1
|
García-García E, Ramón-Lainez A, Conde-Berriozabal S, Del Toro D, Escaramis G, Giralt A, Masana M, Alberch J, Rodríguez MJ. VPS13A knockdown impairs corticostriatal synaptic plasticity and locomotor behavior in a new mouse model of chorea-acanthocytosis. Neurobiol Dis 2023; 187:106292. [PMID: 37714309 DOI: 10.1016/j.nbd.2023.106292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/01/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023] Open
Abstract
Chorea-acanthocytosis (ChAc) is an inherited neurodegenerative movement disorder caused by VPS13A gene mutations leading to the absence of protein expression. The striatum is the most affected brain region in ChAc patients. However, the study of the VPS13A function in the brain has been poorly addressed. Here we generated a VPS13A knockdown (KD) model and aimed to elucidate the contribution of VPS13A to synaptic plasticity and neuronal communication in the corticostriatal circuit. First, we infected primary cortical neurons with miR30-shRNA against VPS13A and analyzed its effects on neuronal plasticity. VPS13A-KD neurons showed a higher degree of branching than controls, accompanied by decreased BDNF and PSD-95 levels, indicative of synaptic alterations. We then injected AAV-KD bilaterally in the frontal cortex and two different regions of the striatum of mice and analyzed the effects of VPS13A-KD on animal behavior and synaptic plasticity. VPS13A-KD mice showed modification of the locomotor behavior pattern, with increased exploratory behavior and hyperlocomotion. Corticostriatal dysfunction in VPS13A-KD mice was evidenced by impaired striatal long-term depression (LTD) after stimulation of cortical afferents, which was partially recovered by BDNF administration. VPS13A-KD did not lead to neuronal loss in the cortex or the striatum but induced a decrease in the neuronal release of CX3CL1 and triggered a microglial reaction, especially in the striatum. Notably, CX3CL1 administration partially restored the impaired corticostriatal LTD in VPS13A-KD mice. Our results unveil the involvement of VPS13A in neuronal connectivity modifying BDNF and CX3CL1 release. Moreover, the involvement of VPS13A in synaptic plasticity and motor behavior provides key information to further understand not only ChAc pathophysiology but also other neurological disorders.
Collapse
Affiliation(s)
- Esther García-García
- Dept Biomedical Sciences, School of Medicine and Health Sciences, Institute of Neurosciences, Universitat de Barcelona, E-08036 Barcelona, Spain; August Pi i Sunyer Biomedical Research Institute (IDIBAPS), E-08036 Barcelona, Spain; Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), E-08036 Barcelona, Spain.
| | - Alba Ramón-Lainez
- Dept Biomedical Sciences, School of Medicine and Health Sciences, Institute of Neurosciences, Universitat de Barcelona, E-08036 Barcelona, Spain; August Pi i Sunyer Biomedical Research Institute (IDIBAPS), E-08036 Barcelona, Spain; Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), E-08036 Barcelona, Spain.
| | - Sara Conde-Berriozabal
- Dept Biomedical Sciences, School of Medicine and Health Sciences, Institute of Neurosciences, Universitat de Barcelona, E-08036 Barcelona, Spain; August Pi i Sunyer Biomedical Research Institute (IDIBAPS), E-08036 Barcelona, Spain; Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), E-08036 Barcelona, Spain.
| | - Daniel Del Toro
- Dept Biomedical Sciences, School of Medicine and Health Sciences, Institute of Neurosciences, Universitat de Barcelona, E-08036 Barcelona, Spain; August Pi i Sunyer Biomedical Research Institute (IDIBAPS), E-08036 Barcelona, Spain; Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), E-08036 Barcelona, Spain.
| | - Georgia Escaramis
- Dept Biomedical Sciences, School of Medicine and Health Sciences, Institute of Neurosciences, Universitat de Barcelona, E-08036 Barcelona, Spain; Biomedical Research Networking Center for Epidemiology and Public Health (CIBERESP), Ministerio de Ciencia e Innovación, Madrid, Spain.
| | - Albert Giralt
- Dept Biomedical Sciences, School of Medicine and Health Sciences, Institute of Neurosciences, Universitat de Barcelona, E-08036 Barcelona, Spain; August Pi i Sunyer Biomedical Research Institute (IDIBAPS), E-08036 Barcelona, Spain; Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), E-08036 Barcelona, Spain.
| | - Mercè Masana
- Dept Biomedical Sciences, School of Medicine and Health Sciences, Institute of Neurosciences, Universitat de Barcelona, E-08036 Barcelona, Spain; August Pi i Sunyer Biomedical Research Institute (IDIBAPS), E-08036 Barcelona, Spain; Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), E-08036 Barcelona, Spain.
| | - Jordi Alberch
- Dept Biomedical Sciences, School of Medicine and Health Sciences, Institute of Neurosciences, Universitat de Barcelona, E-08036 Barcelona, Spain; August Pi i Sunyer Biomedical Research Institute (IDIBAPS), E-08036 Barcelona, Spain; Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), E-08036 Barcelona, Spain; Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, E-08036 Barcelona, Spain.
| | - Manuel J Rodríguez
- Dept Biomedical Sciences, School of Medicine and Health Sciences, Institute of Neurosciences, Universitat de Barcelona, E-08036 Barcelona, Spain; August Pi i Sunyer Biomedical Research Institute (IDIBAPS), E-08036 Barcelona, Spain; Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), E-08036 Barcelona, Spain.
| |
Collapse
|
2
|
Unraveling the Spatiotemporal Distribution of VPS13A in the Mouse Brain. Int J Mol Sci 2021; 22:ijms222313018. [PMID: 34884823 PMCID: PMC8657609 DOI: 10.3390/ijms222313018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 11/27/2022] Open
Abstract
Loss-of-function mutations in the human vacuolar protein sorting the 13 homolog A (VPS13A) gene cause Chorea-acanthocytosis (ChAc), with selective degeneration of the striatum as the main neuropathologic feature. Very little is known about the VPS13A expression in the brain. The main objective of this work was to assess, for the first time, the spatiotemporal distribution of VPS13A in the mouse brain. We found VPS13A expression present in neurons already in the embryonic stage, with stable levels until adulthood. VPS13A mRNA and protein distributions were similar in the adult mouse brain. We found a widespread VPS13A distribution, with the strongest expression profiles in the pons, hippocampus, and cerebellum. Interestingly, expression was weak in the basal ganglia. VPS13A staining was positive in glutamatergic, GABAergic, and cholinergic neurons, but rarely in glial cells. At the cellular level, VPS13A was mainly located in the soma and neurites, co-localizing with both the endoplasmic reticulum and mitochondria. However, it was not enriched in dendritic spines or the synaptosomal fraction of cortical neurons. In vivo pharmacological modulation of the glutamatergic, dopaminergic or cholinergic systems did not modulate VPS13A concentration in the hippocampus, cerebral cortex, or striatum. These results indicate that VPS13A has remarkable stability in neuronal cells. Understanding the distinct expression pattern of VPS13A can provide relevant information to unravel pathophysiological hallmarks of ChAc.
Collapse
|
3
|
Hook SC, Chadt A, Heesom KJ, Kishida S, Al-Hasani H, Tavaré JM, Thomas EC. TBC1D1 interacting proteins, VPS13A and VPS13C, regulate GLUT4 homeostasis in C2C12 myotubes. Sci Rep 2020; 10:17953. [PMID: 33087848 PMCID: PMC7578007 DOI: 10.1038/s41598-020-74661-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/07/2020] [Indexed: 01/01/2023] Open
Abstract
Proteins involved in the spaciotemporal regulation of GLUT4 trafficking represent potential therapeutic targets for the treatment of insulin resistance and type 2 diabetes. A key regulator of insulin- and exercise-stimulated glucose uptake and GLUT4 trafficking is TBC1D1. This study aimed to identify proteins that regulate GLUT4 trafficking and homeostasis via TBC1D1. Using an unbiased quantitative proteomics approach, we identified proteins that interact with TBC1D1 in C2C12 myotubes including VPS13A and VPS13C, the Rab binding proteins EHBP1L1 and MICAL1, and the calcium pump SERCA1. These proteins associate with TBC1D1 via its phosphotyrosine binding (PTB) domains and their interactions with TBC1D1 were unaffected by AMPK activation, distinguishing them from the AMPK regulated interaction between TBC1D1 and AMPKα1 complexes. Depletion of VPS13A or VPS13C caused a post-transcriptional increase in cellular GLUT4 protein and enhanced cell surface GLUT4 levels in response to AMPK activation. The phenomenon was specific to GLUT4 because other recycling proteins were unaffected. Our results provide further support for a role of the TBC1D1 PTB domains as a scaffold for a range of Rab regulators, and also the VPS13 family of proteins which have been previously linked to fasting glycaemic traits and insulin resistance in genome wide association studies.
Collapse
Affiliation(s)
- Sharon C Hook
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Alexandra Chadt
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Kate J Heesom
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Shosei Kishida
- Department of Biochemistry and Genetics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Hadi Al-Hasani
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Jeremy M Tavaré
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Elaine C Thomas
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK.
| |
Collapse
|
4
|
Latorre A, Salgado P, Salari M, Jesuthasan A, Bhatia KP. Combined Dystonia With Self-Mutilation in 6-Pyruvoyl-Tetrahydropterin Synthase (PTPS) Deficiency: A Case Report. Mov Disord Clin Pract 2018; 6:81-82. [PMID: 30746422 DOI: 10.1002/mdc3.12698] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/19/2018] [Accepted: 09/25/2018] [Indexed: 11/07/2022] Open
Affiliation(s)
- Anna Latorre
- Sobell Department of Motor Neuroscience and Movement Disorders University College London (UCL) Institute of Neurology London United Kingdom.,Department of Human Neurosciences Sapienza University of Rome Rome Italy
| | - Paula Salgado
- Sobell Department of Motor Neuroscience and Movement Disorders University College London (UCL) Institute of Neurology London United Kingdom.,Department of Neurology Centro Hospitalar do Porto Porto Portugal
| | - Mehri Salari
- Sobell Department of Motor Neuroscience and Movement Disorders University College London (UCL) Institute of Neurology London United Kingdom.,Neurosurgery Research Center Shohada Tajrish Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Aaron Jesuthasan
- Faculty of Medical Sciences Newcastle University Newcastle upon Tyne United Kingdom
| | - Kailash P Bhatia
- Sobell Department of Motor Neuroscience and Movement Disorders University College London (UCL) Institute of Neurology London United Kingdom
| |
Collapse
|
5
|
Peikert K, Danek A, Hermann A. Current state of knowledge in Chorea-Acanthocytosis as core Neuroacanthocytosis syndrome. Eur J Med Genet 2018; 61:699-705. [DOI: 10.1016/j.ejmg.2017.12.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 12/01/2017] [Accepted: 12/14/2017] [Indexed: 11/30/2022]
|
6
|
Defective mitochondrial and lysosomal trafficking in chorea-acanthocytosis is independent of Src-kinase signaling. Mol Cell Neurosci 2018; 92:137-148. [PMID: 30081151 DOI: 10.1016/j.mcn.2018.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/27/2018] [Accepted: 08/01/2018] [Indexed: 12/31/2022] Open
Abstract
Mutations in the VPS13A gene leading to depletion of chorein protein are causative for Chorea Acanthocytosis (ChAc), a rare devastating disease, which is characterized by neurodegeneration mainly affecting the basal ganglia as well as deformation of erythrocytes. Studies on patient blood samples highlighted a dysregulation of Actin cytoskeleton caused by downregulation of the PI3K pathway and hyper-activation of Lyn-kinase, but to what extent these mechanisms are present and relevant in the affected neurons remains elusive. We studied the effects of the absence of chorein protein on the morphology and trafficking of lysosomal and mitochondrial compartments in ChAc patient-specific induced pluripotent stem cell-derived medium spiny neurons (MSNs). Numbers of both organelle types were reduced in ChAc MSNs. Mitochondrial length was shortened and their membrane potential showed significant hyperpolarization. In contrast to previous studies, showing Lyn kinase dependency of ChAc-associated pathological events in erythrocytes, pharmacological studies demonstrate that the impairment of mitochondria and lysosomes are independent of Lyn kinase activity. These data suggest that impairment in mitochondrial and lysosomal morphologies in MSNs is not mediated by a dysregulation of Lyn kinase and thus the pathological pathways in ChAc might be - at least in part - cell-type specific.
Collapse
|
7
|
Mehta ZB, Fine N, Pullen TJ, Cane MC, Hu M, Chabosseau P, Meur G, Velayos-Baeza A, Monaco AP, Marselli L, Marchetti P, Rutter GA. Changes in the expression of the type 2 diabetes-associated gene VPS13C in the β-cell are associated with glucose intolerance in humans and mice. Am J Physiol Endocrinol Metab 2016; 311:E488-507. [PMID: 27329800 PMCID: PMC5005967 DOI: 10.1152/ajpendo.00074.2016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 06/20/2016] [Indexed: 12/31/2022]
Abstract
Single nucleotide polymorphisms (SNPs) close to the VPS13C, C2CD4A and C2CD4B genes on chromosome 15q are associated with impaired fasting glucose and increased risk of type 2 diabetes. eQTL analysis revealed an association between possession of risk (C) alleles at a previously implicated causal SNP, rs7163757, and lowered VPS13C and C2CD4A levels in islets from female (n = 40, P < 0.041) but not from male subjects. Explored using promoter-reporter assays in β-cells and other cell lines, the risk variant at rs7163757 lowered enhancer activity. Mice deleted for Vps13c selectively in the β-cell were generated by crossing animals bearing a floxed allele at exon 1 to mice expressing Cre recombinase under Ins1 promoter control (Ins1Cre). Whereas Vps13c(fl/fl):Ins1Cre (βVps13cKO) mice displayed normal weight gain compared with control littermates, deletion of Vps13c had little effect on glucose tolerance. Pancreatic histology revealed no significant change in β-cell mass in KO mice vs. controls, and glucose-stimulated insulin secretion from isolated islets was not altered in vitro between control and βVps13cKO mice. However, a tendency was observed in female null mice for lower insulin levels and β-cell function (HOMA-B) in vivo. Furthermore, glucose-stimulated increases in intracellular free Ca(2+) were significantly increased in islets from female KO mice, suggesting impaired Ca(2+) sensitivity of the secretory machinery. The present data thus provide evidence for a limited role for changes in VPS13C expression in conferring altered disease risk at this locus, particularly in females, and suggest that C2CD4A may also be involved.
Collapse
Affiliation(s)
- Zenobia B Mehta
- Section of Cell Biology and Functional Genomics, Imperial College London, London, United Kingdom
| | - Nicholas Fine
- Section of Cell Biology and Functional Genomics, Imperial College London, London, United Kingdom
| | - Timothy J Pullen
- Section of Cell Biology and Functional Genomics, Imperial College London, London, United Kingdom
| | - Matthew C Cane
- Section of Cell Biology and Functional Genomics, Imperial College London, London, United Kingdom
| | - Ming Hu
- Section of Cell Biology and Functional Genomics, Imperial College London, London, United Kingdom
| | - Pauline Chabosseau
- Section of Cell Biology and Functional Genomics, Imperial College London, London, United Kingdom
| | - Gargi Meur
- Section of Cell Biology and Functional Genomics, Imperial College London, London, United Kingdom
| | | | - Anthony P Monaco
- Wellcome Trust Centre for Human Genetics, Oxford, United Kingdom; and
| | - Lorella Marselli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Imperial College London, London, United Kingdom;
| |
Collapse
|
8
|
Sasaki N, Nakamura M, Kodama A, Urata Y, Shiokawa N, Hayashi T, Sano A. Chorein interacts with α‐tubulin and histone deacetylase 6, and overexpression preserves cell viability during nutrient deprivation in human embryonic kidney 293 cells. FASEB J 2016; 30:3726-3732. [DOI: 10.1096/fj.201500191rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 07/18/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Natsuki Sasaki
- Department of PsychiatryKagoshima University Graduate School of Medical and Dental Sciences Kagoshima Japan
| | - Masayuki Nakamura
- Department of PsychiatryKagoshima University Graduate School of Medical and Dental Sciences Kagoshima Japan
| | - Akiko Kodama
- Department of PsychiatryKagoshima University Graduate School of Medical and Dental Sciences Kagoshima Japan
| | - Yuka Urata
- Department of PsychiatryKagoshima University Graduate School of Medical and Dental Sciences Kagoshima Japan
| | - Nari Shiokawa
- Department of PsychiatryKagoshima University Graduate School of Medical and Dental Sciences Kagoshima Japan
| | - Takehiro Hayashi
- Department of PsychiatryKagoshima University Graduate School of Medical and Dental Sciences Kagoshima Japan
| | - Akira Sano
- Department of PsychiatryKagoshima University Graduate School of Medical and Dental Sciences Kagoshima Japan
| |
Collapse
|
9
|
Park JS, Thorsness MK, Policastro R, McGoldrick LL, Hollingsworth NM, Thorsness PE, Neiman AM. Yeast Vps13 promotes mitochondrial function and is localized at membrane contact sites. Mol Biol Cell 2016; 27:2435-49. [PMID: 27280386 PMCID: PMC4966984 DOI: 10.1091/mbc.e16-02-0112] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 06/03/2016] [Indexed: 12/19/2022] Open
Abstract
Loss of VPS13 produces multiple phenotypes. This study implicates VPS13 in the function of membrane contact sites and suggests that different phenotypes of the mutant result from defects in different contact sites. In yeast, mutations found in the VPS13A gene of ChAc patients have specific defects in the mitochondrial aspect of VPS13 function. The Vps13 protein family is highly conserved in eukaryotic cells. Mutations in human VPS13 genes result in a variety of diseases, such as chorea acanthocytosis (ChAc), but the cellular functions of Vps13 proteins are not well defined. In yeast, there is a single VPS13 orthologue, which is required for at least two different processes: protein sorting to the vacuole and sporulation. This study demonstrates that VPS13 is also important for mitochondrial integrity. In addition to preventing transfer of DNA from the mitochondrion to the nucleus, VPS13 suppresses mitophagy and functions in parallel with the endoplasmic reticulum–mitochondrion encounter structure (ERMES). In different growth conditions, Vps13 localizes to endosome–mitochondrion contacts and to the nuclear–vacuole junctions, indicating that Vps13 may function at membrane contact sites. The ability of VPS13 to compensate for the absence of ERMES correlates with its intracellular distribution. We propose that Vps13 is present at multiple membrane contact sites and that separation-of-function mutants are due to loss of Vps13 at specific junctions. Introduction of VPS13A mutations identified in ChAc patients at cognate sites in yeast VPS13 are specifically defective in compensating for the lack of ERMES, suggesting that mitochondrial dysfunction might be the basis for ChAc.
Collapse
Affiliation(s)
- Jae-Sook Park
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215
| | - Mary K Thorsness
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071
| | - Robert Policastro
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215
| | - Luke L McGoldrick
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215
| | - Nancy M Hollingsworth
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215
| | - Peter E Thorsness
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071
| | - Aaron M Neiman
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215
| |
Collapse
|
10
|
Heterozygous Chorein Deficiency in Probable Tau-negative Early-onset Alzheimer Disease. Alzheimer Dis Assoc Disord 2016; 30:272-5. [PMID: 26825611 PMCID: PMC5035148 DOI: 10.1097/wad.0000000000000130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Park JS, Halegoua S, Kishida S, Neiman AM. A conserved function in phosphatidylinositol metabolism for mammalian Vps13 family proteins. PLoS One 2015; 10:e0124836. [PMID: 25915401 PMCID: PMC4411106 DOI: 10.1371/journal.pone.0124836] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 03/20/2015] [Indexed: 12/18/2022] Open
Abstract
The Vps13 protein family is highly conserved in eukaryotic cells. In humans, mutations in the gene encoding the family member VPS13A lead to the neurodegenerative disorder chorea-acanthocytosis. In the yeast Saccharomyces cerevisiae, there is just a single version of VPS13, thereby simplifying the task of unraveling its molecular function(s). While VPS13 was originally identified in yeast by its role in vacuolar sorting, recent studies have revealed a completely different function for VPS13 in sporulation, where VPS13 regulates phosphatidylinositol-4-phosphate (PtdIns(4)P) levels in the prospore membrane. This discovery raises the possibility that the disease phenotype associated with vps13A mutants in humans is due to misregulation of PtdIns(4)P in membranes. To determine whether VPS13A affects PtdIns(4)P in membranes from mammalian neuronal cells, phosphatidylinositol phosphate pools were compared in PC12 tissue culture cells in the absence or presence of VPS13A. Consistent with the yeast results, the localization of PtdIns(4)P is specifically altered in VPS13A knockdown cells while other phosphatidylinositol phosphates appear unaffected. In addition, VPS13A is necessary to prevent the premature degeneration of neurites that develop in response to Nerve Growth Factor. The regulation of PtdIns(4)P is therefore a conserved function of the Vps13 family and may play a role in the maintenance of neuronal processes in mammals.
Collapse
Affiliation(s)
- Jae-Sook Park
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, 11794–5215, United States of America
| | - Simon Halegoua
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York, 11794–5230, United States of America
| | - Shosei Kishida
- Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, 890–8544, Japan
| | - Aaron M. Neiman
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, 11794–5215, United States of America
- * E-mail:
| |
Collapse
|
12
|
Habu M, Koyama H, Kishida M, Kamino M, Iijima M, Fuchigami T, Tokimura H, Ueda M, Tokudome M, Koriyama C, Hirano H, Arita K, Kishida S. Ryk is essential for Wnt-5a-dependent invasiveness in human glioma. J Biochem 2014; 156:29-38. [PMID: 24621529 DOI: 10.1093/jb/mvu015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Glioblastoma is characterized by marked invasiveness, but little is known about the mechanism of invasion in glioblastoma cells. Wnts are secreted ligands that regulate cell proliferation, differentiation, motility and fate at various developmental stages. In adults, misregulation of the Wnt pathway is associated with several diseases. Recently, we reported that Wnt-5a was overexpressed and correlated with cell motility and infiltrative activity through the regulation of matrix metalloproteinase (MMP)-2 in glioma-derived cells. Although several receptors for Wnt-5a were identified, the receptors of Wnt-5a that mediate cellular responses of glioma were not clearly identified. Knockdown of receptor-like tyrosine kinase (Ryk) but not that of Ror2 suppressed the activity of MMP-2 and Wnt-5a-dependent invasive activity in glioma cells. These results suggest that Ryk is important for the Wnt-5a-dependent induction of MMP-2 and invasive activity in glioma-derived cells and that Ryk might have a novel patho-physiological function in adult cancer invasion. Furthermore, not only the expression of Wnt-5a but also that of Frizzled (Fz)-2 and Ryk was correlated with the WHO histological grade in 38 human glioma tissues. Taking these findings together, Fz-2 and Ryk could be therapeutic or pharmacological target molecules for the control of Wnt-5a-dependent invasion of human glioma in the near future.
Collapse
Affiliation(s)
- Mika Habu
- Department of Biochemistry and Genetics; Department of Neurosurgery, Kagoshima University Graduate School of Medical and Dental Sciences; Department of Pharmacy, Kagoshima Prefectural Satunan Hospital; Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences; Natural Science Centre for Research and Education, Kagoshima University; and Department of Epidemiology and Preventive Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, JapanDepartment of Biochemistry and Genetics; Department of Neurosurgery, Kagoshima University Graduate School of Medical and Dental Sciences; Department of Pharmacy, Kagoshima Prefectural Satunan Hospital; Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences; Natural Science Centre for Research and Education, Kagoshima University; and Department of Epidemiology and Preventive Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Hirofumi Koyama
- Department of Biochemistry and Genetics; Department of Neurosurgery, Kagoshima University Graduate School of Medical and Dental Sciences; Department of Pharmacy, Kagoshima Prefectural Satunan Hospital; Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences; Natural Science Centre for Research and Education, Kagoshima University; and Department of Epidemiology and Preventive Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Michiko Kishida
- Department of Biochemistry and Genetics; Department of Neurosurgery, Kagoshima University Graduate School of Medical and Dental Sciences; Department of Pharmacy, Kagoshima Prefectural Satunan Hospital; Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences; Natural Science Centre for Research and Education, Kagoshima University; and Department of Epidemiology and Preventive Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Masayuki Kamino
- Department of Biochemistry and Genetics; Department of Neurosurgery, Kagoshima University Graduate School of Medical and Dental Sciences; Department of Pharmacy, Kagoshima Prefectural Satunan Hospital; Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences; Natural Science Centre for Research and Education, Kagoshima University; and Department of Epidemiology and Preventive Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, JapanDepartment of Biochemistry and Genetics; Department of Neurosurgery, Kagoshima University Graduate School of Medical and Dental Sciences; Department of Pharmacy, Kagoshima Prefectural Satunan Hospital; Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences; Natural Science Centre for Research and Education, Kagoshima University; and Department of Epidemiology and Preventive Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Mikio Iijima
- Department of Biochemistry and Genetics; Department of Neurosurgery, Kagoshima University Graduate School of Medical and Dental Sciences; Department of Pharmacy, Kagoshima Prefectural Satunan Hospital; Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences; Natural Science Centre for Research and Education, Kagoshima University; and Department of Epidemiology and Preventive Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Takao Fuchigami
- Department of Biochemistry and Genetics; Department of Neurosurgery, Kagoshima University Graduate School of Medical and Dental Sciences; Department of Pharmacy, Kagoshima Prefectural Satunan Hospital; Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences; Natural Science Centre for Research and Education, Kagoshima University; and Department of Epidemiology and Preventive Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, JapanDepartment of Biochemistry and Genetics; Department of Neurosurgery, Kagoshima University Graduate School of Medical and Dental Sciences; Department of Pharmacy, Kagoshima Prefectural Satunan Hospital; Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences; Natural Science Centre for Research and Education, Kagoshima University; and Department of Epidemiology and Preventive Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Hiroshi Tokimura
- Department of Biochemistry and Genetics; Department of Neurosurgery, Kagoshima University Graduate School of Medical and Dental Sciences; Department of Pharmacy, Kagoshima Prefectural Satunan Hospital; Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences; Natural Science Centre for Research and Education, Kagoshima University; and Department of Epidemiology and Preventive Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Masahiro Ueda
- Department of Biochemistry and Genetics; Department of Neurosurgery, Kagoshima University Graduate School of Medical and Dental Sciences; Department of Pharmacy, Kagoshima Prefectural Satunan Hospital; Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences; Natural Science Centre for Research and Education, Kagoshima University; and Department of Epidemiology and Preventive Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, JapanDepartment of Biochemistry and Genetics; Department of Neurosurgery, Kagoshima University Graduate School of Medical and Dental Sciences; Department of Pharmacy, Kagoshima Prefectural Satunan Hospital; Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences; Natural Science Centre for Research and Education, Kagoshima University; and Department of Epidemiology and Preventive Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Mai Tokudome
- Department of Biochemistry and Genetics; Department of Neurosurgery, Kagoshima University Graduate School of Medical and Dental Sciences; Department of Pharmacy, Kagoshima Prefectural Satunan Hospital; Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences; Natural Science Centre for Research and Education, Kagoshima University; and Department of Epidemiology and Preventive Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Chihaya Koriyama
- Department of Biochemistry and Genetics; Department of Neurosurgery, Kagoshima University Graduate School of Medical and Dental Sciences; Department of Pharmacy, Kagoshima Prefectural Satunan Hospital; Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences; Natural Science Centre for Research and Education, Kagoshima University; and Department of Epidemiology and Preventive Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Hirofumi Hirano
- Department of Biochemistry and Genetics; Department of Neurosurgery, Kagoshima University Graduate School of Medical and Dental Sciences; Department of Pharmacy, Kagoshima Prefectural Satunan Hospital; Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences; Natural Science Centre for Research and Education, Kagoshima University; and Department of Epidemiology and Preventive Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kazunori Arita
- Department of Biochemistry and Genetics; Department of Neurosurgery, Kagoshima University Graduate School of Medical and Dental Sciences; Department of Pharmacy, Kagoshima Prefectural Satunan Hospital; Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences; Natural Science Centre for Research and Education, Kagoshima University; and Department of Epidemiology and Preventive Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Shosei Kishida
- Department of Biochemistry and Genetics; Department of Neurosurgery, Kagoshima University Graduate School of Medical and Dental Sciences; Department of Pharmacy, Kagoshima Prefectural Satunan Hospital; Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences; Natural Science Centre for Research and Education, Kagoshima University; and Department of Epidemiology and Preventive Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, JapanDepartment of Biochemistry and Genetics; Department of Neurosurgery, Kagoshima University Graduate School of Medical and Dental Sciences; Department of Pharmacy, Kagoshima Prefectural Satunan Hospital; Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences; Natural Science Centre for Research and Education, Kagoshima University; and Department of Epidemiology and Preventive Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
13
|
Shiokawa N, Nakamura M, Sameshima M, Deguchi A, Hayashi T, Sasaki N, Sano A. Chorein, the protein responsible for chorea-acanthocytosis, interacts with β-adducin and β-actin. Biochem Biophys Res Commun 2013; 441:96-101. [PMID: 24129186 DOI: 10.1016/j.bbrc.2013.10.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 10/05/2013] [Indexed: 10/26/2022]
Abstract
Chorea-acanthocytosis (ChAc) is an autosomal, recessive hereditary disease characterized by striatal neurodegeneration and acanthocytosis, and caused by loss of function mutations in the vacuolar protein sorting 13 homolog A (VPS13A) gene. VPS13A encodes chorein whose physiological function at the molecular level is poorly understood. In this study, we show that chorein interacts with β-adducin and β-actin. We first compare protein expression in human erythrocyte membranes using proteomic analysis. Protein levels of β-adducin isoform 1 and β-actin are markedly decreased in erythrocyte membranes from a ChAc patient. Subsequent co-immunoprecipitation (co-IP) and reverse co-IP assays using extracts from chorein-overexpressing human embryonic kidney 293 (HEK293) cells, shows that β-adducin (isoforms 1 and 2) and β-actin interact with chorein. Immunocytochemical analysis using chorein-overexpressing HEK293 cells demonstrates co-localization of chorein with β-adducin and β-actin. In addition, immunoreactivity of β-adducin isoform 1 is significantly decreased in the striatum of gene-targeted ChAc-model mice. Adducin and actin are membrane cytoskeletal proteins, involved in synaptic function. Expression of β-adducin is restricted to the brain and hematopoietic tissues, corresponding to the main pathological lesions of ChAc, and thereby implicating β-adducin and β-actin in ChAc pathogenesis.
Collapse
Affiliation(s)
- Nari Shiokawa
- Department of Psychiatry, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8520, Japan
| | | | | | | | | | | | | |
Collapse
|