1
|
Ren JG, Xing B, Lv K, O’Keefe RA, Wu M, Wang R, Bauer KM, Ghazaryan A, Burslem GM, Zhang J, O’Connell RM, Pillai V, Hexner EO, Philips MR, Tong W. RAB27B controls palmitoylation-dependent NRAS trafficking and signaling in myeloid leukemia. J Clin Invest 2023; 133:e165510. [PMID: 37317963 PMCID: PMC10266782 DOI: 10.1172/jci165510] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 03/24/2023] [Indexed: 06/16/2023] Open
Abstract
RAS mutations are among the most prevalent oncogenic drivers in cancers. RAS proteins propagate signals only when associated with cellular membranes as a consequence of lipid modifications that impact their trafficking. Here, we discovered that RAB27B, a RAB family small GTPase, controlled NRAS palmitoylation and trafficking to the plasma membrane, a localization required for activation. Our proteomic studies revealed RAB27B upregulation in CBL- or JAK2-mutated myeloid malignancies, and its expression correlated with poor prognosis in acute myeloid leukemias (AMLs). RAB27B depletion inhibited the growth of CBL-deficient or NRAS-mutant cell lines. Strikingly, Rab27b deficiency in mice abrogated mutant but not WT NRAS-mediated progenitor cell growth, ERK signaling, and NRAS palmitoylation. Further, Rab27b deficiency significantly reduced myelomonocytic leukemia development in vivo. Mechanistically, RAB27B interacted with ZDHHC9, a palmitoyl acyltransferase that modifies NRAS. By regulating palmitoylation, RAB27B controlled c-RAF/MEK/ERK signaling and affected leukemia development. Importantly, RAB27B depletion in primary human AMLs inhibited oncogenic NRAS signaling and leukemic growth. We further revealed a significant correlation between RAB27B expression and sensitivity to MEK inhibitors in AMLs. Thus, our studies presented a link between RAB proteins and fundamental aspects of RAS posttranslational modification and trafficking, highlighting future therapeutic strategies for RAS-driven cancers.
Collapse
Affiliation(s)
- Jian-Gang Ren
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Bowen Xing
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kaosheng Lv
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Biochemistry, School of Medicine at the Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Rachel A. O’Keefe
- Department of Medicine and Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, New York, USA
| | - Mengfang Wu
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ruoxing Wang
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kaylyn M. Bauer
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Arevik Ghazaryan
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - George M. Burslem
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jing Zhang
- McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Ryan M. O’Connell
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Vinodh Pillai
- Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Elizabeth O. Hexner
- Division of Hematology and Oncology, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mark R. Philips
- Department of Medicine and Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, New York, USA
| | - Wei Tong
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Brunel A, Bégaud G, Auger C, Durand S, Battu S, Bessette B, Verdier M. Autophagy and Extracellular Vesicles, Connected to rabGTPase Family, Support Aggressiveness in Cancer Stem Cells. Cells 2021; 10:1330. [PMID: 34072080 PMCID: PMC8227744 DOI: 10.3390/cells10061330] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 12/22/2022] Open
Abstract
Even though cancers have been widely studied and real advances in therapeutic care have been made in the last few decades, relapses are still frequently observed, often due to therapeutic resistance. Cancer Stem Cells (CSCs) are, in part, responsible for this resistance. They are able to survive harsh conditions such as hypoxia or nutrient deprivation. Autophagy and Extracellular Vesicles (EVs) secretion are cellular processes that help CSC survival. Autophagy is a recycling process and EVs secretion is essential for cell-to-cell communication. Their roles in stemness maintenance have been well described. A common pathway involved in these processes is vesicular trafficking, and subsequently, regulation by Rab GTPases. In this review, we analyze the role played by Rab GTPases in stemness status, either directly or through their regulation of autophagy and EVs secretion.
Collapse
|
3
|
Oncogenic effects of RAB27B through exosome independent function in renal cell carcinoma including sunitinib-resistant. PLoS One 2020; 15:e0232545. [PMID: 32379831 PMCID: PMC7205224 DOI: 10.1371/journal.pone.0232545] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 04/16/2020] [Indexed: 12/11/2022] Open
Abstract
Exosomes are 40–100 nm nano-sized extracellular vesicles. They are released from many cell types and move into the extracellular space, thereby transferring their components to recipient cells. Exosomes are receiving increasing attention as novel structures participating in intracellular communication. RAB27B is one of the leading proteins involved in exosome secretion, and oncogenic effects have been reported in several cancers. In recent years, molecularly targeted agents typified by sunitinib are widely used for the treatment of metastatic or recurrent renal cell carcinoma (RCC). However, intrinsic or acquired resistance to sunitinib has become a major issue. The present study aimed to elucidate the role of RAB27B in RCC including sunitinib-resistant and its role in exosomes. Bioinformatic analyses revealed that high expression of RAB27B correlates with progression of RCC. The expression of RAB27B protein in RCC cell lines was significantly enhanced compared with that in normal kidney cell lines. Furthermore, RAB27B protein expression was enhanced in all of the tested sunitinib-resistant RCC cell lines compared to parental cells. Although no specific effect of RAB27B on exosomes was identified in RCC cells, loss-of-function studies demonstrated that knockdown of RAB27B suppressed cell proliferation, migration and invasive activities. Moreover, anti-tumor effects of RAB27B downregulation were also observed in sunitinib-resistant RCC cells. RNA sequence and pathway analysis suggested that the oncogenic effects of RAB27B might be associated with MAPK and VEGF signaling pathways. These results showed that RAB27B is a prognostic marker and a novel therapeutic target in sunitinib-sensitive and -resistant RCCs. Further analyses should improve our understanding of sunitinib resistance in RCC.
Collapse
|
4
|
Tsujioka T, Yokoi A, Itano Y, Takahashi K, Ouchida M, Okamoto S, Kondo T, Suemori SI, Tohyama Y, Tohyama K. Five-aza-2'-deoxycytidine-induced hypomethylation of cholesterol 25-hydroxylase gene is responsible for cell death of myelodysplasia/leukemia cells. Sci Rep 2015; 5:16709. [PMID: 26577244 PMCID: PMC4649363 DOI: 10.1038/srep16709] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 10/19/2015] [Indexed: 12/20/2022] Open
Abstract
DNA methyltransferase inhibitors (DNMT inhibitors) are administered for high-risk MDS, but their action mechanisms are not fully understood. Hence, we performed a genome-wide DNA methylation assay and focused on cholesterol 25-hydroxylase (CH25H) among the genes whose expression was up-regulated and whose promoter region was hypomethylated after decitabine (DAC) treatment in vitro. CH25H catalyzes hydroxylation of cholesterol and produces 25-hydroxycholesterol (25-OHC). Although CH25H mRNA expression level was originally low in MDS/leukemia cell lines, exposure to DNMT inhibitors enhanced CH25H mRNA expression. The promoter region of CH25H was originally hypermethylated in HL-60 and MDS-L cells, but DAC treatment induced their hypomethylation together with increased CH25H mRNA expression, activation of CH25H-oxysterol pathway, 25-OHC production and apoptotic cell death. We further confirmed that normal CD34-positive cells revealed hypomethylated status of the promoter region of CH25H gene. CH25H-knockdown by transfection of shRNA lentiviral vector into the cell lines partially protected the cells from DAC-induced cell death. Exogenous addition of 25-OHC suppressed leukemic cell growth. The present study raises a possibility that DNMT inhibitors activate CH25H-oxysterol pathway by their hypomethylating mechanism and induce leukemic cell death. Further investigations of the promoter analysis of CH25H gene and therapeutic effects of DNMT inhibitors on MDS/leukemia will be warranted.
Collapse
Affiliation(s)
- Takayuki Tsujioka
- Department of Laboratory Medicine, Kawasaki Medical School, Okayama 701-0192, Japan
| | - Akira Yokoi
- Eisai Co., Ltd., Tsukuba, Ibaraki, 300-2635, Japan
| | - Yoshitaro Itano
- Department of Anesthesiology, Kawasaki Medical School, Okayama 701-0192, Japan
| | | | - Mamoru Ouchida
- Department of Molecular Genetics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Shuichiro Okamoto
- Department of Laboratory Medicine, Kawasaki Medical School, Okayama 701-0192, Japan
| | - Toshinori Kondo
- Division of Hematology, Department of Internal Medicine, Kawasaki Medical School, Okayama 701-0192, Japan
| | - Shin-ichiro Suemori
- Department of Laboratory Medicine, Kawasaki Medical School, Okayama 701-0192, Japan
| | - Yumi Tohyama
- Division of Biochemistry, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Hyogo 670-8524, Japan
| | - Kaoru Tohyama
- Department of Laboratory Medicine, Kawasaki Medical School, Okayama 701-0192, Japan
| |
Collapse
|
5
|
A role for Rab27 in neutrophil chemotaxis and lung recruitment. BMC Cell Biol 2014; 15:39. [PMID: 25359237 PMCID: PMC4221698 DOI: 10.1186/s12860-014-0039-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 10/16/2014] [Indexed: 01/08/2023] Open
Abstract
Background Neutrophils are a critical part of the innate immune system. Their ability to migrate into infected or injured tissues precedes their role in microbial killing and clearance. We have previously shown that Rab27a can promote neutrophil migration by facilitating uropod release through protease secretion from primary granule exocytosis at the cell rear. Rab27b has been implicated in primary granule exocytosis but its role in neutrophil migration has not been investigated. Results Here we found Rab27b to be expressed in bone marrow derived neutrophils and Rab27b knockout (Rab27b KO) along with Rab27a/b double knockout (Rab27DKO) neutrophils exhibited impaired transwell migration in vitro in response to chemokines MIP-2 and LTB4. Interestingly, no additional defect in migration was observed in Rab27DKO neutrophils compared with Rab27b KO neutrophils. In vivo, Rab27DKO mice displayed severe impairment in neutrophil recruitment to the lungs in a MIP-2 dependent model but not in an LPS dependent model. Conclusions These data taken together implicate Rab27b in the regulation of neutrophil chemotaxis, likely through the regulation of primary granule exocytosis.
Collapse
|
6
|
Fan Y, Wu S, Yin Z, Fu BB. Cellular and molecular mechanism study of declined intestinal transit function in the cholesterol gallstone formation process of the guinea pig. Exp Ther Med 2014; 8:1518-1522. [PMID: 25289052 PMCID: PMC4186406 DOI: 10.3892/etm.2014.1943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 08/06/2014] [Indexed: 12/28/2022] Open
Abstract
The aim of this study was to investigate the cellular and molecular mechanisms of declined intestinal transit (IT) function in the cholesterol gallstone (CG) formation process. Forty guinea pigs were divided into an experimental group (EG) and a control group (CoG), and the reverse transcription-polymerase chain reaction (RT-PCR) was performed for the analysis of c-kit and stem cell factor (scf) mRNA expression in the small bowel. In addition, immunofluorescence staining and confocal laser microscopy were performed for the observation of the changes in the number of interstitial cells of Cajal (ICCs) in the terminal ileum of each group. RT-PCR showed that, compared with the CoG, the intestinal c-kit and scf mRNA expression levels in the EG were significantly decreased; the average positive area of ICCs in the ileum in the EG was also significantly reduced. During the diet-induced CG formation procedure, the c-kit and scf mRNA expression levels in the small intestine decreased and the number of ICCs decreased. Inhibition of the c-kit/scf pathway may be involved in the declined IT function during the CG formation process.
Collapse
Affiliation(s)
- Ying Fan
- Department of the Second General Surgery, Sheng Jing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Shuodong Wu
- Department of the Second General Surgery, Sheng Jing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Zhenhua Yin
- Department of the Second General Surgery, Sheng Jing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Bei-Bei Fu
- Department of the Second General Surgery, Sheng Jing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|