1
|
Mlera L, Collins-McMillen D, Zeltzer S, Buehler JC, Moy M, Zarrella K, Caviness K, Cicchini L, Tafoya DJ, Goodrum F. Liver X Receptor-Inducible Host E3 Ligase IDOL Targets a Human Cytomegalovirus Reactivation Determinant. J Virol 2023; 97:e0075823. [PMID: 37338407 PMCID: PMC10373547 DOI: 10.1128/jvi.00758-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 05/30/2023] [Indexed: 06/21/2023] Open
Abstract
Liver X receptor (LXR) signaling broadly restricts virus replication; however, the mechanisms of restriction are poorly defined. Here, we demonstrate that the cellular E3 ligase LXR-inducible degrader of low-density lipoprotein receptor (IDOL) targets the human cytomegalovirus (HMCV) UL136p33 protein for turnover. UL136 encodes multiple proteins that differentially impact latency and reactivation. UL136p33 is a determinant of reactivation. UL136p33 is targeted for rapid turnover by the proteasome, and its stabilization by mutation of lysine residues to arginine results in a failure to quiet replication for latency. We show that IDOL targets UL136p33 for turnover but not the stabilized variant. IDOL is highly expressed in undifferentiated hematopoietic cells where HCMV establishes latency but is sharply downregulated upon differentiation, a stimulus for reactivation. We hypothesize that IDOL maintains low levels of UL136p33 for the establishment of latency. Consistent with this hypothesis, knockdown of IDOL impacts viral gene expression in wild-type (WT) HCMV infection but not in infection where UL136p33 has been stabilized. Furthermore, the induction of LXR signaling restricts WT HCMV reactivation from latency but does not affect the replication of a recombinant virus expressing a stabilized variant of UL136p33. This work establishes the UL136p33-IDOL interaction as a key regulator of the bistable switch between latency and reactivation. It further suggests a model whereby a key viral determinant of HCMV reactivation is regulated by a host E3 ligase and acts as a sensor at the tipping point between the decision to maintain the latent state or exit latency for reactivation. IMPORTANCE Herpesviruses establish lifelong latent infections, which pose an important risk for disease particularly in the immunocompromised. Our work is focused on the betaherpesvirus human cytomegalovirus (HCMV) that latently infects the majority of the population worldwide. Defining the mechanisms by which HCMV establishes latency or reactivates from latency is important for controlling viral disease. Here, we demonstrate that the cellular inducible degrader of low-density lipoprotein receptor (IDOL) targets a HCMV determinant of reactivation for degradation. The instability of this determinant is important for the establishment of latency. This work defines a pivotal virus-host interaction that allows HCMV to sense changes in host biology to navigate decisions to establish latency or to replicate.
Collapse
Affiliation(s)
- Luwanika Mlera
- Department of Immunobiology, University of Arizona, Tucson, Arizona, USA
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| | - Donna Collins-McMillen
- Department of Immunobiology, University of Arizona, Tucson, Arizona, USA
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| | - Sebastian Zeltzer
- Department of Immunobiology, University of Arizona, Tucson, Arizona, USA
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| | - Jason C. Buehler
- Department of Immunobiology, University of Arizona, Tucson, Arizona, USA
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| | - Melissa Moy
- Graduate Interdisciplinary Program in Cancer Biology, University of Arizona, Tucson, Arizona, USA
| | - Kristen Zarrella
- Department of Immunobiology, University of Arizona, Tucson, Arizona, USA
| | - Katie Caviness
- Department of Immunobiology, University of Arizona, Tucson, Arizona, USA
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
- Graduate Interdisciplinary Program in Genetics, University of Arizona, Tucson, Arizona, USA
| | - Louis Cicchini
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, USA
| | - David J. Tafoya
- Department of Immunobiology, University of Arizona, Tucson, Arizona, USA
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| | - Felicia Goodrum
- Department of Immunobiology, University of Arizona, Tucson, Arizona, USA
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
- Graduate Interdisciplinary Program in Cancer Biology, University of Arizona, Tucson, Arizona, USA
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
2
|
Ahmed N, Ahmed N, Filip R, Pezacki JP. Nuclear Hormone Receptors and Host-Virus Interactions. NUCLEAR RECEPTORS 2021:315-348. [DOI: 10.1007/978-3-030-78315-0_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
3
|
Abstract
BACKGROUND 25-hydroxylase (CH25H) is an interferon-stimulated gene (ISG), which catalyzes the synthesis of 25-hydroxycholesterol (25HC). 25HC intervenes in metabolic and infectious processes and controls cholesterol homeostasis and influences viral entry into host cells. We verified whether natural resistance to HIV-1 infection in HIV-1-exposed seronegative (HESN) individuals is at least partially mediated by particularities in sterol biosynthesis. METHODS Peripheral blood mononuclear cells (PBMCs) and monocyte-derived macrophages (MDMs) isolated from 15 sexually exposed HESN and 15 healthy controls were in vitro HIV-1-infected and analyzed for: percentage of IFNα-producing plasmacytoid dendritic cells (pDCs); cholesterol signaling and inflammatory response RNA expression; resistance to HIV-1 infection. MDMs from five healthy controls were in vitro HIV-1-infected in the absence/presence of exogenously added 25HC. RESULTS IFNα-producing pDCs were augmented in HESN compared with healthy controls both in unstimulated and in in vitro HIV-1-infected PBMCs (P < 0.001). An increased expression of CH25H and of a number of genes involved in cholesterol metabolism (ABCA1, ABCG1, CYP7B1, LXRα, OSBP, PPARγ, SCARB1) was observed as well; this, was associated with a reduced susceptibility to in-vitro HIV-1-infection of PBMCs and MDMs (P < 0.01). Notably, addition of 25HC to MDMs resulted in increased cholesterol efflux and augmented resistance to in-vitro HIV-1-infection. CONCLUSION Results herein show that in HESN sterol metabolism might be particularly efficient. This could be related to the activation of the IFNα pathway and results into a reduced susceptibility to in-vitro HIV-1 infection. These results suggest a possible basis for therapeutic interventions to modulate HIV-1 infection.
Collapse
|
4
|
LXR Alpha Restricts Gammaherpesvirus Reactivation from Latently Infected Peritoneal Cells. J Virol 2019; 93:JVI.02071-18. [PMID: 30602604 DOI: 10.1128/jvi.02071-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 12/19/2018] [Indexed: 12/28/2022] Open
Abstract
Gammaherpesviruses are ubiquitous viruses that establish lifelong infections. Importantly, these viruses are associated with numerous cancers and lymphoproliferative diseases. While risk factors for developing gammaherpesvirus-driven cancers are poorly understood, it is clear that elevated viral reactivation from latency often precedes oncogenesis. Here, we demonstrate that the liver X receptor alpha isoform (LXRα) restricts gammaherpesvirus reactivation in an anatomic-site-specific manner. We have previously demonstrated that deficiency of both LXR isoforms (α and β) leads to an increase in fatty acid and cholesterol synthesis in primary macrophage cultures, with a corresponding increase in gammaherpesvirus replication. Interestingly, expression of fatty acid synthesis genes was not derepressed in LXRα-deficient hosts, indicating that the antiviral effects of LXRα are independent of lipogenesis. Additionally, the critical host defenses against gammaherpesvirus reactivation, virus-specific CD8+ T cells and interferon (IFN) signaling, remained intact in the absence of LXRα. Remarkably, using a murine gammaherpesvirus 68 (MHV68) reporter virus, we discovered that LXRα expression dictates the cellular tropism of MHV68 in the peritoneal cavity. Specifically, LXRα-/- mice exhibit reduced latency within the peritoneal B cell compartment and elevated latency within F4/80+ cells. Thus, LXRα restricts gammaherpesvirus reactivation through a novel mechanism that is independent of the known CD8+ T cell-based antiviral responses or changes in lipid synthesis and likely involves changes in the tropism of MHV68 in the peritoneal cavity.IMPORTANCE Liver X receptors (LXRs) are nuclear receptors that mediate cholesterol and fatty acid homeostasis. Importantly, as ligand-activated transcription factors, LXRs represent potential targets for the treatment of hypercholesterolemia and atherosclerosis. Here, we demonstrate that LXRα, one of the two LXR isoforms, restricts reactivation of latent gammaherpesvirus from peritoneal cells. As gammaherpesviruses are ubiquitous oncogenic agents, LXRs may represent a targetable host factor for the treatment of poorly controlled gammaherpesvirus infection and associated lymphomagenesis.
Collapse
|
5
|
Abstract
BACKGROUND HIV-associated atherosclerosis is a major comorbidity due, in part, to systemic effects of the virus on cholesterol metabolism. HIV protein Nef plays an important role in this pathology by impairing maturation of the main cellular cholesterol transporter ATP-Binding Cassette (ABCA) 1. ABCA1 maturation critically depends on calnexin, an integral endoplasmic reticulum membrane chaperone, and Nef binds to the cytoplasmic domain of calnexin and impairs interaction of calnexin with ABCA1. Overarching goal of the present study was to model Nef-calnexin interaction interface, and identify small molecule compounds potentially inhibiting this interaction. METHODS Molecular dynamics was utilized to build structure model of calnexin cytoplasmic domain, followed by global docking combined with application of QASDOM software developed by us for efficient analysis of receptor-ligand complexes. Structure-based virtual screening was performed for all sites identified by docking. A soluble analogue of a compound from the screening results list was tested for ability to down-regulate ABCA1. RESULTS We identified major interaction sites in calnexin and reciprocal sites in Nef. Virtual screening yielded a number of small-molecule compounds potentially blocking a calnexin site. Interestingly, one of the compounds, NSC13987, was previously identified by us as an inhibitor targeting a Nef site. An analogue of NSC13987, AMS-55, potently reversed the negative effect of Nef on ABCA1 abundance. CONCLUSIONS We have modelled Nef-calnexin interaction, predicted small molecule compounds that can potentially inhibit this interaction, and experimentally tested one of these compounds, confirming its effectiveness. These findings provide a platform for searching for new therapeutic agents to treat HIV-associated comorbidities.
Collapse
|
6
|
Schulman IG. Liver X receptors link lipid metabolism and inflammation. FEBS Lett 2017; 591:2978-2991. [PMID: 28555747 DOI: 10.1002/1873-3468.12702] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/23/2017] [Indexed: 12/14/2022]
Abstract
The response of immune cells to pathogens is often associated with changes in the flux through basic metabolic pathways. Indeed, in many cases changes in metabolism appear to be necessary for a robust immune response. The Liver X receptors (LXRs) are members of the nuclear hormone receptor superfamily that regulate gene networks controlling cholesterol and lipid metabolism. In immune cells, particularly in macrophages, LXRs also inhibit proinflammatory gene expression. This Review will highlight recent studies that connect LXR-dependent control of lipid metabolism to regulation of the immune response.
Collapse
Affiliation(s)
- Ira G Schulman
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
7
|
Hunegnaw R, Vassylyeva M, Dubrovsky L, Pushkarsky T, Sviridov D, Anashkina AA, Üren A, Brichacek B, Vassylyev DG, Adzhubei AA, Bukrinsky M. Interaction Between HIV-1 Nef and Calnexin: From Modeling to Small Molecule Inhibitors Reversing HIV-Induced Lipid Accumulation. Arterioscler Thromb Vasc Biol 2016; 36:1758-71. [PMID: 27470515 DOI: 10.1161/atvbaha.116.307997] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 07/13/2016] [Indexed: 01/22/2023]
Abstract
OBJECTIVE HIV-infected patients are at an increased risk of developing atherosclerosis, in part because of downmodulation and functional impairment of ATP-binding cassette A1 (ABCA1) cholesterol transporter by the HIV-1 protein Nef. The mechanism of this effect involves Nef interacting with an ER chaperone calnexin and disrupting calnexin binding to ABCA1, leading to ABCA1 retention in ER, its degradation and resulting suppression of cholesterol efflux. However, molecular details of Nef-calnexin interaction remained unknown, limiting the translational impact of this finding. APPROACH AND RESULTS Here, we used molecular modeling and mutagenesis to characterize Nef-calnexin interaction and to identify small molecule compounds that could block it. We demonstrated that the interaction between Nef and calnexin is direct and can be reconstituted using recombinant proteins in vitro with a binding affinity of 89.1 nmol/L measured by surface plasmon resonance. The cytoplasmic tail of calnexin is essential and sufficient for interaction with Nef, and binds Nef with an affinity of 9.4 nmol/L. Replacing lysine residues in positions 4 and 7 of Nef with alanines abrogates Nef-calnexin interaction, prevents ABCA1 downregulation by Nef, and preserves cholesterol efflux from HIV-infected cells. Through virtual screening of the National Cancer Institute library of compounds, we identified a compound, 1[(7-oxo-7H-benz[de]anthracene-3-yl)amino]anthraquinone, which blocked Nef-calnexin interaction, partially restored ABCA1 activity in HIV-infected cells, and reduced foam cell formation in a culture of HIV-infected macrophages. CONCLUSION This study identifies potential targets that can be exploited to block the pathogenic effect of HIV infection on cholesterol metabolism and prevent atherosclerosis in HIV-infected subjects.
Collapse
Affiliation(s)
- Ruth Hunegnaw
- From the George Washington University School of Medicine and Health Sciences, Washington, DC (R.H., L.D., T.P., B.B., A.A.A., M.B.); University of Alabama School of Medicine and Dentistry, Birmingham, (M.V., D.V.); Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia (D.S.); Engelhardt Institute of Molecular Biology RAS, Moscow, Russia (A.A. Anashkina, A.A. Adzhubei); and Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Washington, DC (A.Ü)
| | - Marina Vassylyeva
- From the George Washington University School of Medicine and Health Sciences, Washington, DC (R.H., L.D., T.P., B.B., A.A.A., M.B.); University of Alabama School of Medicine and Dentistry, Birmingham, (M.V., D.V.); Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia (D.S.); Engelhardt Institute of Molecular Biology RAS, Moscow, Russia (A.A. Anashkina, A.A. Adzhubei); and Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Washington, DC (A.Ü)
| | - Larisa Dubrovsky
- From the George Washington University School of Medicine and Health Sciences, Washington, DC (R.H., L.D., T.P., B.B., A.A.A., M.B.); University of Alabama School of Medicine and Dentistry, Birmingham, (M.V., D.V.); Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia (D.S.); Engelhardt Institute of Molecular Biology RAS, Moscow, Russia (A.A. Anashkina, A.A. Adzhubei); and Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Washington, DC (A.Ü)
| | - Tatiana Pushkarsky
- From the George Washington University School of Medicine and Health Sciences, Washington, DC (R.H., L.D., T.P., B.B., A.A.A., M.B.); University of Alabama School of Medicine and Dentistry, Birmingham, (M.V., D.V.); Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia (D.S.); Engelhardt Institute of Molecular Biology RAS, Moscow, Russia (A.A. Anashkina, A.A. Adzhubei); and Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Washington, DC (A.Ü)
| | - Dmitri Sviridov
- From the George Washington University School of Medicine and Health Sciences, Washington, DC (R.H., L.D., T.P., B.B., A.A.A., M.B.); University of Alabama School of Medicine and Dentistry, Birmingham, (M.V., D.V.); Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia (D.S.); Engelhardt Institute of Molecular Biology RAS, Moscow, Russia (A.A. Anashkina, A.A. Adzhubei); and Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Washington, DC (A.Ü)
| | - Anastasia A Anashkina
- From the George Washington University School of Medicine and Health Sciences, Washington, DC (R.H., L.D., T.P., B.B., A.A.A., M.B.); University of Alabama School of Medicine and Dentistry, Birmingham, (M.V., D.V.); Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia (D.S.); Engelhardt Institute of Molecular Biology RAS, Moscow, Russia (A.A. Anashkina, A.A. Adzhubei); and Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Washington, DC (A.Ü)
| | - Aykut Üren
- From the George Washington University School of Medicine and Health Sciences, Washington, DC (R.H., L.D., T.P., B.B., A.A.A., M.B.); University of Alabama School of Medicine and Dentistry, Birmingham, (M.V., D.V.); Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia (D.S.); Engelhardt Institute of Molecular Biology RAS, Moscow, Russia (A.A. Anashkina, A.A. Adzhubei); and Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Washington, DC (A.Ü)
| | - Beda Brichacek
- From the George Washington University School of Medicine and Health Sciences, Washington, DC (R.H., L.D., T.P., B.B., A.A.A., M.B.); University of Alabama School of Medicine and Dentistry, Birmingham, (M.V., D.V.); Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia (D.S.); Engelhardt Institute of Molecular Biology RAS, Moscow, Russia (A.A. Anashkina, A.A. Adzhubei); and Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Washington, DC (A.Ü)
| | - Dmitry G Vassylyev
- From the George Washington University School of Medicine and Health Sciences, Washington, DC (R.H., L.D., T.P., B.B., A.A.A., M.B.); University of Alabama School of Medicine and Dentistry, Birmingham, (M.V., D.V.); Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia (D.S.); Engelhardt Institute of Molecular Biology RAS, Moscow, Russia (A.A. Anashkina, A.A. Adzhubei); and Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Washington, DC (A.Ü)
| | - Alexei A Adzhubei
- From the George Washington University School of Medicine and Health Sciences, Washington, DC (R.H., L.D., T.P., B.B., A.A.A., M.B.); University of Alabama School of Medicine and Dentistry, Birmingham, (M.V., D.V.); Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia (D.S.); Engelhardt Institute of Molecular Biology RAS, Moscow, Russia (A.A. Anashkina, A.A. Adzhubei); and Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Washington, DC (A.Ü).
| | - Michael Bukrinsky
- From the George Washington University School of Medicine and Health Sciences, Washington, DC (R.H., L.D., T.P., B.B., A.A.A., M.B.); University of Alabama School of Medicine and Dentistry, Birmingham, (M.V., D.V.); Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia (D.S.); Engelhardt Institute of Molecular Biology RAS, Moscow, Russia (A.A. Anashkina, A.A. Adzhubei); and Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Washington, DC (A.Ü).
| |
Collapse
|
8
|
Akkina R, Allam A, Balazs AB, Blankson JN, Burnett JC, Casares S, Garcia JV, Hasenkrug KJ, Kashanchi F, Kitchen SG, Klein F, Kumar P, Luster AD, Poluektova LY, Rao M, Sanders-Beer BE, Shultz LD, Zack JA. Improvements and Limitations of Humanized Mouse Models for HIV Research: NIH/NIAID "Meet the Experts" 2015 Workshop Summary. AIDS Res Hum Retroviruses 2016; 32:109-19. [PMID: 26670361 DOI: 10.1089/aid.2015.0258] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The number of humanized mouse models for the human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome (AIDS) and other infectious diseases has expanded rapidly over the past 8 years. Highly immunodeficient mouse strains, such as NOD/SCID/gamma chain(null) (NSG, NOG), support better human hematopoietic cell engraftment. Another improvement is the derivation of highly immunodeficient mice, transgenic with human leukocyte antigens (HLAs) and cytokines that supported development of HLA-restricted human T cells and heightened human myeloid cell engraftment. Humanized mice are also used to study the HIV reservoir using new imaging techniques. Despite these advances, there are still limitations in HIV immune responses and deficits in lymphoid structures in these models in addition to xenogeneic graft-versus-host responses. To understand and disseminate the improvements and limitations of humanized mouse models to the scientific community, the NIH sponsored and convened a meeting on April 15, 2015 to discuss the state of knowledge concerning these questions and best practices for selecting a humanized mouse model for a particular scientific investigation. This report summarizes the findings of the NIH meeting.
Collapse
Affiliation(s)
- Ramesh Akkina
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado
| | - Atef Allam
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Silver Spring, Maryland
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | | | - Joel N. Blankson
- Department of Medicine, Center for AIDS Research, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - John C. Burnett
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, California
| | - Sofia Casares
- U.S. Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland
| | - J. Victor Garcia
- Division of Infectious Diseases, Department of Medicine, UNC Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Kim J. Hasenkrug
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana
| | - Fatah Kashanchi
- School of Systems Biology, National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, Virginia
| | - Scott G. Kitchen
- Departments of Medicine and Microbiology, Immunology and Molecular Genetics, UCLA AIDS Institute, Los Angeles, California
| | - Florian Klein
- First Department of Internal Medicine, University Hospital of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Priti Kumar
- School of Medicine, Infectious Diseases/Internal Medicine, Yale University, New Haven, Connecticut
| | - Andrew D. Luster
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Larisa Y. Poluektova
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska
| | - Mangala Rao
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Brigitte E. Sanders-Beer
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | | | - Jerome A. Zack
- Departments of Medicine and Microbiology, Immunology and Molecular Genetics, UCLA AIDS Institute, Los Angeles, California
| |
Collapse
|
9
|
Ramezani A, Dubrovsky L, Pushkarsky T, Sviridov D, Karandish S, Raj DS, Fitzgerald ML, Bukrinsky M. Stimulation of Liver X Receptor Has Potent Anti-HIV Effects in a Humanized Mouse Model of HIV Infection. J Pharmacol Exp Ther 2015; 354:376-83. [PMID: 26126533 DOI: 10.1124/jpet.115.224485] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 06/29/2015] [Indexed: 01/24/2023] Open
Abstract
Previous studies demonstrated that liver X receptor (LXR) agonists inhibit human immunodeficiency virus (HIV) replication by upregulating cholesterol transporter ATP-binding cassette A1 (ABCA1), suppressing HIV production, and reducing infectivity of produced virions. In this study, we extended these observations by analyzing the effect of the LXR agonist T0901317 [N-[4-(1,1,1,3,3,3-hexafluoro-2-hydroxypropan-2-yl)phenyl]-N-(2,2,2-trifluoroethyl)benzenesulfonamide] on the ongoing HIV infection and investigating the possibility of using LXR agonist for pre-exposure prophylaxis of HIV infection in a humanized mouse model. Pre-exposure of monocyte-derived macrophages to T0901317 reduced susceptibility of these cells to HIV infection in vitro. This protective effect lasted for up to 4 days after treatment termination and correlated with upregulated expression of ABCA1, reduced abundance of lipid rafts, and reduced fusion of the cells with HIV. Pre-exposure of peripheral blood leukocytes to T0901317 provided only a short-term protection against HIV infection. Treatment of HIV-exposed humanized mice with LXR agonist starting 2 weeks postinfection substantially reduced viral load. When eight humanized mice were pretreated with LXR agonist prior to HIV infection, five animals were protected from infection, two had viral load at the limit of detection, and one had viral load significantly reduced relative to mock-treated controls. T0901317 pretreatment also reduced HIV-induced dyslipidemia in infected mice. In conclusion, these results reveal a novel link between LXR stimulation and cell resistance to HIV infection and suggest that LXR agonists may be good candidates for development as anti-HIV agents, in particular for pre-exposure prophylaxis of HIV infection.
Collapse
Affiliation(s)
- Ali Ramezani
- George Washington University School of Medicine and Health Sciences, Washington, DC (A.R., L.D., T.P., S.K., D.S.R., M.B.); Baker International Diabetes Institute, Heart and Diabetes Institute, Melbourne, Victoria, Australia (D.S.); and Harvard Medical School, Lipid Metabolism Unit, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts (M.L.F.)
| | - Larisa Dubrovsky
- George Washington University School of Medicine and Health Sciences, Washington, DC (A.R., L.D., T.P., S.K., D.S.R., M.B.); Baker International Diabetes Institute, Heart and Diabetes Institute, Melbourne, Victoria, Australia (D.S.); and Harvard Medical School, Lipid Metabolism Unit, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts (M.L.F.)
| | - Tatiana Pushkarsky
- George Washington University School of Medicine and Health Sciences, Washington, DC (A.R., L.D., T.P., S.K., D.S.R., M.B.); Baker International Diabetes Institute, Heart and Diabetes Institute, Melbourne, Victoria, Australia (D.S.); and Harvard Medical School, Lipid Metabolism Unit, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts (M.L.F.)
| | - Dmitri Sviridov
- George Washington University School of Medicine and Health Sciences, Washington, DC (A.R., L.D., T.P., S.K., D.S.R., M.B.); Baker International Diabetes Institute, Heart and Diabetes Institute, Melbourne, Victoria, Australia (D.S.); and Harvard Medical School, Lipid Metabolism Unit, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts (M.L.F.)
| | - Sara Karandish
- George Washington University School of Medicine and Health Sciences, Washington, DC (A.R., L.D., T.P., S.K., D.S.R., M.B.); Baker International Diabetes Institute, Heart and Diabetes Institute, Melbourne, Victoria, Australia (D.S.); and Harvard Medical School, Lipid Metabolism Unit, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts (M.L.F.)
| | - Dominic S Raj
- George Washington University School of Medicine and Health Sciences, Washington, DC (A.R., L.D., T.P., S.K., D.S.R., M.B.); Baker International Diabetes Institute, Heart and Diabetes Institute, Melbourne, Victoria, Australia (D.S.); and Harvard Medical School, Lipid Metabolism Unit, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts (M.L.F.)
| | - Michael L Fitzgerald
- George Washington University School of Medicine and Health Sciences, Washington, DC (A.R., L.D., T.P., S.K., D.S.R., M.B.); Baker International Diabetes Institute, Heart and Diabetes Institute, Melbourne, Victoria, Australia (D.S.); and Harvard Medical School, Lipid Metabolism Unit, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts (M.L.F.)
| | - Michael Bukrinsky
- George Washington University School of Medicine and Health Sciences, Washington, DC (A.R., L.D., T.P., S.K., D.S.R., M.B.); Baker International Diabetes Institute, Heart and Diabetes Institute, Melbourne, Victoria, Australia (D.S.); and Harvard Medical School, Lipid Metabolism Unit, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts (M.L.F.)
| |
Collapse
|
10
|
Lin CJ, Lai CK, Kao MC, Wu LT, Lo UG, Lin LC, Chen YA, Lin H, Hsieh JT, Lai CH, Lin CD. Impact of cholesterol on disease progression. Biomedicine (Taipei) 2015; 5:7. [PMID: 26048694 PMCID: PMC4502043 DOI: 10.7603/s40681-015-0007-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 04/30/2015] [Indexed: 12/11/2022] Open
Abstract
Cholesterol-rich microdomains (also called lipid rafts), where platforms for signaling are provided and thought to be associated with microbe-induced pathogenesis and lead to cancer progression. After treatment of cells with cholesterol disrupting or usurping agents, raft-associated proteins and lipids can be dissociated, and this renders the cell structure nonfunctional and therefore mitigates disease severity. This review focuses on the role of cholesterol in disease progression including cancer development and infectious diseases. Understanding the molecular mechanisms of cholesterol in these diseases may provide insight into the development of novel strategies for controlling these diseases in clinical scenarios.
Collapse
Affiliation(s)
- Chun-Jung Lin
- Department of Urology, University of Texas Southwestern Medical Center, Texas, Dallas, 75235, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Jennelle L, Hunegnaw R, Dubrovsky L, Pushkarsky T, Fitzgerald ML, Sviridov D, Popratiloff A, Brichacek B, Bukrinsky M. HIV-1 protein Nef inhibits activity of ATP-binding cassette transporter A1 by targeting endoplasmic reticulum chaperone calnexin. J Biol Chem 2014; 289:28870-84. [PMID: 25170080 DOI: 10.1074/jbc.m114.583591] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
HIV-infected patients are at increased risk of developing atherosclerosis, in part due to an altered high density lipoprotein profile exacerbated by down-modulation and impairment of ATP-binding cassette transporter A1 (ABCA1) activity by the HIV-1 protein Nef. However, the mechanisms of this Nef effect remain unknown. Here, we show that Nef interacts with an endoplasmic reticulum chaperone calnexin, which regulates folding and maturation of glycosylated proteins. Nef disrupted interaction between calnexin and ABCA1 but increased affinity and enhanced interaction of calnexin with HIV-1 gp160. The Nef mutant that did not bind to calnexin did not affect the calnexin-ABCA1 interaction. Interaction with calnexin was essential for functionality of ABCA1, as knockdown of calnexin blocked the ABCA1 exit from the endoplasmic reticulum, reduced ABCA1 abundance, and inhibited cholesterol efflux; the same effects were observed after Nef overexpression. However, the effects of calnexin knockdown and Nef on cholesterol efflux were not additive; in fact, the combined effect of these two factors together did not differ significantly from the effect of calnexin knockdown alone. Interestingly, gp160 and ABCA1 interacted with calnexin differently; although gp160 binding to calnexin was dependent on glycosylation, glycosylation was of little importance for the interaction between ABCA1 and calnexin. Thus, Nef regulates the activity of calnexin to stimulate its interaction with gp160 at the expense of ABCA1. This study identifies a mechanism for Nef-dependent inactivation of ABCA1 and dysregulation of cholesterol metabolism.
Collapse
Affiliation(s)
- Lucas Jennelle
- From the George Washington University School of Medicine and Health Sciences, Washington, D. C. 20037
| | - Ruth Hunegnaw
- From the George Washington University School of Medicine and Health Sciences, Washington, D. C. 20037
| | - Larisa Dubrovsky
- From the George Washington University School of Medicine and Health Sciences, Washington, D. C. 20037
| | - Tatiana Pushkarsky
- From the George Washington University School of Medicine and Health Sciences, Washington, D. C. 20037
| | - Michael L Fitzgerald
- the Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114
| | - Dmitri Sviridov
- the Baker IDI Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia, and
| | - Anastas Popratiloff
- the George Washington Center for Microscopy and Image Analysis, Office of VP for Research, Washington, D. C. 20037
| | - Beda Brichacek
- From the George Washington University School of Medicine and Health Sciences, Washington, D. C. 20037
| | - Michael Bukrinsky
- From the George Washington University School of Medicine and Health Sciences, Washington, D. C. 20037,
| |
Collapse
|
12
|
Abstract
A small percentage of HIV-infected subjects (2 to 15%) are able to control disease progression for many years without antiretroviral therapy. Years of intense studies of virologic and immunologic mechanisms of disease control in such individuals yielded a number of possible host genes that could be responsible for the preservation of immune functions, from immune surveillance genes, chemokines, or their receptors to anti-HIV restriction factors. A recent mBio paper by Rappocciolo et al. (G. Rappocciolo, M. Jais, P. Piazza, T. A. Reinhart, S. J. Berendam, L. Garcia-Exposito, P. Gupta, and C. R. Rinaldo, mBio 5:e01031-13, 2014) describes another potential factor controlling disease progression: cholesterol levels in antigen-presenting cells. In this commentary, we provide a brief background of the role of cholesterol in HIV infection, discuss the results of the study by Rappocciolo et al., and present the implications of their findings.
Collapse
|
13
|
Cui HL, Ditiatkovski M, Kesani R, Bobryshev YV, Liu Y, Geyer M, Mukhamedova N, Bukrinsky M, Sviridov D. HIV protein Nef causes dyslipidemia and formation of foam cells in mouse models of atherosclerosis. FASEB J 2014; 28:2828-39. [PMID: 24642731 DOI: 10.1096/fj.13-246876] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Patients with HIV are at an increased risk of cardiovascular disease. In this study we investigated the effect of Nef, a secreted HIV protein responsible for the impairment of cholesterol efflux, on the development of atherosclerosis in two animal models. ApoE(-/-) mice fed a high-fat diet and C57BL/6 mice fed a high-fat, high-cholesterol diet were injected with recombinant Nef (40 ng/injection) or vehicle, and the effects of Nef on development of atherosclerosis, inflammation, and dyslipidemia were assessed. In apoE(-/-) mice, Nef significantly increased the size of atherosclerotic lesions and caused vessel remodeling. Nef caused elevation of total cholesterol and triglyceride levels in the plasma while reducing high-density lipoprotein cholesterol levels. These changes were accompanied by a reduction of ABCA1 abundance in the liver, but not in the vessels. In C57BL/6 mice, Nef caused a significant number of lipid-laden macrophages presented in adventitia of the vessels; these cells were absent from the vessels of control mice. Nef caused sharp elevations of plasma triglyceride levels and body weight. Taken together, our findings suggest that Nef causes dyslipidemia and accumulation of cholesterol in macrophages within the vessel wall, supporting the role of Nef in pathogenesis of atherosclerosis in HIV-infected patients.-Cui, H. L., Ditiatkovski, M., Kesani, R., Bobryshev, Y. V., Liu, Y., Geyer, M., Mukhamedova, N., Bukrinsky, M., Sviridov, D. HIV protein Nef causes dyslipidemia and formation of foam cells in mouse models of atherosclerosis.
Collapse
Affiliation(s)
- Huanhuan L Cui
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | | | - Rajitha Kesani
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Yuri V Bobryshev
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Yingying Liu
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Matthias Geyer
- Center for Advanced European Studies and Research (CAESAR), Bonn, Germany; and
| | | | - Michael Bukrinsky
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, District of Columbia, USA
| | - Dmitri Sviridov
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia;
| |
Collapse
|
14
|
Spann NJ, Glass CK. Sterols and oxysterols in immune cell function. Nat Immunol 2013; 14:893-900. [PMID: 23959186 DOI: 10.1038/ni.2681] [Citation(s) in RCA: 201] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Accepted: 07/02/2013] [Indexed: 12/12/2022]
Abstract
Intermediates in the cholesterol-biosynthetic pathway and oxysterol derivatives of cholesterol regulate diverse cellular processes. Recent studies have expanded the appreciation of their roles in controlling the functions of cells of the innate and adaptive immune systems. Here we review recent literature reporting on the biological functions of sterol intermediates and oxysterols, acting through transcription factors such as the liver X receptors (LXRs), sterol regulatory element-binding proteins (SREBPs) and the G protein-coupled receptor EBI2, in regulating the differentiation and population expansion of cells of the innate and adaptive immune systems, their responses to inflammatory mediators, their effects on the phagocytic functions of macrophages and their effects on antiviral activities and the migration of immune cells. Such findings have raised many new questions about the production of endogenous bioactive sterols and oxysterols and their mechanisms of action in the immune system.
Collapse
Affiliation(s)
- Nathanael J Spann
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, USA
| | | |
Collapse
|
15
|
Steffensen KR, Jakobsson T, Gustafsson JÅ. Targeting liver X receptors in inflammation. Expert Opin Ther Targets 2013; 17:977-90. [PMID: 23738533 DOI: 10.1517/14728222.2013.806490] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION The two oxysterol receptors, 'liver X receptors (LXRs)' LXRα and LXRβ, are amongst the emerging newer drug targets within the nuclear receptor family and targeting LXRs represents novel strategies needed for prevention and treatment of diseases where current therapeutics is inadequate. AREAS COVERED This review discusses the current understanding of LXR biology with an emphasis on the molecular aspects of LXR signalling establishing their potential as drug targets. Recent advances of their transcriptional mechanisms in inflammatory pathways and their physiological roles in inflammation and immunity are described. EXPERT OPINION The new discoveries of LXR-regulated inflammatory pathways have ignited new promises for LXRs as drug targets. The broad physiological roles of LXRs involve a high risk of unwanted side effects. Recent insights into LXR biology of the brain indicate a highly important role in neuronal development and a clinical trial testing an LXR agonist reported adverse neurological side effects. This suggests that drug development must focus on limiting the range of LXR signalling - possibly achieved through subtype, tissue specific, promoter specific or pathway specific activation of LXRs where a successful candidate drug must be carefully studied for its effect in the central nervous system.
Collapse
Affiliation(s)
- Knut R Steffensen
- Karolinska Institutet, Center for Biosciences, Department of Biosciences and Nutrition, S-14183 Stockholm, Sweden.
| | | | | |
Collapse
|
16
|
Akkina R. New generation humanized mice for virus research: comparative aspects and future prospects. Virology 2013; 435:14-28. [PMID: 23217612 DOI: 10.1016/j.virol.2012.10.007] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 10/03/2012] [Accepted: 10/03/2012] [Indexed: 12/27/2022]
Abstract
Work with human specific viruses will greatly benefit from the use of an in vivo system that provides human target cells and tissues in a physiological setting. In this regard humanized mice (hu-Mice) have played an important role in our understanding of viral pathogenesis and testing of therapeutic strategies. Limitations with earlier versions of hu-Mice that lacked a functioning human immune system are currently being overcome. The new generation hu-Mouse models are capable of multilineage human hematopoiesis and generate T cells, B cells, macrophages and dendritic cells required for an adaptive human immune response. Now any human specific pathogen that can infect humanized mice can be studied in the context of ongoing infection and immune responses. Two leading humanized mouse models are currently employed: the hu-HSC model is created by transplantation of human hematopoietic stem cells (HSC), whereas the BLT mouse model is prepared by transplantation of human fetal liver, thymus and HSC. A number of human specific viruses such as HIV-1, dengue, EBV and HCV are being studied intensively in these systems. Both models permit infection by mucosal routes with viruses such as HIV-1 thus allowing transmission prevention studies. Cellular and humoral immune responses are seen in both the models. While there is efficient antigen specific IgM production, IgG responses are suboptimal due to inefficient immunoglobulin class switching. With the maturation of T cells occurring in the autologous human thymus, BLT mice permit human HLA restricted T cell responses in contrast to hu-HSC mice. However, the strength of the immune responses needs further improvement in both models to reach the levels seen in humans. The scope of hu-Mice use is further broadened by transplantation of additional tissues like human liver thus permitting immunopathogenesis studies on hepatotropic viruses such as HCV. Numerous studies that encompass antivirals, gene therapy, viral evolution, and the generation of human monoclonal antibodies have been conducted with promising results in these mice. For further improvement of the new hu-Mouse models, ongoing work is focused on generating new strains of immunodeficient mice transgenic for human HLA molecules to strengthen immune responses and human cytokines and growth factors to improve human cell reconstitution and their homeostatic maintenance.
Collapse
Affiliation(s)
- Ramesh Akkina
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
17
|
Jiang H, Badralmaa Y, Yang J, Lempicki R, Hazen A, Natarajan V. Retinoic acid and liver X receptor agonist synergistically inhibit HIV infection in CD4+ T cells by up-regulating ABCA1-mediated cholesterol efflux. Lipids Health Dis 2012; 11:69. [PMID: 22676378 PMCID: PMC3391983 DOI: 10.1186/1476-511x-11-69] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 06/07/2012] [Indexed: 01/01/2023] Open
Abstract
Background Retinoic acids regulate the reverse cholesterol transport by inducing the ATP binding cassette transporter A1 (ABCA1) dependent cholesterol efflux in macrophages, neuronal as well as intestine cells. In the present study, we aim to test the effect of all trans retinoic acid (ATRA) on ABCA1 expression in human CD4+ T cells and the involvement of cholesterol in ATRA mediated anti-HIV effect. Results Treatment with ATRA dramatically up-regulated ABCA1 expression in CD4+ T cells in a time and dose dependent manner. The expression of ABCA1 paralleled with increased ABCA1-dependent cholesterol efflux. This induction was dependent on T cell receptor (TCR) signaling and ATRA failed to induce ABCA1 expression in resting T cells. Moreover, ATRA and liver X receptor (LXR) agonist-TO-901317 together had synergistic effect on ABCA1 expression as well as cholesterol efflux. Increased ABCA1 expression was associated with lower cellular cholesterol staining. Cells treated with either ATRA or TO-901317 were less vulnerable to HIV-1 infection. Combination of retinoic acid and TO-901317 further inhibited HIV-1 entry and their inhibitory effects could be reversed by cholesterol replenishment. Methods ABCA1 RNA and protein were determined by real-time PCR and immuno blot methods in cells treated with ATRA. Cholesterol efflux rate was measured in cells treated with ATRA and TO-901317. Conclusions ATRA up-regulates ABCA1 expression and cholesterol efflux in CD4+ T cells and combination of ATRA and liver X receptor (LXR) agonist further enhanced these effects. Increased cholesterol efflux contributed to reduced HIV-1 entry, suggesting that anti-HIV effect of ATRA is mediated through ABCA1.
Collapse
Affiliation(s)
- Hong Jiang
- Laboratory of Molecular Cell Biology, SAIC-Frederick, Inc, Frederick National Laboratory, Frederick, MD 21702, USA
| | | | | | | | | | | |
Collapse
|