD and LVESD) and Nup160 (r = −0382, p = 0.004; r = −0.290, p = 0.033; respectively). Conclusions This study shows alterations in specific proteins (NDC1, Nup160, Nup153 and Nup93) that compose NPC in ischaemic and dilated human heart. These changes, related to ventricular function, could be accompanied by alterations in the nucleocytoplasmic transport. Therefore, our findings may be the basis for a new approach to HF management.
Collapse
Affiliation(s)
- Estefanía Tarazón
- Cardiocirculatory Unit, Research Center, Hospital Universitario La Fe, Valencia, Spain
| | - Miguel Rivera
- Cardiocirculatory Unit, Research Center, Hospital Universitario La Fe, Valencia, Spain
| | - Esther Roselló-Lletí
- Cardiocirculatory Unit, Research Center, Hospital Universitario La Fe, Valencia, Spain
| | | | - Ignacio José Sánchez-Lázaro
- Heart Failure and Transplantation Unit, Cardiology Department, Hospital Universitario La Fe, Valencia, Spain
| | - Francisco España
- Biochemistry Unit, Research Center, Hospital Universitario La Fe, Valencia, Spain
| | | | - Francisca Lago
- Cellular and Molecular Cardiology Research Unit, Department of Cardiology and Institute of Biomedical Research, University Clinical Hospital, Santiago de Compostela, Spain
| | - José Ramón González-Juanatey
- Cellular and Molecular Cardiology Research Unit, Department of Cardiology and Institute of Biomedical Research, University Clinical Hospital, Santiago de Compostela, Spain
| | - Manuel Portolés
- Cell Biology and Pathology Unit, Research Center, Hospital Universitario La Fe, Valencia, Spain
- * E-mail:
| |
Collapse
|
15
|
Hannan KM, Sanij E, Rothblum LI, Hannan RD, Pearson RB. Dysregulation of RNA polymerase I transcription during disease. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:342-60. [PMID: 23153826 DOI: 10.1016/j.bbagrm.2012.10.014] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 10/30/2012] [Accepted: 10/31/2012] [Indexed: 12/13/2022]
Abstract
Transcription of the ribosomal RNA genes by the dedicated RNA polymerase I enzyme and subsequent processing of the ribosomal RNA are fundamental control steps in the synthesis of functional ribosomes. Dysregulation of Pol I transcription and ribosome biogenesis is linked to the etiology of a broad range of human diseases. Diseases caused by loss of function mutations in the molecular constituents of the ribosome, or factors intimately associated with RNA polymerase I transcription and processing are collectively termed ribosomopathies. Ribosomopathies are generally rare and treatment options are extremely limited tending to be more palliative than curative. Other more common diseases are associated with profound changes in cellular growth such as cardiac hypertrophy, atrophy or cancer. In contrast to ribosomopathies, altered RNA polymerase I transcriptional activity in these diseases largely results from dysregulated upstream oncogenic pathways or by direct modulation by oncogenes or tumor suppressors at the level of the RNA polymerase I transcription apparatus itself. Ribosomopathies associated with mutations in ribosomal proteins and ribosomal RNA processing or assembly factors have been covered by recent excellent reviews. In contrast, here we review our current knowledge of human diseases specifically associated with dysregulation of RNA polymerase I transcription and its associated regulatory apparatus, including some cases where this dysregulation is directly causative in disease. We will also provide insight into and discussion of possible therapeutic approaches to treat patients with dysregulated RNA polymerase I transcription. This article is part of a Special Issue entitled: Transcription by Odd Pols.
Collapse
Affiliation(s)
- K M Hannan
- Oncogenic Signalling and Growth Control Program, Peter MacCallum Cancer Centre, Locked Bag 1, A'Beckett St, Melbourne, Victoria 8006, Australia
| | | | | | | | | |
Collapse
|
16
|
García-Rúa V, Otero MF, Lear PV, Rodríguez-Penas D, Feijóo-Bandín S, Noguera-Moreno T, Calaza M, Álvarez-Barredo M, Mosquera-Leal A, Parrington J, Brugada J, Portolés M, Rivera M, González-Juanatey JR, Lago F. Increased expression of fatty-acid and calcium metabolism genes in failing human heart. PLoS One 2012; 7:e37505. [PMID: 22701570 PMCID: PMC3368932 DOI: 10.1371/journal.pone.0037505] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 04/19/2012] [Indexed: 01/08/2023] Open
Abstract
Background Heart failure (HF) involves alterations in metabolism, but little is known about cardiomyopathy-(CM)-specific or diabetes-independent alterations in gene expression of proteins involved in fatty-acid (FA) uptake and oxidation or in calcium-(Ca2+)-handling in the human heart. Methods RT-qPCR was used to quantify mRNA expression and immunoblotting to confirm protein expression in left-ventricular myocardium from patients with HF (n = 36) without diabetes mellitus of ischaemic (ICM, n = 16) or dilated (DCM, n = 20) cardiomyopathy aetiology, and non-diseased donors (CTL, n = 6). Results Significant increases in mRNA of genes regulating FA uptake (CD36) and intracellular transport (Heart-FA-Binding Protein (HFABP)) were observed in HF patients vs CTL. Significance was maintained in DCM and confirmed at protein level, but not in ICM. mRNA was higher in DCM than ICM for peroxisome-proliferator-activated-receptor-alpha (PPARA), PPAR-gamma coactivator-1-alpha (PGC1A) and CD36, and confirmed at the protein level for PPARA and CD36. Transcript and protein expression of Ca2+-handling genes (Two-Pore-Channel 1 (TPCN1), Two-Pore-Channel 2 (TPCN2), and Inositol 1,4,5-triphosphate Receptor type-1 (IP3R1)) increased in HF patients relative to CTL. Increases remained significant for TPCN2 in all groups but for TPCN1 only in DCM. There were correlations between FA metabolism and Ca2+-handling genes expression. In ICM there were six correlations, all distinct from those found in CTL. In DCM there were also six (all also different from those found in CTL): three were common to and three distinct from ICM. Conclusion DCM-specific increases were found in expression of several genes that regulate FA metabolism, which might help in the design of aetiology-specific metabolic therapies in HF. Ca2+-handling genes TPCN1 and TPCN2 also showed increased expression in HF, while HF- and CM-specific positive correlations were found among several FA and Ca2+-handling genes.
Collapse
Affiliation(s)
- Vanessa García-Rúa
- Laboratory of Cellular and Molecular Cardiology, Santiago Institute of Biomedical Research (IDIS), University of Santiago de Compostela Clinical Hospital (CHUS), Santiago de Compostela, Spain
| | - Manuel Francisco Otero
- Laboratory of Cellular and Molecular Cardiology, Santiago Institute of Biomedical Research (IDIS), University of Santiago de Compostela Clinical Hospital (CHUS), Santiago de Compostela, Spain
- Department of Clinical Chemistry, University of Santiago de Compostela Clinical Hospital (CHUS), Santiago de Compostela, Spain
| | - Pamela Virginia Lear
- Laboratory of Cellular and Molecular Cardiology, Santiago Institute of Biomedical Research (IDIS), University of Santiago de Compostela Clinical Hospital (CHUS), Santiago de Compostela, Spain
| | - Diego Rodríguez-Penas
- Laboratory of Cellular and Molecular Cardiology, Santiago Institute of Biomedical Research (IDIS), University of Santiago de Compostela Clinical Hospital (CHUS), Santiago de Compostela, Spain
| | - Sandra Feijóo-Bandín
- Laboratory of Cellular and Molecular Cardiology, Santiago Institute of Biomedical Research (IDIS), University of Santiago de Compostela Clinical Hospital (CHUS), Santiago de Compostela, Spain
| | - Teresa Noguera-Moreno
- Unit of Biostatistical Research, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Manuel Calaza
- Laboratory 10, Santiago Institute of Biomedical Research (IDIS), University of Santiago de Compostela Clinical Hospital (CHUS), Santiago de Compostela, Spain
| | - María Álvarez-Barredo
- Department of Cardiology, University of Santiago de Compostela Clinical Hospital (CHUS), Santiago de Compostela, Spain
| | - Ana Mosquera-Leal
- Laboratory of Cellular and Molecular Cardiology, Santiago Institute of Biomedical Research (IDIS), University of Santiago de Compostela Clinical Hospital (CHUS), Santiago de Compostela, Spain
| | - John Parrington
- Department of Pharmacology, Oxford University, Oxford, United Kingdom
| | - Josep Brugada
- Cardiology Department, Thorax Institute, Hospital Clinic, Barcelona, Spain
| | | | | | - José Ramón González-Juanatey
- Laboratory of Cellular and Molecular Cardiology, Santiago Institute of Biomedical Research (IDIS), University of Santiago de Compostela Clinical Hospital (CHUS), Santiago de Compostela, Spain
- Department of Cardiology, University of Santiago de Compostela Clinical Hospital (CHUS), Santiago de Compostela, Spain
| | - Francisca Lago
- Laboratory of Cellular and Molecular Cardiology, Santiago Institute of Biomedical Research (IDIS), University of Santiago de Compostela Clinical Hospital (CHUS), Santiago de Compostela, Spain
- * E-mail:
| |
Collapse
|