1
|
Wang L, Liu X, Wu Y, Ye Z, Wang Y, Gao S, Gong H, Ling Y. Trivalent Disulfide Unit-Masked System Efficiently Delivers Large Oligonucleotide. Molecules 2024; 29:4223. [PMID: 39275071 PMCID: PMC11397113 DOI: 10.3390/molecules29174223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/23/2024] [Accepted: 09/03/2024] [Indexed: 09/16/2024] Open
Abstract
Oligonucleotide drugs are shining in clinical therapeutics, but efficient and safe delivery systems severely limit their widespread use. A disulfide unit technology platform based on dynamic thiol exchange chemistry at the cell membrane has the potential for drug delivery. However, the alteration of the disulfide unit CSSC dihedral angle induced by different substituents directly affects the effectiveness of this technology and its stability. Previously, we constructed a trivalent low dihedral angle disulfide unit that can effectively promote the cellular uptake of small molecules. Here, we constructed a novel disulfide unit-masked oligonucleotide hybrid based on a low dihedral angle disulfide unit, motivated by prodrug design. Cellular imaging results showed that such a system exhibited superior cellular delivery efficiency than the commercial Lipo2000 without cytotoxicity. The thiol reagents significantly reduced its cellular uptake (57-74%), which proved to be endocytosis-independent. In addition, in vivo distribution experiments in mice showed that such systems can be rapidly distributed in liver tissues with a duration of action of more than 24 h, representing a potential means of silencing genes involved in the pathogenesis of liver-like diseases. In conclusion, this trivalent disulfide unit-masked system we constructed can effectively deliver large oligonucleotide drugs.
Collapse
Affiliation(s)
- Lei Wang
- School of Pharmacy, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, China
| | - Xiao Liu
- School of Pharmacy, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, China
| | - Yiliang Wu
- School of Pharmacy, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, China
| | - Zhaoyan Ye
- School of Pharmacy, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, China
| | - Yiru Wang
- School of Pharmacy, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, China
| | - Shengshu Gao
- School of Pharmacy, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, China
| | - Hao Gong
- School of Pharmacy, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, China
| | - Yong Ling
- School of Pharmacy, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, China
| |
Collapse
|
2
|
D'Errico S, Greco F, Patrizia Falanga A, Tedeschi V, Piccialli I, Marzano M, Terracciano M, Secondo A, Roviello GN, Oliviero G, Borbone N. Probing the Ca 2+ mobilizing properties on primary cortical neurons of a new stable cADPR mimic. Bioorg Chem 2021; 117:105401. [PMID: 34662754 DOI: 10.1016/j.bioorg.2021.105401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/08/2021] [Accepted: 09/11/2021] [Indexed: 01/06/2023]
Abstract
Cyclic adenosine diphosphate ribose (cADPR) is a second messenger involved in the Ca2+ homeostasis. Its chemical instability prompted researchers to tune point by point its structure, obtaining stable analogues featuring interesting biological properties. One of the most challenging derivatives is the cyclic inosine diphosphate ribose (cIDPR), in which the hypoxanthine isosterically replaces the adenine. As our research focuses on the synthesis of N1 substituted inosines, in the last few years we have produced new flexible cIDPR analogues, where the northern ribose has been replaced by alkyl chains. Interestingly, some of them mobilized Ca2+ ions in PC12 cells. To extend our SAR studies, herein we report on the synthesis of a new stable cIDPR derivative which contains the 2″S,3″R dihydroxypentyl chain instead of the northern ribose. Interestingly, the new cyclic derivative and its open precursor induced an increase in intracellular calcium concentration ([Ca2+]i) with the same efficacy of the endogenous cADPR in rat primary cortical neurons.
Collapse
Affiliation(s)
- Stefano D'Errico
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, via Domenico Montesano, 49-80131 Napoli, Italy
| | - Francesca Greco
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, via Domenico Montesano, 49-80131 Napoli, Italy
| | - Andrea Patrizia Falanga
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, via Domenico Montesano, 49-80131 Napoli, Italy
| | - Valentina Tedeschi
- Dipartimento di Neuroscienze, Scienze Riproduttive e Odontostomatologiche, Divisione di Farmacologia, Università degli Studi di Napoli Federico II, Via Sergio Pansini, 5-80131 Napoli, Italy
| | - Ilaria Piccialli
- Dipartimento di Neuroscienze, Scienze Riproduttive e Odontostomatologiche, Divisione di Farmacologia, Università degli Studi di Napoli Federico II, Via Sergio Pansini, 5-80131 Napoli, Italy
| | - Maria Marzano
- Istituto di Cristallografia (IC) CNR, Via Amendola 122/O-70126, Bari, Italy
| | - Monica Terracciano
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, via Domenico Montesano, 49-80131 Napoli, Italy
| | - Agnese Secondo
- Dipartimento di Neuroscienze, Scienze Riproduttive e Odontostomatologiche, Divisione di Farmacologia, Università degli Studi di Napoli Federico II, Via Sergio Pansini, 5-80131 Napoli, Italy
| | | | - Giorgia Oliviero
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, via Sergio Pansini, 5-80131 Napoli, Italy.
| | - Nicola Borbone
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, via Domenico Montesano, 49-80131 Napoli, Italy
| |
Collapse
|
3
|
D'Errico S, Basso E, Falanga AP, Marzano M, Pozzan T, Piccialli V, Piccialli G, Oliviero G, Borbone N. New Linear Precursors of cIDPR Derivatives as Stable Analogs of cADPR: A Potent Second Messenger with Ca 2+-Modulating Activity Isolated from Sea Urchin Eggs. Mar Drugs 2019; 17:E476. [PMID: 31426471 PMCID: PMC6723567 DOI: 10.3390/md17080476] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/09/2019] [Accepted: 08/15/2019] [Indexed: 12/15/2022] Open
Abstract
Herein, we report on the synthesis of a small set of linear precursors of an inosine analogue of cyclic ADP-ribose (cADPR), a second messenger involved in Ca2+ mobilization from ryanodine receptor stores firstly isolated from sea urchin eggs extracts. The synthesized compounds were obtained starting from inosine and are characterized by an N1-alkyl chain replacing the "northern" ribose and a phosphate group attached at the end of the N1-alkyl chain and/or 5'-sugar positions. Preliminary Ca2+ mobilization assays, performed on differentiated C2C12 cells, are reported as well.
Collapse
Affiliation(s)
- Stefano D'Errico
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, via Domenico Montesano 49, Napoli 80131, Italy
- ISBE Italy/SYSBIO Centro di System Biology, Università di Milano-Bicocca, piazza delle Scienze 2, Milano 20126, Italy
| | - Emy Basso
- Consiglio Nazionale delle Ricerche, Dipartimento di Scienze Biomediche, Istituto di Neuroscienze (Sezione di Padova), viale Giuseppe Colombo 3, Padova 35131, Italy
- Dipartimento di Scienze Biomediche, Università degli Studi di Padova, via Ugo Bassi 58/b, Padova 35131, Italy
| | - Andrea Patrizia Falanga
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, via Sergio Pansini 5, Napoli 80131, Italy
| | - Maria Marzano
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, via Domenico Montesano 49, Napoli 80131, Italy
| | - Tullio Pozzan
- Consiglio Nazionale delle Ricerche, Dipartimento di Scienze Biomediche, Istituto di Neuroscienze (Sezione di Padova), viale Giuseppe Colombo 3, Padova 35131, Italy
- Dipartimento di Scienze Biomediche, Università degli Studi di Padova, via Ugo Bassi 58/b, Padova 35131, Italy
- Istituto Veneto di Medicina Molecolare, via Orus 2, Padova 35129, Italy
| | - Vincenzo Piccialli
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II, via Cintia, 26, Napoli 80126, Italy
| | - Gennaro Piccialli
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, via Domenico Montesano 49, Napoli 80131, Italy
- ISBE Italy/SYSBIO Centro di System Biology, Università di Milano-Bicocca, piazza delle Scienze 2, Milano 20126, Italy
| | - Giorgia Oliviero
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, via Sergio Pansini 5, Napoli 80131, Italy.
| | - Nicola Borbone
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, via Domenico Montesano 49, Napoli 80131, Italy
- ISBE Italy/SYSBIO Centro di System Biology, Università di Milano-Bicocca, piazza delle Scienze 2, Milano 20126, Italy
| |
Collapse
|
4
|
Gómora-Herrera D, Lijanova I, Olivares-Xometl O, Toscano A, Likhanova N. Synthesis of the symmetrical methylene diesters from carboxylic ionic liquids. CAN J CHEM 2017. [DOI: 10.1139/cjc-2017-0042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The reaction between carboxylic ionic liquids and dichloromethane, which provokes the formation of symmetrical methylene diesters, was carried out. The synthesis of these ionic liquid compounds was carried out in a microwave reactor, and the characterization by spectroscopic techniques of methylene diesters (methylene di-2-furoate, methylene di-2-picolinate, methylene dianthranilate, and methylene dioleate) is described and the crystal structures discussed. The crystal packing of methylene dianthranilate is characterized by trimer formation due to hydrogen bonding via interactions between the hydrogen atom of the primary amine group and the oxygen of the carboxylic group.
Collapse
Affiliation(s)
- D. Gómora-Herrera
- Instituto Politécnico Nacional, CIITEC, Cerrada Cecati S/N, Colonia Santa Catarina de Azcapotzalco, CP 02250, México, D.F., México
| | - I.V. Lijanova
- Instituto Politécnico Nacional, CIITEC, Cerrada Cecati S/N, Colonia Santa Catarina de Azcapotzalco, CP 02250, México, D.F., México
| | - O. Olivares-Xometl
- Benemérita Universidad Autónoma de Puebla, Facultad de Ingeniería Química, Av. San Claudio y 18 Sur, Col. San Manuel, Ciudad Universitaria, Puebla, 72570, México
| | - A. Toscano
- Instituto de Química, Universidad Nacional Autónoma de México, Cd. Universitaria, Circuito Exterior, Coyoacán, CP. 04510, México D.F., México
| | - N.V. Likhanova
- Instituto Mexicano del Petróleo, Gerencia de Ingeniería de Recuperación Adicional, Eje Central Norte Lázaro Cárdenas No. 152, Col. San Bartolo Atepehuacan, CP 07730, México, DF, México
| |
Collapse
|
5
|
|
6
|
Kilpatrick BS, Magalhaes J, Beavan MS, McNeill A, Gegg ME, Cleeter MWJ, Bloor-Young D, Churchill GC, Duchen MR, Schapira AH, Patel S. Endoplasmic reticulum and lysosomal Ca²⁺ stores are remodelled in GBA1-linked Parkinson disease patient fibroblasts. Cell Calcium 2015; 59:12-20. [PMID: 26691915 PMCID: PMC4751977 DOI: 10.1016/j.ceca.2015.11.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 11/06/2015] [Accepted: 11/25/2015] [Indexed: 11/19/2022]
Abstract
Mutations in β-glucocerebrosidase (encoded by GBA1) cause Gaucher disease (GD), a lysosomal storage disorder, and increase the risk of developing Parkinson disease (PD). The pathogenetic relationship between the two disorders is unclear. Here, we characterised Ca(2+) release in fibroblasts from type I GD and PD patients together with age-matched, asymptomatic carriers, all with the common N370S mutation in β-glucocerebrosidase. We show that endoplasmic reticulum (ER) Ca(2+) release was potentiated in GD and PD patient fibroblasts but not in cells from asymptomatic carriers. ER Ca(2+) signalling was also potentiated in fibroblasts from aged healthy subjects relative to younger individuals but not further increased in aged PD patient cells. Chemical or molecular inhibition of β-glucocerebrosidase in fibroblasts and a neuronal cell line did not affect ER Ca(2+) signalling suggesting defects are independent of enzymatic activity loss. Conversely, lysosomal Ca(2+) store content was reduced in PD fibroblasts and associated with age-dependent alterations in lysosomal morphology. Accelerated remodelling of Ca(2+) stores by pathogenic GBA1 mutations may therefore feature in PD.
Collapse
Affiliation(s)
- Bethan S Kilpatrick
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| | - Joana Magalhaes
- Department of Clinical Neurosciences, Institute of Neurology, University College London, London NW3 2PF, UK
| | - Michelle S Beavan
- Department of Clinical Neurosciences, Institute of Neurology, University College London, London NW3 2PF, UK
| | - Alisdair McNeill
- Department of Clinical Neurosciences, Institute of Neurology, University College London, London NW3 2PF, UK
| | - Matthew E Gegg
- Department of Clinical Neurosciences, Institute of Neurology, University College London, London NW3 2PF, UK
| | - Michael W J Cleeter
- Department of Clinical Neurosciences, Institute of Neurology, University College London, London NW3 2PF, UK
| | | | - Grant C Churchill
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Michael R Duchen
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Anthony H Schapira
- Department of Clinical Neurosciences, Institute of Neurology, University College London, London NW3 2PF, UK
| | - Sandip Patel
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
7
|
Wei W, Graeff R, Yue J. Roles and mechanisms of the CD38/cyclic adenosine diphosphate ribose/Ca 2+ signaling pathway. World J Biol Chem 2014; 5:58-67. [PMID: 24600514 PMCID: PMC3942542 DOI: 10.4331/wjbc.v5.i1.58] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 11/09/2013] [Accepted: 12/19/2013] [Indexed: 02/05/2023] Open
Abstract
Mobilization of intracellular Ca2+ stores is involved in many diverse cell functions, including: cell proliferation; differentiation; fertilization; muscle contraction; secretion of neurotransmitters, hormones and enzymes; and lymphocyte activation and proliferation. Cyclic adenosine diphosphate ribose (cADPR) is an endogenous Ca2+ mobilizing nucleotide present in many cell types and species, from plants to animals. cADPR is formed by ADP-ribosyl cyclases from nicotinamide adenine dinucleotide. The main ADP-ribosyl cyclase in mammals is CD38, a multi-functional enzyme and a type II membrane protein. It has been shown that many extracellular stimuli can induce cADPR production that leads to calcium release or influx, establishing cADPR as a second messenger. cADPR has been linked to a wide variety of cellular processes, but the molecular mechanisms regarding cADPR signaling remain elusive. The aim of this review is to summarize the CD38/cADPR/Ca2+ signaling pathway, focusing on the recent advances involving the mechanism and physiological functions of cADPR-mediated Ca2+ mobilization.
Collapse
|
8
|
Sánchez-Tusie AA, Vasudevan SR, Churchill GC, Nishigaki T, Treviño CL. Characterization of NAADP-mediated calcium signaling in human spermatozoa. Biochem Biophys Res Commun 2013; 443:531-6. [PMID: 24326068 DOI: 10.1016/j.bbrc.2013.12.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 12/02/2013] [Indexed: 11/17/2022]
Abstract
Ca(2+) signaling in spermatozoa plays a crucial role during processes such as capacitation and release of the acrosome, but the underlying molecular mechanisms still remain unclear. Nicotinic acid adenine dinucleotide phosphate (NAADP) is a potent Ca(2+)-releasing second messenger in a variety of cellular processes. The presence of a NAADP synthesizing enzyme in sea urchin sperm has been previously reported, suggesting a possible role of NAADP in sperm Ca(2+) signaling. In this work we used in vitro enzyme assays to show the presence of a novel NAADP synthesizing enzyme in human sperm, and to characterize its sensitivity to Ca(2+) and pH. Ca(2+) fluorescence imaging studies demonstrated that the permeable form of NAADP (NAADP-AM) induces intracellular [Ca(2+)] increases in human sperm even in the absence of extracellular Ca(2+). Using LysoTracker, a fluorescent probe that selectively accumulates in acidic compartments, we identified two such stores in human sperm cells. Their acidic nature was further confirmed by the reduction in staining intensity observed upon inhibition of the endo-lysosomal proton pump with Bafilomycin, or after lysosomal bursting with glycyl-l-phenylalanine-2-naphthylamide. The selective fluorescent NAADP analog, Ned-19, stained the same subcellular regions as LysoTracker, suggesting that these stores are the targets of NAADP action.
Collapse
Affiliation(s)
- A A Sánchez-Tusie
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - S R Vasudevan
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, England, UK
| | - G C Churchill
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, England, UK
| | - T Nishigaki
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - C L Treviño
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico.
| |
Collapse
|