1
|
Lu Y, Yang Z, Zhang J, Ma X, Bi X, Xu L, Feng K, Wu Z, Ma X, Zhuang L. RNA-binding protein QKI promotes the progression of HCC by interacting with long non-coding RNA EGOT. Int Immunopharmacol 2024; 136:112297. [PMID: 38810307 DOI: 10.1016/j.intimp.2024.112297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 05/10/2024] [Accepted: 05/16/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND RNA-binding proteins are revealed to play important roles during the progression of hepatocellular carcinoma (HCC). However, the regulatory mechanisms of RNA-binding protein Quaking (QKI) in the expression and role of long non-coding RNAs (lncRNAs) in HCC cells remain not well understood. METHODS Cell Counting Kit-8, wound-healing, Transwell and colony-forming assays were performed to evaluate the effects of QKI and lncRNA EGOT on proliferation and migration of HCC cells. Tumor growth of HCC was analyzed using a mouse xenograft model. Immunoprecipitation (RIP) assay was used to investigate the interaction between QKI and EGOT. RESULTS The expression of QKI was significantly upregulated in HCC tissues and the higher QKI level was significantly associated with a poorer prognosis. Overexpression of QKI promoted the proliferation, migration, and colony-forming ability of HCC cells in vitro and tumor growth of HCC in vivo. Mechanistically, QKI protein could bind to EGOT RNA and increase its expression. Inhibition of EGOT attenuated the effects of QKI on the malignant phenotypes of HCC cells. In addition, both QKI and EGOT could activate the SAPK/JNK signaling pathway in HCC cells. CONCLUSIONS Our findings indicated that QKI exerted promotive effects on the malignant phenotypes of HCC through its interaction with EGOT.
Collapse
Affiliation(s)
- Yi Lu
- Central Laboratory, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| | - Zhenpeng Yang
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266071, China
| | - Jie Zhang
- Central Laboratory, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| | - Xuefeng Ma
- Central Laboratory, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| | - Xiaoye Bi
- Central Laboratory, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| | - Longhai Xu
- Central Laboratory, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| | - Keqing Feng
- Central Laboratory, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| | - Zehua Wu
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266071, China
| | - Xiang Ma
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266071, China.
| | - Likun Zhuang
- Central Laboratory, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
2
|
Güllülü Ö, Mayer BE, Toplek FB. Linking Gene Fusions to Bone Marrow Failure and Malignant Transformation in Dyskeratosis Congenita. Int J Mol Sci 2024; 25:1606. [PMID: 38338888 PMCID: PMC10855549 DOI: 10.3390/ijms25031606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Dyskeratosis Congenita (DC) is a multisystem disorder intrinsically associated with telomere dysfunction, leading to bone marrow failure (BMF). Although the pathology of DC is largely driven by mutations in telomere-associated genes, the implications of gene fusions, which emerge due to telomere-induced genomic instability, remain unexplored. We meticulously analyzed gene fusions in RNA-Seq data from DC patients to provide deeper insights into DC's progression. The most significant DC-specific gene fusions were subsequently put through in silico assessments to ascertain biophysical and structural attributes, including charge patterning, inherent disorder, and propensity for self-association. Selected candidates were then analyzed using deep learning-powered structural predictions and molecular dynamics simulations to gauge their potential for forming higher-order oligomers. Our exploration revealed that genes participating in fusion events play crucial roles in upholding genomic stability, facilitating hematopoiesis, and suppressing tumors. Notably, our analysis spotlighted a particularly disordered polyampholyte fusion protein that exhibits robust higher-order oligomerization dynamics. To conclude, this research underscores the potential significance of several high-confidence gene fusions in the progression of BMF in DC, particularly through the dysregulation of genomic stability, hematopoiesis, and tumor suppression. Additionally, we propose that these fusion proteins might hold a detrimental role, specifically in inducing proteotoxicity-driven hematopoietic disruptions.
Collapse
Affiliation(s)
- Ömer Güllülü
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Benjamin E. Mayer
- Computational Biology & Simulation, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Fran Bačić Toplek
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy
| |
Collapse
|
3
|
Wang HF, Zhou XF, Zhang QM, Wu JQ, Hou JH, Xu XL, Li XM, Liu YL. Involvement of circRNA Regulators MBNL1 and QKI in the Progression of Esophageal Squamous Cell Carcinoma. Cancer Control 2024; 31:10732748241257142. [PMID: 38769028 PMCID: PMC11107321 DOI: 10.1177/10732748241257142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/25/2024] [Accepted: 05/03/2024] [Indexed: 05/22/2024] Open
Abstract
OBJECTIVES To investigate the role of circRNA regulators MBNL1 and QKI in the progression of esophageal squamous cell carcinoma. BACKGROUND MBNL1 and QKI are pivotal regulators of pre-mRNA alternative splicing, crucial for controlling circRNA production - an emerging biomarker and functional regulator of tumor progression. Despite their recognized roles, their involvement in ESCC progression remains unexplored. METHODS The expression levels of MBNL1 and QKI were examined in 28 tissue pairs from ESCC and adjacent normal tissues using data from the GEO database. Additionally, a total of 151 ESCC tissue samples, from stage T1 to T4, consisting of 13, 43, 87, and 8 cases per stage, respectively, were utilized for immunohistochemical (IHC) analysis. RNA sequencing was utilized to examine the expression profiles of circRNAs, lncRNAs, and mRNAs across 3 normal tissues, 3 ESCC tissues, and 3 pairs of KYSE150 cells in both wildtype (WT) and those with MBNL1 or QKI knockouts. Transwell, colony formation, and subcutaneous tumorigenesis assays assessed the impact of MBNL1 or QKI knockout on ESCC cell migration, invasion, and proliferation. RESULTS ESCC onset significantly altered MBNL1 and QKI expression levels, influencing diverse RNA species. Elevated MBNL1 or QKI expression correlated with patient age or tumor invasion depth, respectively. MBNL1 or QKI knockout markedly enhanced cancer cell migration, invasion, proliferation, and tumor growth. Moreover, the absence of either MBNL1 or QKI modulated the expression profiles of multiple circRNAs, causing extensive downstream alterations in the expression of numerous lncRNAs and mRNAs. While the functions of circRNA and lncRNA among the top 20 differentially expressed genes remain unclear, mRNAs like SLCO4C1, TMPRSS15, and MAGEB2 have reported associations with tumor progression. CONCLUSIONS This study underscores the tumor-suppressive roles of MBNL1 and QKI in ESCC, proposing them as potential biomarkers and therapeutic targets for ESCC diagnosis and treatment.
Collapse
Affiliation(s)
- Hai-Feng Wang
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Oncology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Xiao-Feng Zhou
- Henan Key Laboratory of Tumor Molecular Therapy Medicine, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Qun-Mei Zhang
- Department of Blood Transfusion, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Jie-Qing Wu
- Department of Oncology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Jing-Han Hou
- Henan Key Laboratory of Tumor Molecular Therapy Medicine, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Xue-Lian Xu
- Department of Oncology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Xiu-Min Li
- Henan Key Laboratory of Tumor Molecular Therapy Medicine, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Yu-Long Liu
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, Jiangsu, P.R. China
| |
Collapse
|
4
|
Gong Z, Shen P, Wang H, Zhu J, Liang K, Wang K, Mi Y, Shen S, Fang X, Liu G. A novel circular RNA circRBMS3 regulates proliferation and metastasis of osteosarcoma by targeting miR-424-eIF4B/YRDC axis. Aging (Albany NY) 2023; 15:1564-1590. [PMID: 36897170 PMCID: PMC10042691 DOI: 10.18632/aging.204567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 01/23/2023] [Indexed: 03/11/2023]
Abstract
Circular RNAs (circRNAs) have been demonstrated to have critical regulatory roles in tumorigenesis. However, the contribution of circRNAs to OS (osteosarcoma) remains largely unknown. circRNA deep sequencing was performed to the expression of circRNAs between OS and chondroma tissues. The regulatory and functional role of circRBMS3 (a circRNA derived from exons 7 to 10 of the RBMS3 gene, hsa_circ_0064644) upregulation was examined in OS and was validated in vitro and in vivo, upstream regulator and downstream target of circRBMS3 were both explored. RNA pull down, a luciferase reporter assay, biotin-coupled microRNA capture and fluorescence in situ hybridization were used to evaluate the interaction between circRBMS3 and micro (mi)-R-424-5p. For in vivo tumorigenesis experiments, Subcutaneous and Orthotopic xenograft OS mouse models were built. Expression of circRBMS3 was higher in OS tissues due to the regulation of adenosine deaminase 1-acting on RNA (ADAR1), an abundant RNA editing enzyme. Our in vitro data indicated that ShcircRBMS3 inhibits the proliferation and migration of osteosarcoma cells. Mechanistically, we showed that circRBMS3 could regulate eIF4B and YRDC, through 'sponging' miR-424-5p. Furthermore, knockdown of circRBMS3 inhibited malignant phenotypes and bone destruction of OS in vivo. Our results reveal an important role for a novel circRBMS3 in the growth and metastasis of malignant tumor cells and offer a fresh perspective on circRNAs in OS progression.
Collapse
Affiliation(s)
- Zhe Gong
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University and Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province Sir Run Run Shaw Institute of Clinical Medicine of Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Panyang Shen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University and Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province Sir Run Run Shaw Institute of Clinical Medicine of Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Haitao Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University and Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province Sir Run Run Shaw Institute of Clinical Medicine of Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Jinjin Zhu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University and Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province Sir Run Run Shaw Institute of Clinical Medicine of Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Kaiyu Liang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University and Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province Sir Run Run Shaw Institute of Clinical Medicine of Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Kefan Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University and Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province Sir Run Run Shaw Institute of Clinical Medicine of Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Yunfeng Mi
- Department of Orthopaedic Surgery, Ningbo First Hospital, Ningbo 315010, China
| | - Shuying Shen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University and Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province Sir Run Run Shaw Institute of Clinical Medicine of Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Xiangqian Fang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University and Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province Sir Run Run Shaw Institute of Clinical Medicine of Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Gang Liu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University and Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province Sir Run Run Shaw Institute of Clinical Medicine of Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| |
Collapse
|
5
|
Xu F, Jiang M, Tang Q, Lin J, Liu X, Zhang C, Zhao J, He Y, Dong L, Zhu L, Lin T. MiR-29a-3p inhibits high-grade transformation and epithelial-mesenchymal transition of lacrimal gland adenoid cystic carcinoma by targeting Quaking. Mol Biol Rep 2023; 50:2305-2316. [PMID: 36575320 DOI: 10.1007/s11033-022-08150-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 11/23/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND Lacrimal adenoid cystic carcinoma (LACC) is the most common orbital malignant epithelial neoplasm. LACC with high-grade transformation (LACC-HGT) has higher rates of recurrence, metastasis, and mortality than LACC without HGT. This study investigated the effects of microRNA-29a-3p (miR-29a-3p) in the pathogenesis of LACC-HGT. METHODS An Agilent human miRNA microarray was used to screen the differentially expressed miRNAs (DEMs) in LACC and LACC-HGT tumor tissues. Then, the primary cells obtained in previous studies were used to determine the effect of miR-29a-3p. RESULTS The expression of miR-29a-3p was abnormally lower in LACC-HGT than in LACC. miR-29a-3p can specifically target the 3' UTR of Quaking mRNA and down-regulate Quaking expression, thereby inhibiting the proliferation, migration, and epithelial-mesenchymal transition of LACC cells. CONCLUSIONS This study illustrated that miR-29a-3p functions as a tumor suppressor by down-regulating the expression of Quaking to inhibit the tumorigenesis of LACC cells. This study may also reveal the pathogenesis of HGT in LACC cells and provide a reference for LACC-HGT targeted diagnosis.
Collapse
Affiliation(s)
- Fei Xu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, People's Republic of China
| | - Meixia Jiang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Key Laboratory of Ophthalmology &Visual Sciences, Capital Medical University, Beijing, China.,Beijing Institute of Ophthalmology, Beijing, China
| | - Qin Tang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, People's Republic of China
| | - Jiaqi Lin
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, People's Republic of China
| | - Xun Liu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, People's Republic of China
| | - Chuanli Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, People's Republic of China
| | - Jinzhi Zhao
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, People's Republic of China
| | - Yanjin He
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, People's Republic of China
| | - Lijie Dong
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, People's Republic of China.
| | - Limin Zhu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, People's Republic of China.
| | - Tingting Lin
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, People's Republic of China.
| |
Collapse
|
6
|
Rastad H, Mozafary Bazargany MH, Samimisedeh P, Farahani M, Hashemnejad M, Moghadam S, Khodaparast Z, Shams R, Seifi-Alan M. Clinicopathological and prognostic value of lncRNA TPT1-AS1 in cancer: a systematic review study and meta-analysis. Pathol Res Pract 2023; 245:154403. [PMID: 37004278 DOI: 10.1016/j.prp.2023.154403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/26/2023] [Accepted: 03/03/2023] [Indexed: 03/07/2023]
Abstract
INTRODUCTION Aberrant expression of lncRNAs in cancer cells can impact their key phenotypes. We aimed to summarize available evidence on clinicopathological and prognostic value of lncRNA TPT1-AS1 in cancer. METHODS A systematic search was performed on Medline and Embase databases using relevant key terms covering lncRNA TPT1-AS1, cancer, and clinical outcomes. The effect size estimates and their 95 % confidence interval (CI) were pooled using random-effects models. Meta- analyses were conducted using STATA 16.0 software. RESULTS Seventeen articles met our eligibility criteria. Tumor tissue compared to normal tissue showed increased level of lncRNA TPT1-AS1 expression (pooled standardized mean difference (95 % CI): 0.65 (0.52-0.79)). Overexpression of this lncRNA was a significant predictor for poor prognosis (Pooled log-rank test P-value < 0.001); in patients with high-level of lncRNA TPT1-AS1, the risk of death at five years was 1.40 times greater than their counterparts. The pooled Odds ratios for association lncRNA TPT1-AS1 with tumor stage, tumor size, and lymph node metastasis were 1.94 (95 % CI: 0.90-4.19, 8 studies, I2 = 79.6 %), 2.33 (95 % CI: 1.31-4.14, 5 studies, I2 = 40.0 %), and 1.89 (95 % CI: 1.08-3.36, 5 studies, I2 = 61.7 %), respectively. Regarding the identified potential mechanisms, lncRNA TPT1-AS1 plays a role in cancer growth mainly by sponging miRNAs and regulating their downstream targets or controlling the expression of key cell cycle regulators. CONCLUSION In cancer patients, elevated expression of lncRNA TPT1-AS1 might be associated with a shorter Overall Survival, advanced stages, larger tumor size, and lymph node metastasis.
Collapse
Affiliation(s)
- Hadith Rastad
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | | | - Parham Samimisedeh
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Masoumeh Farahani
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Maryam Hashemnejad
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Somaye Moghadam
- Bone and Joint Reconstruction Research Center, Department of Orthopedics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zeinab Khodaparast
- Bone and Joint Reconstruction Research Center, Department of Orthopedics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Roshanak Shams
- Bone and Joint Reconstruction Research Center, Department of Orthopedics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Mahnaz Seifi-Alan
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
7
|
Gao Y, Cao H, Huang D, Zheng L, Nie Z, Zhang S. RNA-Binding Proteins in Bladder Cancer. Cancers (Basel) 2023; 15:cancers15041150. [PMID: 36831493 PMCID: PMC9953953 DOI: 10.3390/cancers15041150] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
RNA-binding proteins (RBPs) are key regulators of transcription and translation, with highly dynamic spatio-temporal regulation. They are usually involved in the regulation of RNA splicing, polyadenylation, and mRNA stability and mediate processes such as mRNA localization and translation, thereby affecting the RNA life cycle and causing the production of abnormal protein phenotypes that lead to tumorigenesis and development. Accumulating evidence supports that RBPs play critical roles in vital life processes, such as bladder cancer initiation, progression, metastasis, and drug resistance. Uncovering the regulatory mechanisms of RBPs in bladder cancer is aimed at addressing the occurrence and progression of bladder cancer and finding new therapies for cancer treatment. This article reviews the effects and mechanisms of several RBPs on bladder cancer and summarizes the different types of RBPs involved in the progression of bladder cancer and the potential molecular mechanisms by which they are regulated, with a view to providing information for basic and clinical researchers.
Collapse
|
8
|
Aepala MR, Peiris MN, Jiang Z, Yang W, Meyer AN, Donoghue DJ. Nefarious NTRK oncogenic fusions in pediatric sarcomas: Too many to Trk. Cytokine Growth Factor Rev 2022; 68:93-106. [PMID: 36153202 DOI: 10.1016/j.cytogfr.2022.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 01/30/2023]
Abstract
Neurotrophic Tyrosine Receptor Kinase (NTRK) genes undergo chromosomal translocations to create novel open reading frames coding for oncogenic fusion proteins; the N-terminal portion, donated by various partner genes, becomes fused to the tyrosine kinase domain of either NTRK1, NTRK2, or NTRK3. NTRK fusion proteins have been identified as driver oncogenes in a wide variety of tumors over the past three decades, including Pediatric Gliomas, Papillary Thyroid Carcinoma, Spitzoid Neoplasms, Glioblastoma, and additional tumors. Importantly, NTRK fusions function as drivers of pediatric sarcomas, accounting for approximately 15% of childhood cancers including Infantile Fibrosarcoma (IFS), a subset of pediatric soft tissue sarcoma (STS). While tyrosine kinase inhibitors (TKIs), such as larotrectinib and entrectinib, have demonstrated profound results against NTRK fusion-positive cancers, acquired resistance to these TKIs has resulted in the formation of gatekeeper, solvent-front, and compound mutations. We present a comprehensive compilation of oncogenic fusions involving NTRKs focusing specifically on pediatric STS, examining their biological signaling pathways and mechanisms of activation. The importance of an obligatory dimerization or multimerization domain, invariably donated by the N-terminal fusion partner, is discussed using characteristic fusions that occur in pediatric sarcomas. In addition, examples are presented of oncogenic fusion proteins in which the N-terminal partners may contribute additional biological activities beyond an oligomerization domain. Lastly, therapeutic approaches to the treatment of pediatric sarcoma will be presented, using first generation and second-generation agents such as selitrectinib and repotrectinib.
Collapse
Affiliation(s)
- Megha R Aepala
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093-0367, USA
| | - Malalage N Peiris
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093-0367, USA
| | - Zian Jiang
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093-0367, USA
| | - Wei Yang
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093-0367, USA
| | - April N Meyer
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093-0367, USA
| | - Daniel J Donoghue
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093-0367, USA; UCSD Moores Cancer Center, University of California San Diego, La Jolla, CA 92093-0367, USA.
| |
Collapse
|
9
|
Tran F, Lee E, Cuddapah S, Choi BH, Dai W. MicroRNA-Gene Interactions Impacted by Toxic Metal(oid)s during EMT and Carcinogenesis. Cancers (Basel) 2022; 14:5818. [PMID: 36497298 PMCID: PMC9741118 DOI: 10.3390/cancers14235818] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Chronic environmental exposure to toxic metal(loid)s significantly contributes to human cancer development and progression. It is estimated that approximately 90% of cancer deaths are a result of metastasis of malignant cells, which is initiated by epithelial-mesenchymal transition (EMT) during early carcinogenesis. EMT is regulated by many families of genes and microRNAs (miRNAs) that control signaling pathways for cell survival, death, and/or differentiation. Recent mechanistic studies have shown that toxic metal(loid)s alter the expression of miRNAs responsible for regulating the expression of genes involved in EMT. Altered miRNA expressions have the potential to be biomarkers for predicting survival and responses to treatment in cancers. Significantly, miRNAs can be developed as therapeutic targets for cancer patients in the clinic. In this mini review, we summarize key findings from recent studies that highlight chemical-miRNA-gene interactions leading to the perturbation of EMT after exposure to toxic metal(loid)s including arsenic, cadmium, nickel, and chromium.
Collapse
Affiliation(s)
| | | | | | - Byeong Hyeok Choi
- Division of Environmental Medicine, Department of Medicine, Grossman School of Medicine, New York University, New York, NY 10010, USA
| | - Wei Dai
- Division of Environmental Medicine, Department of Medicine, Grossman School of Medicine, New York University, New York, NY 10010, USA
| |
Collapse
|
10
|
Luo Y, Li Y, Ge P, Zhang K, Liu H, Jiang N. QKI-Regulated Alternative Splicing Events in Cervical Cancer: Pivotal Mechanism and Potential Therapeutic Strategy. DNA Cell Biol 2021; 40:1261-1277. [PMID: 34551268 DOI: 10.1089/dna.2021.0069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
QKI is a vital regulator in RNA splicing and maturation, but its role in cervical cancer (CC) is little known. In this study, we found that QKI is decreased in human CC, and overexpression of QKI inhibits HeLa cell proliferation and promotes the apoptosis of cancer cells. We identified hundreds of endogenous QKI-regulated alternative splicing events (ASEs) and differentially expressed genes (DEGs) in QKI-overexpressed HeLa cells by RNA-seq and selectively validated their expression by quantitative reverse-transcription polymerase chain reaction. The gene ontology and Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis showed that QKI-regulated ASEs and DEGs were closely related to cancer, apoptosis, and transcriptional regulatory functions. In short, QKI may affect the occurrence and development of CC by regulating gene expression through AS.
Collapse
Affiliation(s)
- Yalan Luo
- Laboratory of Integrative Medicine, The First Affiliated Hospital, Dalian Medical University, Dalian, China.,Department of General Surgery, The First Affiliated Hospital, Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Yuyuan Li
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Peng Ge
- Laboratory of Integrative Medicine, The First Affiliated Hospital, Dalian Medical University, Dalian, China.,Department of General Surgery, The First Affiliated Hospital, Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Kaina Zhang
- Department of Gynecology and Obstetrics, Central Hospital of Zhuanghe City, Zhuanghe, China
| | - Huanhuan Liu
- Laboratory of Integrative Medicine, The First Affiliated Hospital, Dalian Medical University, Dalian, China.,Department of General Surgery, The First Affiliated Hospital, Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Nan Jiang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| |
Collapse
|
11
|
Hosseini NF, Manoochehri H, Khoei SG, Sheykhhasan M. The Functional Role of Long Non-coding RNA UCA1 in Human Multiple Cancers: a Review Study. Curr Mol Med 2021; 21:96-110. [PMID: 32560605 DOI: 10.2174/1566524020666200619124543] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 02/08/2023]
Abstract
In various cancers, high-grade tumor and poor survival rate in patients with upregulated lncRNAs UCA1 have been confirmed. Urothelial carcinoma associated 1 (UCA1) is an oncogenic non-coding RNA with a length of more than 200 nucleotides. The UCA1 regulate critical biological processes that are involved in cancer progression, including cancer cell growth, invasion, migration, metastasis, and angiogenesis. So It should not surprise that UCA1 overexpresses in variety of cancers type, including pancreatic cancer, ovarian cancer, gastric cancer, colorectal cancer, breast cancer, prostate cancer, endometrial cancer, cervical cancer, bladder cancer, adrenal cancer, hypopharyngeal cancer, oral cancer, gallbladder cancer, nasopharyngeal cancer, laryngeal cancer, osteosarcoma, esophageal squamous cell carcinoma, renal cell carcinoma, cholangiocarcinoma, leukemia, glioma, thyroid cancer, medulloblastoma, hepatocellular carcinoma and multiple myeloma. In this article, we review the biological function and regulatory mechanism of UCA1 in several cancers and also, we will discuss the potential of its as cancer biomarker and cancer treatment.
Collapse
Affiliation(s)
- Nashmin Fayazi Hosseini
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hamed Manoochehri
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Mohsen Sheykhhasan
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
12
|
He C, Huang F, Zhang K, Wei J, Hu K, Liang M. Establishment and validation of an RNA binding protein-associated prognostic model for ovarian cancer. J Ovarian Res 2021; 14:27. [PMID: 33550985 PMCID: PMC7869493 DOI: 10.1186/s13048-021-00777-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 01/25/2021] [Indexed: 12/13/2022] Open
Abstract
Background Ovarian cancer (OC) is one of the most common gynecological malignant tumors worldwide, with high mortality and a poor prognosis. As the early symptoms of malignant ovarian tumors are not obvious, the cause of the disease is still unclear, and the patients’ postoperative quality of life of decreases. Therefore, early diagnosis is a problem requiring an urgent solution. Methods We obtained the gene expression profiles of ovarian cancer and normal samples from TCGA and GTEx databases for differential expression analysis. From existing literature reports, we acquired the RNA-binding protein (RBP) list for the human species. Utilizing the online tool Starbase, we analyzed the interaction relationship between RBPs and their target genes and selected the modules of RBP target genes through Cytoscape. Finally, univariate and multivariate Cox regression analyses were used to determine the prognostic RBP signature. Results We obtained 527 differentially expressed RBPs, which were involved in many important cellular events, such as RNA splicing, the cell cycle, and so on. We predicted several target genes of RBPs, constructed the interaction network of RBPs and their target genes, and obtained many modules from the Cytoscape analysis. Functional enrichment of RBP target genes also includes these important biological processes. Through Cox regression analysis, OC prognostic RBPs were identified and a 10-RBP model constructed. Further analysis showed that the model has high accuracy and sensitivity in predicting the 3/5-year survival rate. Conclusions Our study identified differentially expressed RBPs and their target genes in OC, and the results promote our understanding of the molecular mechanism of ovarian cancer. The current study could develop novel biomarkers for the diagnosis, treatment, and prognosis of OC and provide new ideas and prospects for future clinical research. Supplementary Information The online version contains supplementary material available at 10.1186/s13048-021-00777-1.
Collapse
Affiliation(s)
- Chaofan He
- School of Life Science, Bengbu Medical College, Bengbu, 233030, Anhui, People's Republic of China
| | - Fuxin Huang
- School of Life Science, Bengbu Medical College, Bengbu, 233030, Anhui, People's Republic of China
| | - Kejia Zhang
- School of Life Science, Bengbu Medical College, Bengbu, 233030, Anhui, People's Republic of China
| | - Jun Wei
- Department of Gastroenterology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, Anhui, People's Republic of China
| | - Ke Hu
- School of Life Science, Bengbu Medical College, Bengbu, 233030, Anhui, People's Republic of China.
| | - Meng Liang
- School of Life Science, Bengbu Medical College, Bengbu, 233030, Anhui, People's Republic of China.
| |
Collapse
|
13
|
Chen Z, Huang J, Feng Y, Li Z, Jiang Y. Profiling of specific long non-coding RNA signatures identifies ST8SIA6-AS1 AS a novel target for breast cancer. J Gene Med 2021; 23:e3286. [PMID: 33037712 DOI: 10.1002/jgm.3286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 09/24/2020] [Accepted: 09/26/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Breast cancer is the most commonly diagnosed cancer among women and is also the leading cause of cancer death for which the treatment and methods of diagnosis remain unsatisfied. Long non-coding RNA (lncRNA) plays an important role in the occurrence and development of tumors, including breast cancer. We aimed to seek new and efficient treatment targets by analyzing the lncRNA expression profiles of breast cancer. METHODS A competitive endogenous RNA microarray was used to investigate the profiles of differentially expressed lncRNAs. Quantitative real-time polymerase chain reaction analysis (qRT-PCR) validated the top differentially expressed lncRNAs in 107 pairs of breast cancer tissues and adjacent normal tissues. cis- and trans-regulation mRNAs of lncRNAs were used to perform enrichment analysis. Cell function assays were used to explore the functions of ST8SIA6-AS1. RESULTS Seven lncRNAs, comprising ST8SIA6-AS1, lnc-HIST1H2BJ-5:1, lnc-PRICKLE2-3:2, RP1-86C11.7, RP11-15F12.1, ZNF670-ZNF695 and lnc-STRN3-12:1, were shown to be significantly up-regulated in breast cancer. lncRNA ST8SIA6-AS1 was associated with TNM staging and Ki-67 index. The cell function assays showed that ST8SIA6-AS1 can promote the proliferation, migration and invasion of breast cancer cells. The functions of ST8SIA6-AS1 were explored and the competing endogenous RNA mode showed that miR-4252 was a potential candidate. Its target genes were further predicted. The lncRNA-protein mode showed three potential candidate RNA binding proteins: NONO, QKI and RBMX. CONCLUSIONS lncRNA ST8SIA6-AS1 can promote the proliferation, migration and invasion of breast cancer cells. By hypothesizing two different functional modes of ST8SIA6-AS1, we found lncRNA ST8SIA6-AS1 may contribute to breast cancer progression through miR-4252 or interacting with RNA binding proteins: NONO, QKI and RBMX.
Collapse
Affiliation(s)
- Zhanghan Chen
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jie Huang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yanling Feng
- Department of Pathology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Zehuan Li
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ying Jiang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of General Surgery, Xiamen Branch, Zhongshan Hospital, Fudan University, Fujian, China
| |
Collapse
|
14
|
Cao Y, Chu C, Li X, Gu S, Zou Q, Jin Y. RNA-binding protein QKI suppresses breast cancer via RASA1/MAPK signaling pathway. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:104. [PMID: 33569406 PMCID: PMC7867911 DOI: 10.21037/atm-20-4859] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background RNA-binding protein Quaking (QKI) has been linked with the pathogenesis and development of various human malignancies. Herein, we explored the particular role of QKI in breast cancer (BC) progression. Methods The methods employed in the study included public dataset analysis, western blot, quantitative real-time PCR (qRT-PCR), cell count kit-8 (CCK8) assay, colony formation assay, flow cytometric analysis, RNA immunoprecipitation (RIP), messenger RNA (mRNA) stability assay, QKI overexpression and knockdown, and Ras p21 protein activator 1 (RASA1) knockdown. Results Aberrant expression levels of QKI and RASA1 were detected in BC and compared with those in noncancerous tissues. A moderately positive correlation between QKI and RASA1 was verified within BC tissues. Low expression of QKI was associated with positive estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2) status, non-triple-negative breast cancer (TNBC), non-basal-like BC, and poor clinical outcomes in BC patients. QKI overexpression suppressed BC cell proliferation and colony formation, and arrested cell cycle at G1 phase. RIP assay and mRNA stability assay confirmed that QKI directly bound to RASA1 transcript and increased its stability, thus inactivating the MAPK pathway and inhibiting BC progression. RASA1 knockdown could partly attenuate the inhibitory effect of QKI on BC cell proliferation via activating the mitogen-activated protein kinase (MAPK) pathway. Conclusions QKI, which was frequently downregulated in BC, could significantly inhibit cell proliferation and arrest cell cycle at G1 phase by binding and enhancing RASA1 mRNA expression. Low expression of QKI was prominently associated with unfavorable clinical outcomes in BC patients, indicating the prognostic value of QKI in BC.
Collapse
Affiliation(s)
- Yun Cao
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Chengyu Chu
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaoyan Li
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Siwen Gu
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Qiang Zou
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Yiting Jin
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
15
|
He Z, Duan Z, Chen L, Li B, Zhou Y. Long non-coding RNA Loc490 inhibits gastric cancer cell proliferation and metastasis by upregulating RNA-binding protein Quaking. Aging (Albany NY) 2020; 12:17681-17693. [PMID: 32931453 PMCID: PMC7521539 DOI: 10.18632/aging.103876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 07/14/2020] [Indexed: 01/24/2023]
Abstract
Gastric cancer (GC) is one of the most common malignant tumor types worldwide. Long non-coding RNAs (lncRNAs) have important epigenetic effects, including altering the proliferation and metastasis of malignant tumors. We used gene chip technology to search for lncRNAs that were differentially expressed in GC and metastatic lymph node tissues compared with adjacent normal tissues. The lncRNA Loc490 and the RNA-binding protein Quaking (QKI) were downregulated in GC tissues and lymph node metastases compared with normal tissues, and the levels of these two genes correlated positively with one another. Loc490 expression correlated negatively with lymph node metastasis and vein/nerve invasion, while it correlated positively with overall and disease-free survival. In vitro, Loc490 post-translationally enhanced the expression of QKI and suppressed the expression of epithelial-mesenchymal transition-related molecules. Overexpression of Loc490 inhibited GC cell proliferation, invasion and metastasis and exerted strong antitumor effects in vivo, while silencing of QKI antagonized these effects. A potential binding site between Loc490 and QKI was detected through bioinformatics analysis and confirmed through RNA immunoprecipitation and mutant analyses. Our results suggest that lncRNA Loc490 inhibits GC cell proliferation and metastasis by upregulating RNA-binding protein QKI.
Collapse
Affiliation(s)
- Zhengxi He
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, People’s Republic of China,Basic School of Medicine, Cancer Research Institute, Central South University, Changsha 410008, Hunan, People’s Republic of China,Hunan Cancer Hospital, The Affiliated Tumor Hospital of Xiangya Medical College, Central South University, Changsha 410008, People’s Republic of China,Key Laboratory of Carcinogenesis of the Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of the Ministry of Education, Cancer Research Institute, Central South University, Changsha 410008, People’s Republic of China
| | - Zhaojun Duan
- Medical Research Center, Key Laboratory of Cancer Proteomics of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha 410008, People’s Republic of China
| | - Ling Chen
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha 410008, People’s Republic of China
| | - Bin Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, People’s Republic of China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, People’s Republic of China
| | - Yanhong Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, People’s Republic of China,Basic School of Medicine, Cancer Research Institute, Central South University, Changsha 410008, Hunan, People’s Republic of China,Hunan Cancer Hospital, The Affiliated Tumor Hospital of Xiangya Medical College, Central South University, Changsha 410008, People’s Republic of China,Key Laboratory of Carcinogenesis of the Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of the Ministry of Education, Cancer Research Institute, Central South University, Changsha 410008, People’s Republic of China
| |
Collapse
|
16
|
Zhang Y, Ma S, Niu Q, Han Y, Liu X, Jiang J, Chen S, Lin H. Features of alternative splicing in stomach adenocarcinoma and their clinical implication: a research based on massive sequencing data. BMC Genomics 2020; 21:580. [PMID: 32831016 PMCID: PMC7443856 DOI: 10.1186/s12864-020-06997-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 08/17/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Alternative splicing (AS) offers a main mechanism to form protein polymorphism. A growing body of evidence indicates the correlation between splicing disorders and carcinoma. Nevertheless, an overall analysis of AS signatures in stomach adenocarcinoma (STAD) is absent and urgently needed. RESULTS 2042 splicing events were confirmed as prognostic molecular events. Furthermore, the final prognostic signature constructed by 10 AS events gave good result with an area under the curve (AUC) of receiver operating characteristic (ROC) curve up to 0.902 for 5 years, showing high potency in predicting patient outcome. We built the splicing regulatory network to show the internal regulation mechanism of splicing events in STAD. QKI may play a significant part in the prognosis induced by splicing events. CONCLUSIONS In our study, a high-efficiency prognostic prediction model was built for STAD patients, and the results showed that AS events could become potential prognostic biomarkers for STAD. Meanwhile, QKI may become an important target for drug design in the future.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Shengling Ma
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Niu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yun Han
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xingyu Liu
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jie Jiang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Simiao Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Haolong Lin
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
17
|
Wei X, Wang B, Wang Q, Yang X, Yang Y, Fang Z, Yi C, Shi L, Fan X, Tao J, Guo Y, Song D. MiR-362-5p, Which Is Regulated by Long Non-Coding RNA MBNL1-AS1, Promotes the Cell Proliferation and Tumor Growth of Bladder Cancer by Targeting QKI. Front Pharmacol 2020; 11:164. [PMID: 32194406 PMCID: PMC7063466 DOI: 10.3389/fphar.2020.00164] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 02/07/2020] [Indexed: 11/13/2022] Open
Abstract
In this study, we found miR-362-5p was upregulated in bladder cancer tissues and we predicted that QKI is potential a target of miR-362-5p and MBNL1-AS1 might be able to directly target to miR-362-5p. We attempted to evaluate whether miR-362-5p could play its roles in bladder cancer through regulating QKI (quaking) and whether the expression and function of miR-362-5p could be mediated by lncRNA MBNL1-AS1. We performed the gain- and loss-function experiments to explore the association between miR-362-5p expression and bladder cancer proliferation. In vivo, the nude mice were injected with miR-362-5p knockdown SW780 cells to assess the effects of miR-362-5p on tumor growth. The results showed upregulation of miR-362-5p promoted cell proliferation of bladder cancer cells. MBNL1-AS1 and QKI could directly bind with miR-362-5p, and knockdown of MBNL1-AS1 or QKI could abrogate the regulatory effects of miR-362-5p on bladder cancer cell proliferation. Furthermore, downregulation of miR-362-5p inhibited bladder tumor growth and increased QKI expression. Our data unveiled that miR-362-5p may play an oncogenic role in bladder cancer through QKI and MBNL1-AS1 might function as a sponge to mediate the miR-362-5p expression and function.
Collapse
Affiliation(s)
- Xiaosong Wei
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Beibei Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qi Wang
- College of Science, The Australian National University, Canberra, ACT, Australia
| | - Xiaoming Yang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yang Yang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhiwei Fang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chengzhi Yi
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lei Shi
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin Fan
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jin Tao
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yufeng Guo
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dongkui Song
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
18
|
Shi F, Wei D, Zhu Z, Yan F, Wang F, Zhang K, Li X, Zheng Y, Yuan J, Lu Z, Yuan J. The RNA-binding protein QKI suppresses tumorigenesis of clear cell renal cell carcinoma by regulating the expression of HIF-1α. J Cancer 2020; 11:1359-1370. [PMID: 32047543 PMCID: PMC6995368 DOI: 10.7150/jca.36083] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 12/01/2019] [Indexed: 01/05/2023] Open
Abstract
Backgrounds: A number of genetic and biological phenomena imply that tumorigenesis of clear cell renal cell carcinoma (ccRCC) is highly correlated with hypoxia-induced factor-1a (HIF-1α). Recently, research focusing on the post-transcriptional regulation of HIF-1α has provided a new perspective for ccRCC therapy. In this study, we observed the expression pattern of the RNA-binding protein QKI, which could regulate HIF expression in ccRCC both in vitro and in vivo. Methods: Tissue microarraywas subjected to immunohistochemistry and tumour cell lines and nude mice were used for in vitro and in vivo assays. QKI overexpression or knockdown was assessed in renal cancer cells. Results: The overexpression of QKI inhibited the proliferation of the 786-0 and caki-1 cells, blocked the cells' entry into the S phase, and promoted apoptosis. In ectopic-implantation nude mice model, QKI depletion significantly increased tumor sizes and initiation rates. Tissue microarrays showed that the expression of QKI genes, and especially QKI-6, was significantly decreased in tumor tissues compared with these in normal kidney tissues. Moreover, decreased QKI expression was closely correlated with high tumor grade, poor differentiation, and poor survival. Conclusions: QKI may be useful as a novel, independent diagnostic and biological marker for ccRCC.
Collapse
Affiliation(s)
- Fei Shi
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an710032, China
| | - Di Wei
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an710032, China
| | - Zheng Zhu
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an710032, China
| | - Fei Yan
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an710032, China
| | - Fuli Wang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an710032, China
| | - Keke Zhang
- Department of Urology, The 201 Military Hospital, Liaoyang 111000, China
| | - Xi'an Li
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an710032, China
| | - Yu Zheng
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an710032, China
| | - Jiarui Yuan
- School of Medicine, St. George's University, Grenada
| | - Zifan Lu
- State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, Fourth Military Medical University, Xi'an710032, China
| | - Jianlin Yuan
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an710032, China
| |
Collapse
|
19
|
Liu J, Wang P, Zhang P, Zhang X, Du H, Liu Q, Huang B, Qian C, Zhang S, Zhu W, Yang X, Xiao Y, Liu Z, Luo D. An integrative bioinformatics analysis identified miR-375 as a candidate key regulator of malignant breast cancer. J Appl Genet 2019; 60:335-346. [PMID: 31372832 DOI: 10.1007/s13353-019-00507-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 06/30/2019] [Accepted: 07/09/2019] [Indexed: 12/27/2022]
Abstract
MicroRNAs (miRNAs) are key regulators that play important biological roles in carcinogenesis and are promising biomarkers for cancer diagnosis and therapy. hsa-miR-375-3p (miR-375) has been suggested to serve as a tumor suppressor or oncogene in various tumor types; however, its specific expression and potential regulatory role in malignant breast cancer remain unclear. In this study, the results from noncoding RNA microarray analysis indicated that the miR-375 expression level is significantly decreased in malignant basal-like breast cancer compared with luminal-like breast cancer. A total of 1895 co-downregulated and 1645 co-upregulated genes were identified in miR-375 mimic-transfected basal-like breast cancer cell lines. Predicted miR-375 targets were obtained from the online databases TargetScan and DIANA-microT-CDS. Combined KEGG enrichment analysis for coregulated genes and predicted miR-375 targets provided information and revealed differences in potential dynamic signaling pathways regulated by miR-375 and also indicated specific regulatory pathways, such as RNA transport and processing, in basal-like breast cancer. Additionally, gene expression microarray analysis accompanied by UALCAN analysis was performed to screen upregulated genes in the basal-like subtype. Four potential key genes, including LDHB, CPNE8, QKI, and EIF5A2, were identified as candidate target genes of miR-375. Therefore, the present study demonstrated that miR-375 may be a potential key regulator and provide a promising direction for diagnostic and therapeutic developments for malignant breast cancer.
Collapse
Affiliation(s)
- Jiaxuan Liu
- Queen Mary School, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Ping Wang
- Queen Mary School, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Ping Zhang
- Department of Pathology, The Affiliated Infectious Diseases Hospital, Nanchang University, Nanchang, 330002, Jiangxi, China
| | - Xinyu Zhang
- Queen Mary School, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Hang Du
- Queen Mary School, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Qiang Liu
- National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Bo Huang
- Department of Pathology, The Affiliated Infectious Diseases Hospital, Nanchang University, Nanchang, 330002, Jiangxi, China
| | - Caiyun Qian
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Shuhua Zhang
- Jiangxi Cardiovascular Research Institute, Jiangxi Provincial People's Hospital, Nanchang, 330006, Jiangxi, China
| | - Weifeng Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Xiaohong Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Yingqun Xiao
- Department of Pathology, The Affiliated Infectious Diseases Hospital, Nanchang University, Nanchang, 330002, Jiangxi, China.
| | - Zhuoqi Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, Jiangxi, China.
| | - Daya Luo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, Jiangxi, China.
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology, Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
20
|
Shi F, Deng Z, Zhou Z, Jiang C, Zhao R, Sun F, Cui D, Bei X, Yang B, Sun Q, Wang X, Wu Q, Xia S, Han B. QKI-6 inhibits bladder cancer malignant behaviours through down-regulating E2F3 and NF-κB signalling. J Cell Mol Med 2019; 23:6578-6594. [PMID: 31449345 PMCID: PMC6787450 DOI: 10.1111/jcmm.14481] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/13/2019] [Accepted: 05/15/2019] [Indexed: 02/06/2023] Open
Abstract
Quaking homolog (QKI) is a member of the RNA-binding signal transduction and activator of proteins family. Previous studies showed that QKI possesses the tumour suppressor activity in human cancers by interacting with the 3'-untraslated region (3'-UTR) of various gene transcripts via the STAR domain. This study first assessed the association of QKI-6 expression with clinicopathological and survival data from bladder cancer patients and then investigated the underlying molecular mechanisms. Bladder cancer tissues (n = 223) were subjected to immunohistochemistry, and tumour cell lines and nude mice were used for different in vitro and in vivo assays following QKI-6 overexpression or knockdown. QKI-6 down-regulation was associated with advanced tumour TNM stages and poor patient overall survival. QKI-6 overexpression inhibited bladder cancer cell growth and invasion capacity, but induced tumour cell apoptosis and cell cycle arrest. Furthermore, ectopic expression of QKI-6 reduced tumour xenograft growth and expression of proliferation markers, Ki67 and PCNA. However, knockdown of QKI-6 expression had opposite effects in vitro and in vivo. QKI-6 inhibited expression of E2 transcription factor 3 (E2F3) by directly binding to the E2F3 3'-UTR, whereas E2F3 induced QKI-6 transcription by binding to the QKI-6 promoter in negative feedback mechanism. QKI-6 expression also suppressed activity and expression of nuclear factor-κB (NF-κB) signalling proteins in vitro, implying a novel multilevel regulatory network downstream of QKI-6. In conclusion, QKI-6 down-regulation contributes to bladder cancer development and progression.
Collapse
Affiliation(s)
- Fei Shi
- Department of Urology, School of MedicineShanghai General Hospital, Shanghai Jiao Tong UniversityShanghaiChina
| | - Zheng Deng
- Department of Urology, School of MedicineShanghai General Hospital, Shanghai Jiao Tong UniversityShanghaiChina
| | - Zheng Zhou
- Department of UrologyShanghai General Hospital Affiliated to Nanjing Medical UniversityShanghaiChina
| | - Chen‐Yi Jiang
- Department of Urology, School of MedicineShanghai General Hospital, Shanghai Jiao Tong UniversityShanghaiChina
| | - Rui‐Zhe Zhao
- Department of Urology, School of MedicineShanghai General Hospital, Shanghai Jiao Tong UniversityShanghaiChina
| | - Feng Sun
- Department of Urology, School of MedicineShanghai General Hospital, Shanghai Jiao Tong UniversityShanghaiChina
- Institute of UrologyShanghai Jiao Tong UniversityShanghaiChina
| | - Di Cui
- Department of Urology, School of MedicineShanghai General Hospital, Shanghai Jiao Tong UniversityShanghaiChina
- Institute of UrologyShanghai Jiao Tong UniversityShanghaiChina
| | - Xiao‐Yu Bei
- Department of Urology, School of MedicineShanghai General Hospital, Shanghai Jiao Tong UniversityShanghaiChina
- Institute of UrologyShanghai Jiao Tong UniversityShanghaiChina
| | - Bo‐Yu Yang
- Department of Urology, School of MedicineShanghai General Hospital, Shanghai Jiao Tong UniversityShanghaiChina
| | - Qian Sun
- Department of UrologyShanghai General Hospital Affiliated to Nanjing Medical UniversityShanghaiChina
| | - Xing‐Jie Wang
- Department of Urology, School of MedicineShanghai General Hospital, Shanghai Jiao Tong UniversityShanghaiChina
- Institute of UrologyShanghai Jiao Tong UniversityShanghaiChina
| | - Qi Wu
- Department of UrologyShanghai General Hospital Affiliated to Nanjing Medical UniversityShanghaiChina
| | - Shu‐Jie Xia
- Department of Urology, School of MedicineShanghai General Hospital, Shanghai Jiao Tong UniversityShanghaiChina
- Institute of UrologyShanghai Jiao Tong UniversityShanghaiChina
| | - Bang‐Min Han
- Department of Urology, School of MedicineShanghai General Hospital, Shanghai Jiao Tong UniversityShanghaiChina
- Institute of UrologyShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
21
|
microRNA arm-imbalance in part from complementary targets mediated decay promotes gastric cancer progression. Nat Commun 2019; 10:4397. [PMID: 31562301 PMCID: PMC6764945 DOI: 10.1038/s41467-019-12292-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 08/30/2019] [Indexed: 12/23/2022] Open
Abstract
Strand-selection is the final step of microRNA biogenesis in which functional mature miRNAs are generated from one or both arms of precursor. The preference of strand-selection is diverse during development and tissue formation, however, its pathological effect is still unknown. Here we find that two miRNA arms from the same precursor, miR-574-5p and miR-574-3p, are inversely expressed and play exactly opposite roles in gastric cancer progression. Higher-5p with lower-3p expression pattern is significantly correlated with higher TNM stages and poor prognosis of gastric cancer patients. The increase of miR-574-5p/-3p ratio, named miR-574 arm-imbalance is partially due to the dynamic expression of their highly complementary targets in gastric carcinogenesis, moreover, the arm-imbalance of miR-574 is in turn involved and further promotes gastric cancer progression. Our results indicate that miR-574 arm-imbalance contribute to gastric cancer progression and re-modification of the miR-574-targets homeostasis may represent a promising strategy for gastric cancer therapy. Functional miRNAs derived from the 5p or 3p arm of some miRNA duplexes have opposite roles in cancer progression. Here, the authors show that oncogenic miR-574-5p has greater preference in aggressive gastric cancer as compared with miR-574-3p and this arm preference is partly dependent on complementary targets mediated miRNA decay.
Collapse
|
22
|
Yang H, Li Y, Peng Z, Wang Y. Overexpression of miR-20a promotes the progression of osteosarcoma by directly targeting QKI2. Oncol Lett 2019; 18:87-94. [PMID: 31289476 PMCID: PMC6540454 DOI: 10.3892/ol.2019.10313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 01/22/2019] [Indexed: 11/15/2022] Open
Abstract
Osteosarcoma (OS) is the most common type of malignant primary bone neoplasm. Although the application of neoadjuvant chemotherapy has improved the 5-year survival rate of patients suffering from OS, prognosis remains poor. Therefore, it is important to elucidate the molecular mechanisms underlying the occurrence, progression and metastasis of OS. The RNA-binding protein Quaking (QKI) is a member of the STAR family of proteins, and can function as a tumor suppressor gene to suppress the occurrence and progression of a variety of tumors; however, the role of QKI in OS remains to be fully elucidated. In the present study, it was identified that the expression of QKI2 was downregulated in OS using western blot analysis. In addition, subsequent functional investigations, including MTT, Transwell invasion and migration assays, revealed that QKI2 inhibited the proliferation, invasion and migration of an OS cell line in vitro. By implementing a series of experimental techniques in molecular biology, including reverse transcription-quantitative polymerase chain reaction and a double fluorescence reporter assay, it was demonstrated that the expression of miR-20a was high and inhibited the expression of QKI2 in OS. In conclusion, it was revealed that aberrantly upregulated miR-20a inhibited the expression of QKI2 in OS by targeting QKI2 mRNA, subsequently promoting the proliferation, migration and invasion of OS cells.
Collapse
Affiliation(s)
- Hongbo Yang
- Department of Orthopedic Surgery, Affiliated Hospital of Chifeng University, Chifeng, Inner Mongolia 024000, P.R. China
| | - Yongli Li
- Department of Tumor Radiotherapy, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150000, P.R. China
| | - Zhibin Peng
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yansong Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
23
|
Mo HY, Jo YS, Yoo NJ, Kim MS, Song SY, Lee SH. Frameshift mutation of candidate tumor suppressor genes QK1 and TMEFF2 in gastric and colorectal cancers. Cancer Biomark 2019; 24:1-6. [PMID: 30614793 DOI: 10.3233/cbm-160559] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Both QKI and TMEFF2 genes are considered putative tumor suppressor genes (TSGs). In gastric (GC) and colorectal (CRC) cancers, downregulation of their expressions is known to be frequent. However, QKI and TMEFF2 mutations that could potentially inactivate their functions are not reported in cancers. METHODS In a genome database, we observed that both QKI and TMEFF2 harbor mononucleotide repeats, which could be mutated in cancers with high microsatellite instability (MSI-H). For this, we studied 79 GCs and 124 CRCs for the mutations and their intratumoral heterogeneity (ITH). RESULTS Six of 34 GCs (17.6%) and 10 of 79 CRCs (12.7%) with MSI-H exhibited QKI frameshift mutations while five of 79 CRCs (6.3%) with high MSI (MSI-H) exhibited TMEFF2 frameshift mutations. However, we found no such mutation in microsatellite stable/low MSI (MSS/MSI-L) cancers within the mononucleotide repeats. We also studied ITH for the detected frameshift mutations in 16 cases of CRCs and detected that QKI and TMEFF2 frameshift mutations showed regional ITH in 2 (12.5%) and 1 (6.3%) cases, respectively. CONCLUSIONS Our data show that candidate TSG genes QKI and TMEFF2 harbor mutational ITH as well as the frameshift mutations in GC and CRC with MSI-H. From this observation, frameshift mutations of QKI and TMEFF2 may play a role in tumorigenesis through their TSG inactivation in GC and CRC.
Collapse
Affiliation(s)
- Ha Yoon Mo
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yun Sol Jo
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Nam Jin Yoo
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Min Sung Kim
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sang Yong Song
- Department of Pathology and Translational Genomics, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, Korea
| | - Sug Hyung Lee
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
24
|
Evaluating gene fusions in solid tumors – Clinical experience using an RNA based 53 gene next-generation sequencing panel. Cancer Genet 2019; 233-234:32-42. [DOI: 10.1016/j.cancergen.2019.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 02/22/2019] [Accepted: 03/05/2019] [Indexed: 01/20/2023]
|
25
|
Zhu Z, Wei D, Li X, Wang F, Yan F, Xing Z, Yan Z, Lu H, Zhai D, Ye Z, Zhang G, Meng P, Zheng Y, Yuan J, Lu Z, Yuan J. RNA-binding protein QKI regulates contact inhibition via Yes-associate protein in ccRCC. Acta Biochim Biophys Sin (Shanghai) 2019; 51:9-19. [PMID: 30566575 DOI: 10.1093/abbs/gmy142] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Indexed: 11/13/2022] Open
Abstract
Contact inhibition adjusts organ size to the proper size and ensures the cultured cells growing to a monolayer. By regulating the downstream coordinator YAP, the evolutionarily conserved Hippo transduction pathway attunes cell growth and death in response to cell contact inhibition, polarity, self-renewal, and differentiation. Dysregulation of this pathway is involved in various diseases such as cancer. RNA-binding protein QKI regulates cell proliferation, metabolism, division, and immunity in various cancer models, but its role in cancer cell contact inhibition remains unclear. In this study, we aimed to clarify the relationship between QKI and YAP, and the role of their interaction in cell contact inhibition. We found a lower QKI expression level in sparse condition, whereas a higher expression level in confluent condition by western blot analysis and immunofluorescence assay. QKI knockdown elevated cell proliferation and invasion both in vitro and in vivo. Strikingly, the results of CCK-8 assay, colony formation assay, and transwell assay showed that the phenomenon was in accord with the expression level of pYAP and reverse with YAP. Higher levels of Wnt3a and β-catenin were also found in xenografts of QKI-knockdown clear cell renal cell carcinoma (ccRCC) CAKI-1 cells by western blot analysis and immumohistochemical staining. Finally, a positive correlation between QKI and pYAP was found in clinical specimens by immunohistochemistry. Thus, as a negative regulator of YAP, QKI attuned the cell contact inhibition, leading to inhibition of cancer cell proliferation and invasion through Wnt and GPCR pathway.
Collapse
Affiliation(s)
- Zheng Zhu
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Di Wei
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Xi’an Li
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Fuli Wang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Fei Yan
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Zibao Xing
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Zhao Yan
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Huanyu Lu
- State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, Fourth Military Medical University, Xi’an, China
| | - Dongsheng Zhai
- State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, Fourth Military Medical University, Xi’an, China
| | - Zichen Ye
- State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, Fourth Military Medical University, Xi’an, China
| | - Geng Zhang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Ping Meng
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yu Zheng
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Jiarui Yuan
- St. George's University School of Medicine, Grenada, West Indies
| | - Zifan Lu
- State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, Fourth Military Medical University, Xi’an, China
| | - Jianlin Yuan
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
26
|
Zhang Z, Li X, Xiao Q, Wang Z. MiR-574-5p mediates the cell cycle and apoptosis in thyroid cancer cells via Wnt/β-catenin signaling by repressing the expression of Quaking proteins. Oncol Lett 2018; 15:5841-5848. [PMID: 29556311 DOI: 10.3892/ol.2018.8067] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 11/29/2017] [Indexed: 12/24/2022] Open
Abstract
Thyroid cancer is the most frequently occurring type of endocrine tumor, with a rapidly increasing incidence rate. MicroRNA (miR)-574-5p is a candidate oncogene in various types of cancer. The present study identified that miR-574-5p affected the cell cycle distribution and apoptosis of BCPAP and FTC133 thyroid cancer cells via β-catenin/Wnt signaling by targeting Quaking proteins (QKIs). An MTT assay demonstrated that the knockdown of miR-574-5p suppressed the proliferation of the thyroid cancer cells. Fluorescence-activated cell sorting analysis demonstrated that the inhibition of miR-574-5p induced the G1/S phase arrest and apoptosis of the cells. Reverse transcription-quantitative polymerase chain reaction and western blot analyses revealed that the knockdown of miR-574-5p significantly upregulated the mRNA and protein expression levels of QKIs. Furthermore, western blot analysis identified that the knockdown of miR-574-5p also repressed the Wnt/β-catenin pathway via downregulating the expression of β-catenin, cyclin D1 and survivin, and upregulating the phosphorylation of β-catenin. The further depletion of QKIs in combination with the knockdown of miR-574-5p not only increased the expression of β-catenin, cyclin D1 and survivin, but also rescued the apoptosis of thyroid cancer cells induced by the miR-574-5p knockdown. In conclusion, these findings indicated that the aberrant upregulation of miR-574-5p may be oncogenic, through regulating the Wnt/β-catenin pathway by targeting QKIs.
Collapse
Affiliation(s)
- Zhejia Zhang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xinying Li
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Qian Xiao
- Department of Mental Hygiene Clinics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Zhiming Wang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
27
|
The Circular RNA hsa_circ_0001445 Regulates the Proliferation and Migration of Hepatocellular Carcinoma and May Serve as a Diagnostic Biomarker. DISEASE MARKERS 2018; 2018:3073467. [PMID: 29785229 PMCID: PMC5896272 DOI: 10.1155/2018/3073467] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/26/2017] [Indexed: 12/30/2022]
Abstract
Circular RNAs (circRNA), a class of noncoding RNAs, have been found to be involved in various diseases. Here, the expression levels of the circRNA hsa_circ_0001445 in 73 pairs of hepatocellular carcinoma (HCC) and adjacent nontumor tissues were investigated by quantitative real-time polymerase chain reaction (qRT-PCR). Our data demonstrate that the hsa_circ_0001445 levels were significantly decreased in HCC tissues (P < 0.001) and markedly associated with the number of tumor foci (P = 0.014). Furthermore, in vitro approaches showed that overexpression of hsa_circ_0001445 promoted apoptosis and inhibited proliferation, migration, and invasion of HCC-derived cells, suggesting that hsa_circ_0001445 might be involved in the development of HCC. In addition, we found that the plasma hsa_circ_0001445 transcription levels in HCC patients were lower than those in cirrhosis (P < 0.001) and hepatitis B (P < 0.001) patients as well as in healthy controls (P < 0.001). In fact, receiver operating characteristic curve analysis indicated that plasma hsa_circ_0001445 could be a fairly accurate marker to distinguish HCC cases from healthy controls as well as patients with cirrhosis or hepatitis B.
Collapse
|
28
|
Yang H, Peng Z, Liang M, Zhang Y, Wang Y, Huang T, Jiang Y, Jiang B, Wang Y. The miR-17-92 cluster/QKI2/β-catenin axis promotes osteosarcoma progression. Oncotarget 2018; 9:25285-25293. [PMID: 29861871 PMCID: PMC5982768 DOI: 10.18632/oncotarget.23935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/30/2017] [Indexed: 02/07/2023] Open
Abstract
Quaking(QKI) is an RNA binding protein, and it has been shown to serve as a tumor suppressor. However, the expression and functions of QKI in osteosarcoma progression remain poorly understood. In this study, we aimed to explore the expression of QKI2 in osteosarcoma tissues and to determine the mechanisms underlying aberrant QKI2 expression and the effect of QKI2 on osteosarcoma progression. We found that QKI2 was significantly down-regulated in osteosarcoma tissues compared with adjacent normal bone tissues. Using a series of molecular biological techniques, we demonstrated that all members of the miR-17-92 cluster were up-regulated and contributed to the down-regulation of QKI2 expression in osteosarcoma. Functional examination showed that QKI2 inhibited the proliferation, migration and invasion of osteosarcoma cells via decreasing the expression of β-catenin. Conclusively, we revealed that the regulatory axis consisting of the miR-17-92 cluster/QKI2/β-catenin plays a crucial role in the development and progression of osteosarcoma.
Collapse
Affiliation(s)
- Hongbo Yang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhibin Peng
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Min Liang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yubo Zhang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yangyang Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tianwen Huang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yudong Jiang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bo Jiang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yansong Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
29
|
Chen C, Luo F, Yang Q, Wang D, Yang P, Xue J, Dai X, Liu X, Xu H, Lu J, Zhang A, Liu Q. NF-κB-regulated miR-155, via repression of QKI, contributes to the acquisition of CSC-like phenotype during the neoplastic transformation of hepatic cells induced by arsenite. Mol Carcinog 2017; 57:483-493. [DOI: 10.1002/mc.22772] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 12/04/2017] [Accepted: 12/07/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Chao Chen
- Institute of Toxicology; School of Public Health; Nanjing Medical University; Nanjing Jiangsu People's Republic of China
- The Key Laboratory of Modern Toxicology; Ministry of Education; School of Public Health; Nanjing Medical University; Nanjing Jiangsu People's Republic of China
| | - Fei Luo
- Institute of Toxicology; School of Public Health; Nanjing Medical University; Nanjing Jiangsu People's Republic of China
- The Key Laboratory of Modern Toxicology; Ministry of Education; School of Public Health; Nanjing Medical University; Nanjing Jiangsu People's Republic of China
| | - Qianlei Yang
- Institute of Toxicology; School of Public Health; Nanjing Medical University; Nanjing Jiangsu People's Republic of China
- The Key Laboratory of Modern Toxicology; Ministry of Education; School of Public Health; Nanjing Medical University; Nanjing Jiangsu People's Republic of China
| | - Dapeng Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control; Ministry of Education; School of Public Health; Guizhou Medical University; Guiyang Guizhou People's Republic of China
| | - Ping Yang
- The School of Public Health, Institute for Chemical Carcinogenesis; Guangzhou Medical University; Guangzhou Guangdong People's Republic China
| | - Junchao Xue
- Institute of Toxicology; School of Public Health; Nanjing Medical University; Nanjing Jiangsu People's Republic of China
- The Key Laboratory of Modern Toxicology; Ministry of Education; School of Public Health; Nanjing Medical University; Nanjing Jiangsu People's Republic of China
| | - Xiangyu Dai
- Institute of Toxicology; School of Public Health; Nanjing Medical University; Nanjing Jiangsu People's Republic of China
- The Key Laboratory of Modern Toxicology; Ministry of Education; School of Public Health; Nanjing Medical University; Nanjing Jiangsu People's Republic of China
| | - Xinlu Liu
- Institute of Toxicology; School of Public Health; Nanjing Medical University; Nanjing Jiangsu People's Republic of China
- The Key Laboratory of Modern Toxicology; Ministry of Education; School of Public Health; Nanjing Medical University; Nanjing Jiangsu People's Republic of China
| | - Hui Xu
- Institute of Toxicology; School of Public Health; Nanjing Medical University; Nanjing Jiangsu People's Republic of China
- The Key Laboratory of Modern Toxicology; Ministry of Education; School of Public Health; Nanjing Medical University; Nanjing Jiangsu People's Republic of China
| | - Jiachun Lu
- The School of Public Health, Institute for Chemical Carcinogenesis; Guangzhou Medical University; Guangzhou Guangdong People's Republic China
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control; Ministry of Education; School of Public Health; Guizhou Medical University; Guiyang Guizhou People's Republic of China
| | - Qizhan Liu
- Institute of Toxicology; School of Public Health; Nanjing Medical University; Nanjing Jiangsu People's Republic of China
- The Key Laboratory of Modern Toxicology; Ministry of Education; School of Public Health; Nanjing Medical University; Nanjing Jiangsu People's Republic of China
| |
Collapse
|
30
|
Mukohyama J, Shimono Y, Minami H, Kakeji Y, Suzuki A. Roles of microRNAs and RNA-Binding Proteins in the Regulation of Colorectal Cancer Stem Cells. Cancers (Basel) 2017; 9:cancers9100143. [PMID: 29064439 PMCID: PMC5664082 DOI: 10.3390/cancers9100143] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 10/17/2017] [Accepted: 10/17/2017] [Indexed: 12/28/2022] Open
Abstract
Colorectal cancer stem cells (CSCs) are responsible for the initiation, progression and metastasis of human colorectal cancers, and have been characterized by the expression of cell surface markers, such as CD44, CD133, CD166 and LGR5. MicroRNAs (miRNAs) are differentially expressed between CSCs and non-tumorigenic cancer cells, and play important roles in the maintenance and regulation of stem cell properties of CSCs. RNA binding proteins (RBPs) are emerging epigenetic regulators of various RNA processing events, such as splicing, localization, stabilization and translation, and can regulate various types of stem cells. In this review, we summarize current evidences on the roles of miRNA and RBPs in the regulation of colorectal CSCs. Understanding the epigenetic regulation of human colorectal CSCs will help to develop biomarkers for colorectal cancers and to identify targets for CSC-targeting therapies.
Collapse
Affiliation(s)
- Junko Mukohyama
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan.
- Division of Gastrointestinal Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan.
- Department of Pathology and Cell Biology, Department of Medicine (Division of Digestive and Liver Diseases) and Herbert Irving Comprehensive Cancer Center (HICCC), Columbia University, New York, NY 10032, USA.
| | - Yohei Shimono
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan.
- Division of Medical Oncology/Hematology, Kobe University Graduate School of Medicine, Kobe, Hyogo 6500017, Japan.
| | - Hironobu Minami
- Division of Medical Oncology/Hematology, Kobe University Graduate School of Medicine, Kobe, Hyogo 6500017, Japan.
| | - Yoshihiro Kakeji
- Division of Gastrointestinal Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan.
| | - Akira Suzuki
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan.
| |
Collapse
|
31
|
Jain P, Fierst TM, Han HJ, Smith TE, Vakil A, Storm PB, Resnick AC, Waanders AJ. CRAF gene fusions in pediatric low-grade gliomas define a distinct drug response based on dimerization profiles. Oncogene 2017; 36:6348-6358. [PMID: 28806393 PMCID: PMC5680138 DOI: 10.1038/onc.2017.276] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 06/26/2017] [Accepted: 07/05/2017] [Indexed: 01/07/2023]
Abstract
Pediatric low-grade gliomas (PLGGs) are commonly associated with BRAF gene fusions that aberrantly activate the mitogen-activated protein kinase (MAPK) signaling pathway. This has led to PLGG clinical trials utilizing RAF- and MAPK pathway-targeted therapeutics. Whole-genome profiling of PLGGs has also identified rare gene fusions involving another RAF isoform, CRAF/RAF1, in PLGGs and cancers occuring in adults. Whereas BRAF fusions primarily dysregulate MAPK signaling, the CRAF fusions QKI-RAF1 and SRGAP3-RAF1 aberrantly activate both the MAPK and phosphoinositide-3 kinase/mammalian target of rapamycin (PI3K/mTOR) signaling pathways. Although ATP-competitive, first-generation RAF inhibitors (vemurafenib/PLX4720, RAFi) cause paradoxical activation of the MAPK pathway in BRAF-fusion tumors, inhibition can be achieved with ‘paradox breaker’ RAFi, such as PLX8394. Here we report that, unlike BRAF fusions, CRAF fusions are unresponsive to both generations of RAFi, vemurafenib and PLX8394, highlighting a distinct responsiveness of CRAF fusions to clinically relevant RAFi. Whereas PLX8394 decreased BRAF-fusion dimerization, CRAF-fusion dimerization is unaffected primarily because of robust protein–protein interactions mediated by the N-terminal non-kinase fusion partner, such as QKI. The pan-RAF dimer inhibitor, LY3009120, could suppress CRAF-fusion oncogenicity by inhibiting dimer-mediated signaling. In addition, as CRAF fusions activate both the MAPK and PI3K/mTOR signaling pathways, we identify combinatorial inhibition of the MAPK/mTOR pathway as a potential therapeutic strategy for CRAF-fusion-driven tumors. Overall, we define a mechanistic distinction between PLGG-associated BRAF- and CRAF/RAF1 fusions in response to RAFi, highlighting the importance of molecularly classifying PLGG patients for targeted therapy. Furthermore, our study uncovers an important contribution of the non-kinase fusion partner to oncogenesis and potential therapeutic strategies against PLGG-associated CRAF fusions and possibly pan-cancer CRAF fusions.
Collapse
Affiliation(s)
- P Jain
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA.,Cell and Molecular Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.,Division of Neurosurgery, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - T M Fierst
- Division of Neurosurgery, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Neurosurgery, Temple University School of Medicine, Philadelphia, PA, USA
| | - H J Han
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA.,Division of Neurosurgery, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - T E Smith
- Division of Neurosurgery, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - A Vakil
- Division of Neurosurgery, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - P B Storm
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA.,Division of Neurosurgery, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Center of Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Center for Data Driven Discovery in Biomedicine (D3b), The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - A C Resnick
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA.,Division of Neurosurgery, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Center of Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Center for Data Driven Discovery in Biomedicine (D3b), The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - A J Waanders
- Center of Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Center for Data Driven Discovery in Biomedicine (D3b), The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
32
|
Petrelli F, Berenato R, Turati L, Mennitto A, Steccanella F, Caporale M, Dallera P, de Braud F, Pezzica E, Di Bartolomeo M, Sgroi G, Mazzaferro V, Pietrantonio F, Barni S. Prognostic value of diffuse versus intestinal histotype in patients with gastric cancer: a systematic review and meta-analysis. J Gastrointest Oncol 2017; 8:148-163. [PMID: 28280619 DOI: 10.21037/jgo.2017.01.10] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND There are two distinct types of gastric carcinoma (GC), intestinal, more frequently sporadic and linked to environmental factors, and diffuse (undifferentiated) that is highly metastatic and characterized by rapid disease progression and a poor prognosis. However, there are many conflicting data in the literature concerning the association between histology and prognosis in GC. This meta-analysis was performed to provide demonstration if histology according to Lauren classification is associated with different prognosis in patients with GC. METHODS We searched PubMed, the Cochrane Library, SCOPUS, Web of Science, CINAHL, and EMBASE for all eligible studies. The combined hazard ratios (HRs) and their corresponding 95% confidence intervals (CIs) in terms of overall survival (OS) were evaluated. RESULTS A total of 73 published studies including 61,468 patients with GC were included in this meta-analysis. Our analysis indicates that GC patients with diffuse-type histology have a worst prognosis than those with intestinal subgroup in all studies (HR 1.23; 95% CI, 1.17-1.29; P<0.0001), in both loco-regional confined (HR 1.21; 95% CI, 1.12-1.30; P<0.0001) and advanced disease (HR 1.25; 95% CI, 1.046-1.50; P=0.014), in Asiatic (HR 1.2; 95% CI, 1.14-1.27; P<0.0001) and Western patients (HR 1.3; 95% CI, 1.19-1.41; P<0.0001), and in those not exposed (HR 1.15; 95% CI, 1.07-1.24; P<0.0001) or exposed (HR 1.27; 95% CI, 1.17-1.37; P<0.0001) to (neo)adjuvant therapy. CONCLUSIONS Our results indicated that histology might be a useful prognostic marker for both early and advanced GC patients, with intestinal-type associated with a better outcome. This information could be used for stratification purpose in future clinical trials.
Collapse
Affiliation(s)
- Fausto Petrelli
- Medical Oncology Unit, Oncology Department, ASST Bergamo Ovest, Treviglio (BG), Italy
| | - Rosa Berenato
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Luca Turati
- Surgical Oncology Unit, Surgery Department, ASST Bergamo Ovest, Treviglio (BG), Italy
| | - Alessia Mennitto
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Francesca Steccanella
- Surgical Oncology Unit, Surgery Department, ASST Bergamo Ovest, Treviglio (BG), Italy
| | - Marta Caporale
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Pierpaolo Dallera
- Surgical Oncology Unit, Surgery Department, ASST Bergamo Ovest, Treviglio (BG), Italy
| | - Filippo de Braud
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Ezio Pezzica
- Pathology Unit, Oncology Department, ASST Bergamo Ovest, Treviglio (BG), Italy
| | - Maria Di Bartolomeo
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giovanni Sgroi
- Surgical Oncology Unit, Surgery Department, ASST Bergamo Ovest, Treviglio (BG), Italy
| | - Vincenzo Mazzaferro
- Hepatobiliopancreatic Surgery Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Filippo Pietrantonio
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Sandro Barni
- Medical Oncology Unit, Oncology Department, ASST Bergamo Ovest, Treviglio (BG), Italy
| |
Collapse
|
33
|
Shingu T, Ho AL, Yuan L, Zhou X, Dai C, Zheng S, Wang Q, Zhong Y, Chang Q, Horner JW, Liebelt BD, Yao Y, Hu B, Chen Y, Fuller GN, Verhaak RGW, Heimberger AB, Hu J. Qki deficiency maintains stemness of glioma stem cells in suboptimal environment by downregulating endolysosomal degradation. Nat Genet 2016; 49:75-86. [PMID: 27841882 DOI: 10.1038/ng.3711] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 10/05/2016] [Indexed: 02/07/2023]
Abstract
Stem cells, including cancer stem cells (CSCs), require niches to maintain stemness, yet it is unclear how CSCs maintain stemness in the suboptimal environment outside their niches during invasion. Postnatal co-deletion of Pten and Trp53 in mouse neural stem cells (NSCs) leads to the expansion of these cells in their subventricular zone (SVZ) niches but fails to maintain stemness outside the SVZ. We discovered that Qki is a major regulator of NSC stemness. Qk deletion on a Pten-/-; Trp53-/- background helps NSCs maintain their stemness outside the SVZ in Nes-CreERT2; QkL/L; PtenL/L; Trp53L/L mice, which develop glioblastoma with a penetrance of 92% and a median survival time of 105 d. Mechanistically, Qk deletion decreases endolysosome-mediated degradation and enriches receptors essential for maintaining self-renewal on the cytoplasmic membrane to cope with low ligand levels outside niches. Thus, downregulation of endolysosome levels by Qki loss helps glioma stem cells (GSCs) maintain their stemness in suboptimal environments outside their niches.
Collapse
Affiliation(s)
- Takashi Shingu
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Allen L Ho
- Department of Neurosurgery, Stanford University, Stanford, California, USA
| | - Liang Yuan
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xin Zhou
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Congxin Dai
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Siyuan Zheng
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Qianghu Wang
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yi Zhong
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Qing Chang
- Institute for Applied Cancer Science, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - James W Horner
- Institute for Applied Cancer Science, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Brandon D Liebelt
- Department of Neurosurgery, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Neurosurgery, Houston Methodist Neurological Institute, Houston, Texas, USA
| | - Yu Yao
- Department of Neurosurgery, Fudan University Huashan Hospital, Shanghai, China
| | - Baoli Hu
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yiwen Chen
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Gregory N Fuller
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Roeland G W Verhaak
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Amy B Heimberger
- Department of Neurosurgery, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jian Hu
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
34
|
Zhang RL, Yang JP, Peng LX, Zheng LS, Xie P, Wang MY, Cao Y, Zhang ZL, Zhou FJ, Qian CN, Bao YX. RNA-binding protein QKI-5 inhibits the proliferation of clear cell renal cell carcinoma via post-transcriptional stabilization of RASA1 mRNA. Cell Cycle 2016; 15:3094-3104. [PMID: 27767378 DOI: 10.1080/15384101.2016.1235103] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is a common pathological subtype of renal cancer. Although the recent application of molecular-targeted agents has modestly improved the prognosis of ccRCC patients, their outcome is still poor. It is therefore important to characterize the molecular and biological mechanisms responsible for the development of ccRCC. Approximately 25% ccRCC patients involves the loss of RNA-binding protein QKI at 6q26, but the role of QKI in ccRCC is unknown. Here, we found that QKI-5 was frequently downregulated in ccRCC patients and its down-regulation was significantly associated with clinical features including T status, M status, and differentiation grade, and poorer patient prognosis. Moreover, QKI-5 inhibited the proliferation of kidney cancer cells both in vitro and in vivo. The subsequent functional studies showed that QKI-5 stabilized RASA1 mRNA via directly binding to the QKI response element region of RASA1, which in turn prevented the activation of the Ras-MAPK signaling pathway, suppressed cellular proliferation and induced cell cycle arrest. Overall, our data demonstrate a suppressive role of QKI in ccRCC tumourigenesis that involves the QKI-mediated post-transcriptional regulation of the Ras-MAPK signaling pathway.
Collapse
Affiliation(s)
- Rui-Li Zhang
- a Cancer Center, The First Affiliated Hospital of Xinjiang Medical University , Urumqi , China.,b Key Laboratory of Infection and Cancer , Urumqi , China
| | - Jun-Ping Yang
- c Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine , Guangzhou , Guangdong , China
| | - Li-Xia Peng
- c Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine , Guangzhou , Guangdong , China
| | - Li-Sheng Zheng
- c Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine , Guangzhou , Guangdong , China
| | - Ping Xie
- c Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine , Guangzhou , Guangdong , China
| | - Meng-Yao Wang
- c Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine , Guangzhou , Guangdong , China
| | - Yun Cao
- c Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine , Guangzhou , Guangdong , China.,d Department of Pathology , Sun Yat-sen University Cancer Center , Guangzhou , Guangdong , China
| | - Zhi-Ling Zhang
- c Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine , Guangzhou , Guangdong , China.,e Department of Urology , Sun Yat-sen University Cancer Center , Guangzhou , Guangdong , China
| | - Fang-Jian Zhou
- c Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine , Guangzhou , Guangdong , China.,e Department of Urology , Sun Yat-sen University Cancer Center , Guangzhou , Guangdong , China
| | - Chao-Nan Qian
- c Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine , Guangzhou , Guangdong , China.,f Department of Nasopharyngeal Carcinoma , Sun Yat-sen University Cancer Center , Guangzhou , Guangdong , China
| | - Yong-Xing Bao
- a Cancer Center, The First Affiliated Hospital of Xinjiang Medical University , Urumqi , China.,b Key Laboratory of Infection and Cancer , Urumqi , China
| |
Collapse
|
35
|
de Miguel FJ, Pajares MJ, Martínez-Terroba E, Ajona D, Morales X, Sharma RD, Pardo FJ, Rouzaut A, Rubio A, Montuenga LM, Pio R. A large-scale analysis of alternative splicing reveals a key role of QKI in lung cancer. Mol Oncol 2016; 10:1437-1449. [PMID: 27555542 DOI: 10.1016/j.molonc.2016.08.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 08/02/2016] [Accepted: 08/03/2016] [Indexed: 01/14/2023] Open
Abstract
Increasing interest has been devoted in recent years to the understanding of alternative splicing in cancer. In this study, we performed a genome-wide analysis to identify cancer-associated splice variants in non-small cell lung cancer. We discovered and validated novel differences in the splicing of genes known to be relevant to lung cancer biology, such as NFIB, ENAH or SPAG9. Gene enrichment analyses revealed an important contribution of alternative splicing to cancer-related molecular functions, especially those involved in cytoskeletal dynamics. Interestingly, a substantial fraction of the altered genes found in our analysis were targets of the protein quaking (QKI), pointing to this factor as one of the most relevant regulators of alternative splicing in non-small cell lung cancer. We also found that ESYT2, one of the QKI targets, is involved in cytoskeletal organization. ESYT2-short variant inhibition in lung cancer cells resulted in a cortical distribution of actin whereas inhibition of the long variant caused an increase of endocytosis, suggesting that the cancer-associated splicing pattern of ESYT2 has a profound impact in the biology of cancer cells. Finally, we show that low nuclear QKI expression in non-small cell lung cancer is an independent prognostic factor for disease-free survival (HR = 2.47; 95% CI = 1.11-5.46, P = 0.026). In conclusion, we identified several splicing variants with functional relevance in lung cancer largely regulated by the splicing factor QKI, a tumor suppressor associated with prognosis in lung cancer.
Collapse
Affiliation(s)
- Fernando J de Miguel
- Program in Solid Tumors and Biomarkers, CIMA, 31008 Pamplona, Spain; Department of Biochemistry and Genetics, School of Science, University of Navarra, 31008 Pamplona, Spain
| | - María J Pajares
- Program in Solid Tumors and Biomarkers, CIMA, 31008 Pamplona, Spain; Department of Histology and Pathology, School of Medicine, University of Navarra, 31008 Pamplona, Spain; Navarra's Health Research Institute (IDISNA), 31008 Pamplona, Spain
| | - Elena Martínez-Terroba
- Program in Solid Tumors and Biomarkers, CIMA, 31008 Pamplona, Spain; Department of Histology and Pathology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
| | - Daniel Ajona
- Program in Solid Tumors and Biomarkers, CIMA, 31008 Pamplona, Spain; Department of Biochemistry and Genetics, School of Science, University of Navarra, 31008 Pamplona, Spain; Navarra's Health Research Institute (IDISNA), 31008 Pamplona, Spain
| | - Xabier Morales
- Program in Immunology and Immunotherapy, CIMA, 31008 Pamplona, Spain
| | - Ravi D Sharma
- Group of Bioinformatics, CEIT and TECNUN, University of Navarra, 20018 San Sebastian, Spain
| | - Francisco J Pardo
- Department of Pathology, Clinica Universidad de Navarra, 31080 Pamplona, Spain
| | - Ana Rouzaut
- Department of Biochemistry and Genetics, School of Science, University of Navarra, 31008 Pamplona, Spain; Navarra's Health Research Institute (IDISNA), 31008 Pamplona, Spain; Program in Immunology and Immunotherapy, CIMA, 31008 Pamplona, Spain
| | - Angel Rubio
- Group of Bioinformatics, CEIT and TECNUN, University of Navarra, 20018 San Sebastian, Spain
| | - Luis M Montuenga
- Program in Solid Tumors and Biomarkers, CIMA, 31008 Pamplona, Spain; Department of Histology and Pathology, School of Medicine, University of Navarra, 31008 Pamplona, Spain; Navarra's Health Research Institute (IDISNA), 31008 Pamplona, Spain.
| | - Ruben Pio
- Program in Solid Tumors and Biomarkers, CIMA, 31008 Pamplona, Spain; Department of Biochemistry and Genetics, School of Science, University of Navarra, 31008 Pamplona, Spain; Navarra's Health Research Institute (IDISNA), 31008 Pamplona, Spain.
| |
Collapse
|
36
|
Quaking and miR-155 interactions in inflammation and leukemogenesis. Oncotarget 2016; 6:24599-610. [PMID: 26337206 PMCID: PMC4694781 DOI: 10.18632/oncotarget.5248] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 08/18/2015] [Indexed: 01/11/2023] Open
Abstract
Quaking (QKI) is a tumor-suppressor gene encoding a conserved RNA-binding protein, whose expression is downregulated in several solid tumors. Here we report that QKI plays an important role in the immune response and suppression of leukemogenesis. We show that the expression of Qki is reduced in lipopolysaccharide (LPS)-challenged macrophages, suggesting that Qki is a key regulator of LPS signaling pathway. Furthermore, LPS-induced downregulation of Qki expression is miR-155-dependent. Qki overexpression impairs LPS-induced phosphorylation of JNK and particularly p38 MAPKs, in addition to increasing the production of anti-inflammatory cytokine IL-10. In contrast, Qki ablation decreases Fas expression and the rate of Caspase3/7 activity, while increasing the levels of IL-1α, IL-1β and IL-6, and p38 phosphorylation. Similarly, the p38 pathway is also a target of QKI activity in chronic lymphocytic leukemia (CLL)-derived MEC2 cells. Finally, B-CLL patients show lower levels of QKI expression compared with B cells from healthy donor, and Qki is similarily downregulated with the progression of leukemia in Eµ-miR-155 transgenic mice. Altogether, these data implicate QKI in the pathophysiology of inflammation and oncogenesis where miR-155 is involved.
Collapse
|
37
|
He Z, Yi J, Liu X, Chen J, Han S, Jin L, Chen L, Song H. MiR-143-3p functions as a tumor suppressor by regulating cell proliferation, invasion and epithelial-mesenchymal transition by targeting QKI-5 in esophageal squamous cell carcinoma. Mol Cancer 2016; 15:51. [PMID: 27358073 PMCID: PMC4928305 DOI: 10.1186/s12943-016-0533-3] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 06/08/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Dysregulation of microRNAs (miRNAs) have been demonstrated to contribute to carcinogenesis. MiR-143-3p has been identified to function as a tumor suppressor in several tumors, but the role of miR-143-3p in esophageal squamous cell carcinoma (ESCC) has not been intensively investigated. Our aim was to evaluate the potential role of miR-143-3p in the progression of ESCC. METHODS The expression levels of miR-143-3p and QKI-5 protein were measured in 80 resected ESCC tumor specimens and the clinicopathological significance of these levels determined. We also investigated the role of miR-143-3p in the regulation of QKI-5 expression in ESCC cell lines both in vivo and in vitro. RESULTS MiR-143-3p levels were decreased in ESCC clinical samples and low expression of miR-143-3p was significantly associated with poor prognosis in ESCC patients. Ectopic expression of miR-143-3p suppressed proliferation and induced apoptosis in ESCC cells both in vivo and in vitro. Ectopic expression of miR-143-3p also reduced the metastatic potential of cells by selectively regulating epithelial-mesenchymal transition regulatory proteins. Furthermore, QKI-5 isoform was upregulated in ESCC tissues and was a direct target of miR-143-3p. Lastly, re-introduction of QKI-5 expression abrogated the inhibitory effects of miR-143-3p on ESCC cell proliferation and motility. CONCLUSIONS Our results demonstrate that miR-143-3p acts as a tumor-suppressor by targeting QKI-5 in ESCC, suggesting that miR-143-3p is a potential therapy for the treatment of ESCC.
Collapse
Affiliation(s)
- Zhenyue He
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Nanjing, Jiangsu, 210002, People's Republic of China
| | - Jun Yi
- Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Nanjing, Jiangsu, 210002, People's Republic of China
| | - Xiaolong Liu
- Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Nanjing, Jiangsu, 210002, People's Republic of China
| | - Jing Chen
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Nanjing, Jiangsu, 210002, People's Republic of China
| | - Siqi Han
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Nanjing, Jiangsu, 210002, People's Republic of China
| | - Li Jin
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Nanjing, Jiangsu, 210002, People's Republic of China
| | - Longbang Chen
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Nanjing, Jiangsu, 210002, People's Republic of China.
| | - Haizhu Song
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Nanjing, Jiangsu, 210002, People's Republic of China.
| |
Collapse
|
38
|
Expression of Quaking RNA-Binding Protein in the Adult and Developing Mouse Retina. PLoS One 2016; 11:e0156033. [PMID: 27196066 PMCID: PMC4873024 DOI: 10.1371/journal.pone.0156033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 05/09/2016] [Indexed: 01/22/2023] Open
Abstract
Quaking (QKI), which belongs to the STAR family of KH domain-containing RNA-binding proteins, functions in pre-mRNA splicing, microRNA regulation, and formation of circular RNA. QKI plays critical roles in myelinogenesis in the central and peripheral nervous systems and has been implicated neuron-glia fate decision in the brain; however, neither the expression nor function of QKI in the neural retina is known. Here we report the expression of QKI RNA-binding protein in the developing and mature mouse retina. QKI was strongly expressed by Müller glial cells in both the developing and adult retina. Intriguingly, during development, QKI was expressed in early differentiating neurons, such as the horizontal and amacrine cells, and subsequently in later differentiating bipolar cells, but not in photoreceptors. Neuronal expression was uniformly weak in the adult. Among QKI isoforms (5, 6, and 7), QKI-5 was the predominantly expressed isoform in the adult retina. To study the function of QKI in the mouse retina, we examined quakingviable(qkv) mice, which have a dysmyelination phenotype that results from deficiency of QKI expression and reduced numbers of mature oligodendrocytes. In homozygous qkv mutant mice (qkv/qkv), the optic nerve expression levels of QKI-6 and 7, but not QKI-5 were reduced. In the retina of the mutant homozygote, QKI-5 levels were unchanged, and QKI-6 and 7 levels, already low, were also unaffected. We conclude that QKI is expressed in developing and adult Müller glia. QKI is additionally expressed in progenitors and in differentiating neurons during retinal development, but expression weakened or diminished during maturation. Among QKI isoforms, we found that QKI-5 predominated in the adult mouse retina. Since Müller glial cells are thought to share properties with retinal progenitor cells, our data suggest that QKI may contribute to maintaining retinal progenitors prior to differentiation into neurons. On the other hand, the expression of QKI in different retinal neurons may suggest a role in neuronal cell type specific fate determination and maturation. The data raises the possibility that QKI may function in retinal cell fate determination and maturation in both glia and neurons.
Collapse
|
39
|
Deng K, Wang H, Shan T, Chen Y, Zhou H, Zhao Q, Xia J. Tristetraprolin inhibits gastric cancer progression through suppression of IL-33. Sci Rep 2016; 6:24505. [PMID: 27074834 PMCID: PMC4830935 DOI: 10.1038/srep24505] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 03/30/2016] [Indexed: 02/07/2023] Open
Abstract
Tristetraprolin (TTP) is an adenine/uridine (AU)-rich element (ARE)-binding protein that can induce degradation of mRNAs. In this study, we report that TTP suppresses the expression of interleukin-33 (IL-33), a tumor-promoting inflammatory cytokine, and thereby inhibits the progression of gastric cancer (GC). Overexpression of TTP decreased the level of IL-33, whereas knockdown of TTP increased IL-33 levels. We also discovered that TTP inhibited the proliferation, migration, and invasion of GC cell lines through regulation of IL-33. Furthermore, TTP RNA and protein levels were remarkably reduced in GC and inversely correlated with IL-33 level, and they were also closely associated with depth of invasion, lymph node metastasis, advanced TNM stage, as well as survival rate. Taken together, these findings identified TTP as a downregulator of IL-33, and further suggest that TTP can serve as a novel biomarker for the diagnosis of GC and as a potential therapeutic target for GC treatment.
Collapse
Affiliation(s)
- Kaiyuan Deng
- Department of General Surgery and Translational Medicine Center, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi 214002, China
| | - Hao Wang
- Department of General Surgery and Translational Medicine Center, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi 214002, China
| | - Ting Shan
- Department of General Surgery and Translational Medicine Center, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi 214002, China
| | - Yigang Chen
- Department of General Surgery and Translational Medicine Center, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi 214002, China
| | - Hong Zhou
- Department of General Surgery and Translational Medicine Center, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi 214002, China
| | - Qin Zhao
- Department of General Surgery and Translational Medicine Center, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi 214002, China
| | - Jiazeng Xia
- Department of General Surgery and Translational Medicine Center, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi 214002, China
| |
Collapse
|
40
|
Darbelli L, Richard S. Emerging functions of the Quaking RNA-binding proteins and link to human diseases. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:399-412. [PMID: 26991871 DOI: 10.1002/wrna.1344] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 01/23/2016] [Accepted: 02/01/2016] [Indexed: 01/16/2023]
Abstract
RNA-binding proteins (RBPs) are essential players in RNA metabolism including key cellular processes from pre-mRNA splicing to mRNA translation. The K homology-type QUAKING RBP is emerging as a vital factor for oligodendrocytes, monocytes/macrophages, endothelial cell, and myocyte function. Interestingly, the qkI gene has now been identified as the culprit gene for a patient with intellectual disabilities and is translocated in a pediatric ganglioglioma as a fusion protein with MYB. In this review, we will focus on the emerging discoveries of the QKI proteins as well as highlight the recent advances in understanding the role of QKI in human disease pathology including myelin disorders, schizophrenia and cancer. WIREs RNA 2016, 7:399-412. doi: 10.1002/wrna.1344 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Lama Darbelli
- Terry Fox Molecular Oncology Group, Bloomfield Center for Research on Aging, Lady Davis Institute for Medical Research and Departments of Oncology and Medicine, McGill University, Montréal, Canada, H3T 1E2
| | - Stéphane Richard
- Terry Fox Molecular Oncology Group, Bloomfield Center for Research on Aging, Lady Davis Institute for Medical Research and Departments of Oncology and Medicine, McGill University, Montréal, Canada, H3T 1E2
| |
Collapse
|
41
|
Bandopadhayay P, Ramkissoon LA, Jain P, Bergthold G, Wala J, Zeid R, Schumacher SE, Urbanski L, O'Rourke R, Gibson WJ, Pelton K, Ramkissoon SH, Han HJ, Zhu Y, Choudhari N, Silva A, Boucher K, Henn RE, Kang YJ, Knoff D, Paolella BR, Gladden-Young A, Varlet P, Pages M, Horowitz PM, Federation A, Malkin H, Tracy AA, Seepo S, Ducar M, Van Hummelen P, Santi M, Buccoliero AM, Scagnet M, Bowers DC, Giannini C, Puget S, Hawkins C, Tabori U, Klekner A, Bognar L, Burger PC, Eberhart C, Rodriguez FJ, Hill DA, Mueller S, Haas-Kogan DA, Phillips JJ, Santagata S, Stiles CD, Bradner JE, Jabado N, Goren A, Grill J, Ligon AH, Goumnerova L, Waanders AJ, Storm PB, Kieran MW, Ligon KL, Beroukhim R, Resnick AC. MYB-QKI rearrangements in angiocentric glioma drive tumorigenicity through a tripartite mechanism. Nat Genet 2016; 48:273-82. [PMID: 26829751 PMCID: PMC4767685 DOI: 10.1038/ng.3500] [Citation(s) in RCA: 196] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 01/06/2016] [Indexed: 12/15/2022]
Abstract
Angiocentric gliomas are pediatric low-grade gliomas (PLGGs) without known recurrent genetic drivers. We performed genomic analysis of new and published data from 249 PLGGs including 19 Angiocentric Gliomas. We identified MYB-QKI fusions as a specific and single candidate driver event in Angiocentric Gliomas. In vitro and in vivo functional studies show MYB-QKI rearrangements promote tumorigenesis through three mechanisms: MYB activation by truncation, enhancer translocation driving aberrant MYB-QKI expression, and hemizygous loss of the tumor suppressor QKI. This represents the first example of a single driver rearrangement simultaneously transforming cells via three genetic and epigenetic mechanisms in a tumor.
Collapse
Affiliation(s)
- Pratiti Bandopadhayay
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts, USA.,Broad Institute, Cambridge, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Lori A Ramkissoon
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Payal Jain
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Cell and Molecular Biology Graduate Group, Gene Therapy and Vaccines Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Guillaume Bergthold
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Department de Cancerologie de l'Enfant et de l'Adolescent et Unité Mixte de Recherche du Centre National de la Recherche Scientifique 8203 'Vectorologie et Nouvelles Therapeutiques du Cancer', Gustave Roussy, Université Paris XI Sud, Villejuif, France
| | - Jeremiah Wala
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Broad Institute, Cambridge, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Rhamy Zeid
- Harvard Medical School, Boston, Massachusetts, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Steven E Schumacher
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Broad Institute, Cambridge, Massachusetts, USA
| | - Laura Urbanski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Ryan O'Rourke
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Broad Institute, Cambridge, Massachusetts, USA
| | - William J Gibson
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Broad Institute, Cambridge, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Kristine Pelton
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Shakti H Ramkissoon
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Pathology, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA
| | - Harry J Han
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yuankun Zhu
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Namrata Choudhari
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Amanda Silva
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Katie Boucher
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rosemary E Henn
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yun Jee Kang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - David Knoff
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Brenton R Paolella
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Broad Institute, Cambridge, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | | | - Pascale Varlet
- Laboratoire de Neuropathologie, Hopital Sainte-Anne, Université Paris V Descartes, Paris, France
| | - Melanie Pages
- Laboratoire de Neuropathologie, Hopital Sainte-Anne, Université Paris V Descartes, Paris, France
| | - Peleg M Horowitz
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Alexander Federation
- Harvard Medical School, Boston, Massachusetts, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Hayley Malkin
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts, USA
| | | | - Sara Seepo
- Broad Institute, Cambridge, Massachusetts, USA
| | - Matthew Ducar
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Paul Van Hummelen
- Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Mariarita Santi
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Mirko Scagnet
- Neurosurgery Unit, Anna Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Daniel C Bowers
- Division of Pediatric Hematology-Oncology, University of Texas Southwestern Medical School, Dallas, Texas, USA
| | - Caterina Giannini
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Stephanie Puget
- Departement de Neurochirurgie, Hopital Necker-Enfants Malades, Université Paris V Descartes, Paris, France
| | - Cynthia Hawkins
- Division of Pathology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Uri Tabori
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Almos Klekner
- Department of Neurosurgery, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | - Laszlo Bognar
- Department of Neurosurgery, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | - Peter C Burger
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Charles Eberhart
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Fausto J Rodriguez
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - D Ashley Hill
- Brain Tumor Institute, Children's National Medical Center, Washington, DC, USA.,Center for Neuroscience and Behavioral Medicine, Brain Tumor Institute, Children's National Medical Center, Washington, DC, USA.,Department of Pathology, Children's National Medical Center, Washington, DC, USA
| | - Sabine Mueller
- Department of Neurology, University of California San Francisco School of Medicine, San Francisco, California, USA.,Department of Neurological Surgery, University of California San Francisco School of Medicine, San Francisco, California, USA.,Department of Pediatrics, University of California San Francisco School of Medicine, San Francisco, California, USA
| | - Daphne A Haas-Kogan
- Department of Neurological Surgery, University of California San Francisco School of Medicine, San Francisco, California, USA.,Department of Radiation Oncology, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco School of Medicine, San Francisco, California, USA.,Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Joanna J Phillips
- Department of Neurological Surgery, University of California San Francisco School of Medicine, San Francisco, California, USA.,Department of Pathology, University of California San Francisco, San Francisco, California, USA
| | - Sandro Santagata
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Pathology, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA
| | - Charles D Stiles
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - James E Bradner
- Broad Institute, Cambridge, Massachusetts, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Nada Jabado
- Division of Experimental Medicine, Montreal Children's Hospital, McGill University and McGill University Health Centre, Montreal, Quebec, Canada.,Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,Department of Pediatrics, McGill University, Montreal, Quebec, Canada
| | - Alon Goren
- Broad Technology Laboratories, Broad Institute, Cambridge, Massachusetts, USA
| | - Jacques Grill
- Department de Cancerologie de l'Enfant et de l'Adolescent et Unité Mixte de Recherche du Centre National de la Recherche Scientifique 8203 'Vectorologie et Nouvelles Therapeutiques du Cancer', Gustave Roussy, Université Paris XI Sud, Villejuif, France
| | - Azra H Ligon
- Brigham and Women's Hospital Department of Pathology, Center for Advanced Molecular Diagnostics, Division of Cytogenetics, Boston, Massachusetts, USA
| | - Liliana Goumnerova
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts, USA.,Department of Neurosurgery, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Neurosurgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Angela J Waanders
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Phillip B Storm
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Mark W Kieran
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Keith L Ligon
- Broad Institute, Cambridge, Massachusetts, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Pathology, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA
| | - Rameen Beroukhim
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Broad Institute, Cambridge, Massachusetts, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.,Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Adam C Resnick
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
42
|
Wang S, Zan J, Wu M, Zhao W, Li Z, Pan Y, Sun Z, Zhu J. miR-29a promotes scavenger receptor A expression by targeting QKI (quaking) during monocyte-macrophage differentiation. Biochem Biophys Res Commun 2015; 464:1-6. [PMID: 26056009 DOI: 10.1016/j.bbrc.2015.05.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 05/07/2015] [Indexed: 12/22/2022]
Abstract
Monocyte differentiation into macrophages results in upregulation of miR-29a and scavenger receptor A (SRA) expression, while the expression of RNA binding protein, QKI is suppressed. Since SRA is a functionally important protein in atherosclerosis, it is imperative to understand the various mechanisms involved in its regulation specially the mechanism involving miR-29a. There are individual studies linking miR-29a to SRA or QKI to monocyte differentiation but there is no evidence of any linkage among them. Therefore, we intend to investigate the association among these three, if any, in terms of regulation of SRA expression. Hence, in this study, the differentiated macrophages were initially transfected with miR-29a or its inhibitor and it was shown that QKI is a direct target of mir-29a. In addition, it was also observed by bioinformatics analysis that 3'UTR in SRA mRNA has QKI binding site. So, we attempted to further understand the role of QKI in SRA regulation. The macrophages were manipulated either with overexpression of QKI or by its ablation and it was observed that QKI suppressed SRA at the transcriptional level. Moreover, with the help of luciferase reporter vector, it was shown that QKI inhibited SRA transcription by binding to QRE region in its 3'UTR mRNA. Furthermore, to link the QKI mediated regulation of SRA expression with its functional activity; we analyzed lipid uptake capacity of macrophages transfected with either ectopic OKI plasmid or ablated for QKI. It was observed that, indeed, QKI upregulation inhibits lipid uptake by repressing SRA expression. Overall, our study demonstrates that miR-29a inhibits QKI, which in turn results in upregulation of SRA and lipid uptake.
Collapse
Affiliation(s)
- Shuai Wang
- Department of Cardiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China
| | - Jie Zan
- Department of Cardiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China
| | - Mingjie Wu
- Department of Cardiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China
| | - Wenting Zhao
- Department of Cardiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China
| | - Zhenwei Li
- Department of Cardiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China
| | - Yanyun Pan
- Department of Cardiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China
| | - Zewei Sun
- Department of Cardiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China
| | - Jianhua Zhu
- Department of Cardiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China.
| |
Collapse
|
43
|
Zhang HH, Gu GL, Zhang XY, Li FZ, Ding L, Fan Q, Wu R, Shi W, Wang XY, Chen L, Wei XM, Yuan XY. Primary analysis and screening of microRNAs in gastric cancer side population cells. World J Gastroenterol 2015; 21:3519-3526. [PMID: 25834316 PMCID: PMC4375573 DOI: 10.3748/wjg.v21.i12.3519] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 01/16/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore the microRNA (miRNA) profiles and to determine the key miRNAs within the side population (SP) cells of the gastric cancer cell line MKN-45.
METHODS: We used fluorescence-activated cell sorting and Hoechst 33342 labeling to obtain SP cells from the human gastric carcinoma cell line MKN-45. The miRNA expression profiles of the SP and major population (MP) cells were examined using a miRNA gene chip, and key miRNAs were obtained according to aberrant expression and the miRNAs’ possible targets as predicted by bioinformatics.
RESULTS: Using a significance criterion of a 1.5-fold or greater difference in expression level, we observed an increase in the expression of 34 miRNAs and a decrease in the expression of 34 miRNAs when comparing SP to MP cells. Using quantitative real-time reverse transcription-polymerase chain reaction to test for differentially expressed miRNAs combined with bioinformatics results, we found that the downregulated miRNAs, such as hsa-miR-3175 and hsa-miR-203, and the upregulated miRNAs, including hsa-miR-130a, hsa-miR-324-5p, hsa-miR-34a, and hsa-miR-25-star, may be important in maintaining and regulating the characteristics of SP cells.
CONCLUSION: There are key miRNAs expressed within the SP cells of the gastric cancer cell line MKN-45, and include hsa-miR-3175, hsa-miR-203, hsa-miR-130a, hsa-miR-324-5p, hsa-miR-34a, and hsa-miR-25-star.
Collapse
|
44
|
Wang H, Pan JQ, Luo L, Ning XJ, Ye ZP, Yu Z, Li WS. NF-κB induces miR-148a to sustain TGF-β/Smad signaling activation in glioblastoma. Mol Cancer 2015; 14:2. [PMID: 25971746 PMCID: PMC4429406 DOI: 10.1186/1476-4598-14-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 12/02/2014] [Indexed: 01/08/2023] Open
Abstract
Background Inflammatory cytokines and transforming growth factor-β (TGF-β) are mutually inhibitory. However, hyperactivation of nuclear factor-κB (NF-κB) and TGF-β signaling both emerge in glioblastoma. Here, we report microRNA-148a (miR-148a) overexpression in glioblastoma and that miR-148a directly suppressed Quaking (QKI), a negative regulator of TGF-β signaling. Methods We determined NF-κB and TGF-β/Smad signaling activity using pNF-κB-luc, pSMAD-luc, and control plasmids. The association between an RNA-induced silencing complex and QKI, mitogen-inducible gene 6 (MIG6), S-phase kinase–associated protein 1 (SKP1), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) mRNA was tested with microribonucleoprotein immunoprecipitation and real-time PCR. Xenograft tumors were established in the brains of nude mice. Results QKI suppression induced an aggressive phenotype of glioblastoma cells both in vitro and in vivo. Interestingly, we found that NF-κB induced miR-148a expression, leading to enhanced-strength and prolonged-duration TGF-β/Smad signaling. Notably, these findings were consistent with the significant correlation between miR-148a levels with NF-κB hyperactivation and activated TGF-β/Smad signaling in a cohort of human glioblastoma specimens. Conclusions These findings uncover a plausible mechanism for NF-κB–sustained TGF-β/Smad activation via miR-148a in glioblastoma, and may suggest a new target for clinical intervention in human cancer. Electronic supplementary material The online version of this article (doi:10.1186/1476-4598-14-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hui Wang
- Department of Neurosurgery, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tian He Road, Tian He District, Guangzhou, Guangdong, 510630, China.
| | - Jian-Qing Pan
- Department of Neurosurgery, The Affiliated Shenzhen Nanshan Hospital, Guangdong Medical College, Shenzhen, 518052, China. .,Guangzhou Biocare Cancer Institute, Guangzhou, 510663, China.
| | - Lun Luo
- Department of Neurosurgery, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tian He Road, Tian He District, Guangzhou, Guangdong, 510630, China.
| | - Xin-Jie Ning
- Department of Neurosurgery, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tian He Road, Tian He District, Guangzhou, Guangdong, 510630, China.
| | - Zhuo-Peng Ye
- Department of Neurosurgery, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tian He Road, Tian He District, Guangzhou, Guangdong, 510630, China.
| | - Zhe Yu
- Guangzhou Biocare Cancer Institute, Guangzhou, 510663, China.
| | - Wen-Sheng Li
- Department of Neurosurgery, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tian He Road, Tian He District, Guangzhou, Guangdong, 510630, China.
| |
Collapse
|
45
|
Song R, Liu Q, Liu T, Li J. Connecting rules from paired miRNA and mRNA expression data sets of HCV patients to detect both inverse and positive regulatory relationships. BMC Genomics 2015; 16 Suppl 2:S11. [PMID: 25707620 PMCID: PMC4331711 DOI: 10.1186/1471-2164-16-s2-s11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Intensive research based on the inverse expression relationship has been undertaken to discover the miRNA-mRNA regulatory modules involved in the infection of Hepatitis C virus (HCV), the leading cause of chronic liver diseases. However, biological studies in other fields have found that inverse expression relationship is not the only regulatory relationship between miRNAs and their targets, and some miRNAs can positively regulate a mRNA by binding at the 5' UTR of the mRNA. RESULTS This work focuses on the detection of both inverse and positive regulatory relationships from a paired miRNA and mRNA expression data set of HCV patients through a 'change-to-change' method which can derive connected discriminatory rules. Our study uncovered many novel miRNA-mRNA regulatory modules. In particular, it was revealed that GFRA2 is positively regulated by miR-557, miR-765 and miR-17-3p that probably bind at different locations of the 5' UTR of this mRNA. The expression relationship between GFRA2 and any of these three miRNAs has not been studied before, although separate research for this gene and these miRNAs have all drawn conclusions linked to hepatocellular carcinoma. This suggests that the binding of mRNA GFRA2 with miR-557, miR-765, or miR-17-3p, or their combinations, is worthy of further investigation by experimentation. We also report another mRNA QKI which has a strong inverse expression relationship with miR-129 and miR-493-3p which may bind at the 3' UTR of QKI with a perfect sequence match. Furthermore, the interaction between hsa-miR-129-5p (previous ID: hsa-miR-129) and QKI is supported with CLIP-Seq data from starBase. Our method can be easily extended for the expression data analysis of other diseases. CONCLUSION Our rule discovery method is useful for integrating binding information and expression profile for identifying HCV miRNA-mRNA regulatory modules and can be applied to the study of the expression profiles of other complex human diseases.
Collapse
|
46
|
He B, Gao SQ, Huang LD, Huang YH, Zhang QY, Zhou MT, Shi HQ, Song QT, Shan YF. MicroRNA-155 promotes the proliferation and invasion abilities of colon cancer cells by targeting quaking. Mol Med Rep 2014; 11:2355-9. [PMID: 25420938 DOI: 10.3892/mmr.2014.2994] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Accepted: 11/05/2014] [Indexed: 11/06/2022] Open
Abstract
The increasing expression of microRNA‑155 (miR‑155) and decreasing expression of RNA‑binding protein quaking (QKI) in colon cells have been observed previously. In this study, we attempted to establish the correlation between miR‑155 and QKI. In addition, we assessed whether the expression of miR‑155 and QKI is linked to the proliferation and invasion capabilities of colon cells. Firstly, nineteen tumor samples, divided into two groups according to the presence or absence of lymphatic metastasis, were obtained from colon cancer patients at the First Affiliated Hospital of Wenzhou Medical University, China. The expression level of miR‑155 and QKI was measured by quantitative polymerase chain reaction (qPCR). Secondly, the GES‑1, SW480 and COLO205 cell lines were cultured and the expression level of QKI and miR‑155 was also assessed by qPCR. Thirdly, a luciferase reporter gene assay was performed to detect the association between miR‑155 and QKI, and qPCR and western blot analysis were performed to confirm the effects of miR‑155 on the expression of QKI at the mRNA and protein level. Subsequently, the SW480 cells were used in the following experiments. Following treatment with miR‑155 inhibitor and QKI overexpression vector, western blot analysis, propidium iodide (PI) staining and a cell scratch assay were carried out to assess the effects of miR‑155 on the proliferation and invasion potential of colon cancer cells. qPCR findings revealed higher miR‑155 expression and lower QKI expression in colon cancer tissues as well as the colon cancer cell lines SW480 and COLO205. The relative luciferase activity of the 3' untranslated region (3'UTR) was decreased by approximately 45% when SW480 cells stimulated by mimic‑miR‑155 were combined with the wild‑type 3'UTR constructs. In addition, when the cells were treated with mimic‑miR‑155, QKI expression was significantly decreased at the mRNA and protein level. These outcomes revealed that miR‑155 decreased the production of QKI by acting on the 3'UTR of the QKI gene. Furthermore, PI staining and the cell scratch assay revealed that miR‑155 influenced the cell cycle and invasion abilities of colon cancer cells by directly targeting QKI and decreased the production of QKI by acting on the 3'UTR of the QKI gene. This study has demonstrated the correlation between miR‑155 and QKI, in which miR‑155 regulates the cell cycle and invasion ability of colon cancer cells via the modulation of QKI expression. Our study provides novel therapeutic strategies for colon cancer therapy.
Collapse
Affiliation(s)
- Bin He
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Sheng-Qiang Gao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Li-Dong Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Yue-Han Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Qi-Yu Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Meng-Tao Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Hong-Qi Shi
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Qi-Tong Song
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Yun-Feng Shan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
47
|
The pro-apoptotic activity of Drosophila Rbf1 involves dE2F2-dependent downregulation of diap1 and buffy mRNA. Cell Death Dis 2014; 5:e1405. [PMID: 25188515 PMCID: PMC4540203 DOI: 10.1038/cddis.2014.372] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 07/23/2014] [Accepted: 07/28/2014] [Indexed: 11/16/2022]
Abstract
The retinoblastoma gene, rb, ensures at least its tumor suppressor function by inhibiting cell proliferation. Its role in apoptosis is more complex and less described than its role in cell cycle regulation. Rbf1, the Drosophila homolog of Rb, has been found to be pro-apoptotic in proliferative tissue. However, the way it induces apoptosis at the molecular level is still unknown. To decipher this mechanism, we induced rbf1 expression in wing proliferative tissue. We found that Rbf1-induced apoptosis depends on dE2F2/dDP heterodimer, whereas dE2F1 transcriptional activity is not required. Furthermore, we highlight that Rbf1 and dE2F2 downregulate two major anti-apoptotic genes in Drosophila: buffy, an anti-apoptotic member of Bcl-2 family and diap1, a gene encoding a caspase inhibitor. On the one hand, Rbf1/dE2F2 repress buffy at the transcriptional level, which contributes to cell death. On the other hand, Rbf1 and dE2F2 upregulate how expression. How is a RNA binding protein involved in diap1 mRNA degradation. By this way, Rbf1 downregulates diap1 at a post-transcriptional level. Moreover, we show that the dREAM complex has a part in these transcriptional regulations. Taken together, these data show that Rbf1, in cooperation with dE2F2 and some members of the dREAM complex, can downregulate the anti-apoptotic genes buffy and diap1, and thus promote cell death in a proliferative tissue.
Collapse
|
48
|
Lu W, Feng F, Xu J, Lu X, Wang S, Wang L, Lu H, Wei M, Yang G, Wang L, Lu Z, Liu Y, Lei X. QKI impairs self-renewal and tumorigenicity of oral cancer cells via repression of SOX2. Cancer Biol Ther 2014; 15:1174-84. [PMID: 24918581 DOI: 10.4161/cbt.29502] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Cancer stem cells (CSCs) may contribute to tumor initiation, distant metastasis and chemo-resistance. One of RNA-binding proteins, Quaking (QKI), was reported to be a tumor suppressor. Here we showed that reduced QKI levels were observed in many human oral cancer samples. Moreover further reduction of QKI expression in CSCs was detected compared with non-CSCs in oral cancer cell lines. Overexpressing QKI in oral cancer cells significantly reduced CSC sphere formation and stem cell-associated genes. In tumor implanting nude mice model, QKI significantly impeded tumor initiation rates, tumor sizes and lung metastasis rates. As a contrast, knocking down QKI enhanced the above effects. Among the putative CSC target genes, SOX2 expression was negatively affected by QKI, mechanism study revealed that QKI may directly regulate SOX2 expression via specific binding with its 3'UTR in a cis element-dependent way. Loss of SOX2 even completely reversed the sphere forming ability in QKI knockdown cell line. Taken together, these data demonstrated that SOX2 is an important CSC regulator in oral cancer. QKI is a novel CSC inhibitor and impaired multiple oral CSC properties via partial repression of SOX2. Therefore, reduced expression of QKI may provide a novel diagnostic marker for oral cancer.
Collapse
Affiliation(s)
- Wei Lu
- Department of Oral and Maxillofacial Surgery; School of Stomatology; the Fourth Military Medical University; Xi'an, PR China; Department of Stomatology; 101 Hospital of PLA; Wuxi, PR China
| | - Feixue Feng
- The State Key Laboratory of Cancer Biology; Department of Pharmacogenomics; the Fourth Military Medical University; Xi'an, PR China
| | - Jinke Xu
- Department of Oral and Maxillofacial Surgery; School of Stomatology; the Fourth Military Medical University; Xi'an, PR China
| | - Xiaozhao Lu
- The State Key Laboratory of Cancer Biology; Department of Pharmacogenomics; the Fourth Military Medical University; Xi'an, PR China
| | - Shan Wang
- The State Key Laboratory of Cancer Biology; Department of Pharmacogenomics; the Fourth Military Medical University; Xi'an, PR China
| | - Lifeng Wang
- The State Key Laboratory of Cancer Biology; Department of Biochemistry and Molecular Biology; the Fourth Military Medical University; Xi'an, PR China
| | - Huanyu Lu
- The State Key Laboratory of Cancer Biology; Department of Pharmacogenomics; the Fourth Military Medical University; Xi'an, PR China
| | - Mengying Wei
- The State Key Laboratory of Cancer Biology; Department of Biochemistry and Molecular Biology; the Fourth Military Medical University; Xi'an, PR China
| | - Guodong Yang
- The State Key Laboratory of Cancer Biology; Department of Biochemistry and Molecular Biology; the Fourth Military Medical University; Xi'an, PR China
| | - Li Wang
- The State Key Laboratory of Cancer Biology; Department of Pharmacogenomics; the Fourth Military Medical University; Xi'an, PR China
| | - Zifan Lu
- The State Key Laboratory of Cancer Biology; Department of Pharmacogenomics; the Fourth Military Medical University; Xi'an, PR China
| | - Yanpu Liu
- Department of Oral and Maxillofacial Surgery; School of Stomatology; the Fourth Military Medical University; Xi'an, PR China
| | - Xiaoying Lei
- The State Key Laboratory of Cancer Biology; Department of Pharmacogenomics; the Fourth Military Medical University; Xi'an, PR China
| |
Collapse
|
49
|
Yu F, Jin L, Yang G, Ji L, Wang F, Lu Z. Post-transcriptional repression of FOXO1 by QKI results in low levels of FOXO1 expression in breast cancer cells. Oncol Rep 2013; 31:1459-65. [PMID: 24398626 DOI: 10.3892/or.2013.2957] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 11/12/2013] [Indexed: 11/06/2022] Open
Abstract
The RNA-binding protein Quaking (QKI) is known to be essential for embryonic development and postnatal myelination. Forkhead box O1 (FOXO1) is a critical tumor suppressor for cell proliferation control. Dysregulation of FOXO1 expression has been observed in a variety of cancers. In the present study, we demonstrated that QKI decreased FOXO1 mRNA expression at the post-transcriptional level. QKI was able to bind the 3'UTR of FOXO1 mRNA directly and decreased its mRNA stability. To determine whether QKI-mediated post-transcriptional repression of FOXO1 indeed plays a role in cancer cells, we first detected both QKI and FOXO1 expression in four breast cancer cell lines. FOXO1 expression was extremely low in these cell lines, whereas QKI expression was relative high. Knockdown of QKI significantly restored FOXO1 expression. ATRA, an inducer of apoptosis or differentiation, dramatically enhanced FOXO1 expression while it repressed QKI expression. Importantly, the ATRA-induced increase in FOXO1 expression was dependent on QKI-mediated post-transcriptional regulation. Consistently, 5-FU, a widely used chemotherapeutic agent, increased FOXO1 expression via inhibition of QKI. In summary, our study provides initial evidence demonstrating that QKI-mediated repression of FOXO1 may be one of the factors contributing to the oncogenesis and progression of breast carcinoma, which suggests that targeting QKI may serve as a novel strategy to sensitize breast cancers to chemotherapy.
Collapse
Affiliation(s)
- Fang Yu
- Department of Biochemistry and Molecular Biology, The State Key Laboratory of Cancer Biology, The Fourth Military Medical University, Xi'an 710032, P.R. China
| | - Liang Jin
- Department of Biochemistry and Molecular Biology, The State Key Laboratory of Cancer Biology, The Fourth Military Medical University, Xi'an 710032, P.R. China
| | - Guodong Yang
- Department of Biochemistry and Molecular Biology, The State Key Laboratory of Cancer Biology, The Fourth Military Medical University, Xi'an 710032, P.R. China
| | - Lin Ji
- Department of Toxicology, The Fourth Military Medical University, Xi'an 710032, P.R. China
| | - Feng Wang
- Department of Nutrition and Food Hygiene, The Fourth Military Medical University, Xi'an 710032, P.R. China
| | - Zifan Lu
- Department of Biochemistry and Molecular Biology, The State Key Laboratory of Cancer Biology, The Fourth Military Medical University, Xi'an 710032, P.R. China
| |
Collapse
|
50
|
Zhao Y, Zhang G, Wei M, Lu X, Fu H, Feng F, Wang S, Lu W, Wu N, Lu Z, Yuan J. The tumor suppressing effects of QKI-5 in prostate cancer: a novel diagnostic and prognostic protein. Cancer Biol Ther 2013; 15:108-18. [PMID: 24153116 DOI: 10.4161/cbt.26722] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In recent years, the RNA-binding protein quaking 5 (QKI-5) has been recognized as a novel tumor suppressor in many cancers. To date, no studies have examined the role of QKI-5 in prostate cancer. The present study was designed to elucidate the correlation of QKI-5 expression with the clinical pathological features and prognosis of prostate cancer. In an overwhelming majority of the 184 cases of prostate cancer samples analyzed, the QKI-5 expression was significantly decreased, which was largely due to the high promoter methylation levels. Using lentiviral vectors, we established two stable prostate cancer cell lines with altered QKI-5 expression, including a QKI-5 overexpressing PC3 cell line and a DU145 cell line with knocked-down QKI-5 expression. The effects of the lentiviral-mediated QKI-5 knockdown on the PC3 cells and DU145 cells were assessed by cell growth curves, flow cytometry (FCM), and an invasion assay. The PC3 cells were transplanted into nude mice, and then, the tumor growth curves and TUNEL staining were determined. These results demonstrated that QKI-5 was highly expressed in benign prostatic hyperplasia (BPH) tissues but not in carcinomatous tissues and that QKI-5 effectively inhibited prostate cancer cell proliferation in vitro and in vivo. In addition, the decrease in QKI-5 expression was closely correlated with the prostate cancer Gleason score, poor differentiation, degree of invasion, lymph node metastasis, distant metastasis, TNM grading, and poor survival. These results indicate that the QKI-5 expression may be a novel, independent factor in the prognosis of prostate cancer patients.
Collapse
Affiliation(s)
- Yi Zhao
- Department of Urology; Xijing Hospital; Fourth Military Medical University; Xi'an, PR China; Department of Biochemistry and Molecular Biology; State Key Laboratory of Cancer Biology; Fourth Military Medical University; Xi'an, PR China
| | - Gen Zhang
- Department of Urology; Xijing Hospital; Fourth Military Medical University; Xi'an, PR China
| | - Mengying Wei
- Department of Biochemistry and Molecular Biology; State Key Laboratory of Cancer Biology; Fourth Military Medical University; Xi'an, PR China
| | - Xiaozhao Lu
- Department of Biochemistry and Molecular Biology; State Key Laboratory of Cancer Biology; Fourth Military Medical University; Xi'an, PR China
| | - Hanyan Fu
- Department of Biochemistry and Molecular Biology; State Key Laboratory of Cancer Biology; Fourth Military Medical University; Xi'an, PR China
| | - Feixue Feng
- Department of Biochemistry and Molecular Biology; State Key Laboratory of Cancer Biology; Fourth Military Medical University; Xi'an, PR China
| | - Shan Wang
- Department of Biochemistry and Molecular Biology; State Key Laboratory of Cancer Biology; Fourth Military Medical University; Xi'an, PR China
| | - Wei Lu
- Department of Biochemistry and Molecular Biology; State Key Laboratory of Cancer Biology; Fourth Military Medical University; Xi'an, PR China
| | - Ning Wu
- Department of Biochemistry and Molecular Biology; State Key Laboratory of Cancer Biology; Fourth Military Medical University; Xi'an, PR China
| | - Zifan Lu
- Department of Biochemistry and Molecular Biology; State Key Laboratory of Cancer Biology; Fourth Military Medical University; Xi'an, PR China
| | - Jianlin Yuan
- Department of Urology; Xijing Hospital; Fourth Military Medical University; Xi'an, PR China
| |
Collapse
|