1
|
A potential delivery system based on cholera toxin: A macromolecule carrier with multiple activities. J Control Release 2022; 343:551-563. [DOI: 10.1016/j.jconrel.2022.01.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/31/2022] [Accepted: 01/31/2022] [Indexed: 11/20/2022]
|
2
|
Mora FAA, Musheshe N, Arroyave Ospina JC, Geng Y, Soto JM, Rodrigo JA, Alieva T, Buist-Homan M, Lezoualc'h F, Cheng X, Schmidt M, Moshage H. Metformin protects against diclofenac-induced toxicity in primary rat hepatocytes by preserving mitochondrial integrity via a pathway involving EPAC. Biomed Pharmacother 2021; 143:112072. [PMID: 34464747 DOI: 10.1016/j.biopha.2021.112072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/23/2021] [Accepted: 08/17/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE It has been shown that the antidiabetic drug metformin protects hepatocytes against toxicity by various stressors. Chronic or excessive consumption of diclofenac (DF) - a pain-relieving drug, leads to drug-induced liver injury via a mechanism involving mitochondrial damage and ultimately apoptotic death of hepatocytes. However, whether metformin protects against DF-induced toxicity is unknown. Recently, it was also shown that cAMP elevation is protective against DF-induced apoptotic death in hepatocytes, a protective effect primarily involving the downstream cAMP effector EPAC and preservation of mitochondrial function. This study therefore aimed at investigating whether metformin protects against DF-induced toxicity via cAMP-EPACs. EXPERIMENTAL APPROACH Primary rat hepatocytes were exposed to 400 µmol/L DF. CE3F4 or ESI-O5 were used as EPAC-1 or 2 inhibitors respectively. Apoptosis was measured by caspase-3 activity and necrosis by Sytox green staining. Seahorse X96 assay was used to determine mitochondrial function. Mitochondrial reactive oxygen species (ROS) production was measured using MitoSox, mitochondrial MnSOD expression was determined by immunostaining and mitochondrial morphology (fusion and fission ratio) by 3D refractive index imaging. KEY RESULTS Metformin (1 mmol/L) was protective against DF-induced apoptosis in hepatocytes. This protective effect was EPAC-dependent (mainly EPAC-2). Metformin restored mitochondrial morphology in an EPAC-independent manner. DF-induced mitochondrial dysfunction which was demonstrated by decreased oxygen consumption rate, an increased ROS production and a reduced MnSOD level, were all reversed by metformin in an EPAC-dependent manner. CONCLUSION AND IMPLICATIONS Metformin protects hepatocytes against DF-induced toxicity via cAMP-dependent EPAC-2.
Collapse
Affiliation(s)
- Fabio Alejandro Aguilar Mora
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | - Nshunge Musheshe
- Deptartment Molecular Pharmacology, Groningen Research Institute of Pharmacy, Groningen Research Institute for Asthma and COPD, GRIAC, University Medical Center Groningen University of Groningen, Groningen, The Netherlands.
| | - Johanna C Arroyave Ospina
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | - Yana Geng
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | - Juan M Soto
- Department of Optics and Faculty of Physical Sciences, Complutense University of Madrid, Spain.
| | - José A Rodrigo
- Department of Optics and Faculty of Physical Sciences, Complutense University of Madrid, Spain.
| | - Tatiana Alieva
- Department of Optics and Faculty of Physical Sciences, Complutense University of Madrid, Spain.
| | - Manon Buist-Homan
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | - Frank Lezoualc'h
- Inserm UMR-1048, Institut des Maladies Metaboliques et Cardiovasculaires, Univ Toulouse Paul Sabatier, Toulouse, France.
| | - Xiaodong Cheng
- Department of Integrative Biology & Pharmacology, Texas Therapeutics Institute, University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Martina Schmidt
- Deptartment Molecular Pharmacology, Groningen Research Institute of Pharmacy, Groningen Research Institute for Asthma and COPD, GRIAC, University Medical Center Groningen University of Groningen, Groningen, The Netherlands.
| | - Han Moshage
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
3
|
Aguilar Mora FA, Musheshe N, Oun A, Buist-Homan M, Lezoualc'h F, Cheng X, Schmidt M, Moshage H. Elevated cAMP Protects against Diclofenac-Induced Toxicity in Primary Rat Hepatocytes: A Protective Effect Mediated by the Exchange Protein Directly Activated by cAMP/cAMP-Regulated Guanine Nucleotide Exchange Factors. Mol Pharmacol 2021; 99:294-307. [PMID: 33574047 PMCID: PMC11033960 DOI: 10.1124/molpharm.120.000217] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/22/2021] [Indexed: 12/14/2022] Open
Abstract
Chronic consumption of the nonsteroidal anti-inflammatory drug diclofenac may induce drug-induced liver injury (DILI). The mechanism of diclofenac-induced liver injury is partially elucidated and involves mitochondrial damage. Elevated cAMP protects hepatocytes against bile acid-induced injury. However, it is unknown whether cAMP protects against DILI and, if so, which downstream targets of cAMP are implicated in the protective mechanism, including the classic protein kinase A (PKA) pathway or alternative pathways like the exchange protein directly activated by cAMP (EPAC). The aim of this study was to investigate whether cAMP and/or its downstream targets protect against diclofenac-induced injury in hepatocytes. Rat hepatocytes were exposed to 400 µmol/l diclofenac. Apoptosis and necrosis were measured by caspase-3 activity assay and Sytox green staining, respectively. Mitochondrial membrane potential (MMP) was measured by JC-10 staining. mRNA and protein expression were assessed by quantitative polymerase chain reaction (qPCR) and Western blot, respectively. The cAMP-elevating agent 7β-acetoxy-8,13-epoxy-1α,6β,9α-trihydroxylabd-14-en-11-one (forskolin), the pan-phosphodiesterase inhibitor IBMX, and EPAC inhibitors 5,7-dibromo-6-fluoro-3,4-dihydro-2-methyl-1(2H)-quinoline carboxaldehyde (CE3F4) and ESI-O5 were used to assess the role of cAMP and its effectors, PKA or EPAC. Diclofenac exposure induced apoptotic cell death and loss of MMP in hepatocytes. Both forskolin and IBMX prevented diclofenac-induced apoptosis. EPAC inhibition but not PKA inhibition abolished the protective effect of forskolin and IBMX. Forskolin and IBMX preserved the MMP, whereas both EPAC inhibitors diminished this effect. Both EPAC1 and EPAC2 were expressed in hepatocytes and localized in mitochondria. cAMP elevation protects hepatocytes against diclofenac-induced cell death, a process primarily involving EPACs. The cAMP/EPAC pathway may be a novel target for treatment of DILI. SIGNIFICANCE STATEMENT: This study shows two main highlights. First, elevated cAMP levels protect against diclofenac-induced apoptosis in primary hepatocytes via maintenance of mitochondrial integrity. In addition, this study proposes the existence of mitochondrial cAMP-EPAC microdomains in rat hepatocytes, opening new avenues for targeted therapy in drug-induced liver injury (DILI). Both EPAC1 and EPAC2, but not protein kinase A, are responsible for this protective effect. Our findings present cAMP-EPAC as a potential target for the treatment of DILI and liver injury involving mitochondrial dysfunction.
Collapse
Affiliation(s)
- Fabio Alejandro Aguilar Mora
- Dept. Gastroenterology and Hepatology (F.A.A.M., M.B.-H., H.M.), Dept. Molecular Pharmacology, Groningen Research Institute of Pharmacy, Groningen Research Institute for Asthma and COPD, GRIAC (N.M., A.O., M.S.), Dept. Laboratory Medicine (M.B.-H., H.M.), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Inserm UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, Univ Toulouse Paul Sabatier, Toulouse, France (F.L.); and Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, University of Texas Health Science Center at Houston, Houston, Texas (X.C.)
| | - Nshunge Musheshe
- Dept. Gastroenterology and Hepatology (F.A.A.M., M.B.-H., H.M.), Dept. Molecular Pharmacology, Groningen Research Institute of Pharmacy, Groningen Research Institute for Asthma and COPD, GRIAC (N.M., A.O., M.S.), Dept. Laboratory Medicine (M.B.-H., H.M.), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Inserm UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, Univ Toulouse Paul Sabatier, Toulouse, France (F.L.); and Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, University of Texas Health Science Center at Houston, Houston, Texas (X.C.)
| | - Asmaa Oun
- Dept. Gastroenterology and Hepatology (F.A.A.M., M.B.-H., H.M.), Dept. Molecular Pharmacology, Groningen Research Institute of Pharmacy, Groningen Research Institute for Asthma and COPD, GRIAC (N.M., A.O., M.S.), Dept. Laboratory Medicine (M.B.-H., H.M.), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Inserm UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, Univ Toulouse Paul Sabatier, Toulouse, France (F.L.); and Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, University of Texas Health Science Center at Houston, Houston, Texas (X.C.)
| | - Manon Buist-Homan
- Dept. Gastroenterology and Hepatology (F.A.A.M., M.B.-H., H.M.), Dept. Molecular Pharmacology, Groningen Research Institute of Pharmacy, Groningen Research Institute for Asthma and COPD, GRIAC (N.M., A.O., M.S.), Dept. Laboratory Medicine (M.B.-H., H.M.), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Inserm UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, Univ Toulouse Paul Sabatier, Toulouse, France (F.L.); and Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, University of Texas Health Science Center at Houston, Houston, Texas (X.C.)
| | - Frank Lezoualc'h
- Dept. Gastroenterology and Hepatology (F.A.A.M., M.B.-H., H.M.), Dept. Molecular Pharmacology, Groningen Research Institute of Pharmacy, Groningen Research Institute for Asthma and COPD, GRIAC (N.M., A.O., M.S.), Dept. Laboratory Medicine (M.B.-H., H.M.), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Inserm UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, Univ Toulouse Paul Sabatier, Toulouse, France (F.L.); and Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, University of Texas Health Science Center at Houston, Houston, Texas (X.C.)
| | - Xiaodong Cheng
- Dept. Gastroenterology and Hepatology (F.A.A.M., M.B.-H., H.M.), Dept. Molecular Pharmacology, Groningen Research Institute of Pharmacy, Groningen Research Institute for Asthma and COPD, GRIAC (N.M., A.O., M.S.), Dept. Laboratory Medicine (M.B.-H., H.M.), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Inserm UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, Univ Toulouse Paul Sabatier, Toulouse, France (F.L.); and Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, University of Texas Health Science Center at Houston, Houston, Texas (X.C.)
| | - Martina Schmidt
- Dept. Gastroenterology and Hepatology (F.A.A.M., M.B.-H., H.M.), Dept. Molecular Pharmacology, Groningen Research Institute of Pharmacy, Groningen Research Institute for Asthma and COPD, GRIAC (N.M., A.O., M.S.), Dept. Laboratory Medicine (M.B.-H., H.M.), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Inserm UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, Univ Toulouse Paul Sabatier, Toulouse, France (F.L.); and Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, University of Texas Health Science Center at Houston, Houston, Texas (X.C.)
| | - Han Moshage
- Dept. Gastroenterology and Hepatology (F.A.A.M., M.B.-H., H.M.), Dept. Molecular Pharmacology, Groningen Research Institute of Pharmacy, Groningen Research Institute for Asthma and COPD, GRIAC (N.M., A.O., M.S.), Dept. Laboratory Medicine (M.B.-H., H.M.), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Inserm UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, Univ Toulouse Paul Sabatier, Toulouse, France (F.L.); and Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, University of Texas Health Science Center at Houston, Houston, Texas (X.C.)
| |
Collapse
|
4
|
Diet-Induced Obesity Mice Execute Pulmonary Cell Apoptosis via Death Receptor and ER-Stress Pathways after E. coli Infection. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6829271. [PMID: 32685099 PMCID: PMC7338970 DOI: 10.1155/2020/6829271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 04/15/2020] [Accepted: 05/30/2020] [Indexed: 12/11/2022]
Abstract
Obesity has developed into a considerable health problem in the whole world. Escherichia coli (E. coli) can cause nosocomial pneumonia and induce cell apoptosis during injury and infection. Normal (lean) and diet-induced obesity mice (DIO, fed with high-fat diet) were chosen to perform nasal instillation with E. coli to establish a nonfatal acute pneumonia model. At 0 h, 12 h, 24 h, and 72 h postinfection, lung tissues were obtained to measure cell apoptosis. As shown in this study, both lean and DIO mice exhibited histopathological lesions of acute pneumonia and increased cell apoptosis in the lung infected with E. coli. Interestingly, the relative mRNA and protein expressions associated with either endoplasmic reticulum stress or death receptor apoptotic pathway were all dramatically increased in the DIO mice after infection, while only significant upregulation of death receptor apoptotic pathway in the lean mice at 72 h. These results indicated that the DIO mice executed excess cell apoptosis in the nonfatal acute pneumonia induced by E. coli infection through endoplasmic reticulum stress and death receptor apoptotic pathway.
Collapse
|
5
|
Hilliard KA, Blaho VA, Jackson CD, Brown CR. Leukotriene B4 receptor BLT1 signaling is critical for neutrophil apoptosis and resolution of experimental Lyme arthritis. FASEB J 2019; 34:2840-2852. [PMID: 31908031 DOI: 10.1096/fj.201902014r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/04/2019] [Accepted: 12/10/2019] [Indexed: 11/11/2022]
Abstract
Eicosanoids are powerful mediators of inflammation and are known to drive both the progression and regression of arthritis. We previously reported the infection of C3H 5-lipoxygenase (LO)-deficient mice with Borrelia burgdorferi results in prolonged nonresolving Lyme arthritis. Here we define the role of the 5-LO metabolite leukotriene (LT)B4 and its high-affinity receptor, BLT1, in this response. C3H and C3H BLT1-/- mice were infected with B. burgdorferi and arthritis progression was monitored by ankle swelling over time. Similar to 5-LO-/- mice, BLT1-/- mice developed nonresolving Lyme arthritis characterized by increased neutrophils in the joint at later time points than WT mice, but with fewer apoptotic (caspase-3+ ) neutrophils. In vitro, BLT1-/- neutrophils were defective in their ability to undergo apoptosis due to the lack of LTB4 -mediated down-regulation of cAMP, subsequent failure to induce Death-Inducing Signaling Complex (DISC) components, and decreased FasL and CD36 expression. Inhibition of adenylyl cyclase with SQ 22,536 restored BLT1-/- BMN apoptosis, FasL and CD36 expression, and clearance by macrophages. We conclude that LTB4/BLT1 signaling has an unexpected critical role in mediating neutrophil apoptosis via the down-regulation of cAMP. Loss of BLT1 signaling led to defective clearance of neutrophils from the inflamed joint and failed arthritis resolution.
Collapse
Affiliation(s)
- Kinsey A Hilliard
- Department of Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Victoria A Blaho
- Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA, USA
| | - Christa D Jackson
- Department of Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Charles R Brown
- Department of Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| |
Collapse
|
6
|
Rodriguez WE, Wahlang B, Wang Y, Zhang J, Vadhanam MV, Joshi-Barve S, Bauer P, Cannon R, Ahmadi AR, Sun Z, Cameron A, Barve S, Maldonado C, McClain C, Gobejishvili L. Phosphodiesterase 4 Inhibition as a Therapeutic Target for Alcoholic Liver Disease: From Bedside to Bench. Hepatology 2019; 70:1958-1971. [PMID: 31081957 PMCID: PMC6851418 DOI: 10.1002/hep.30761] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 04/30/2019] [Indexed: 12/11/2022]
Abstract
Alcoholic liver disease (ALD) is a major cause of liver-related mortality. There is still no US Food and Drug Administration-approved therapy for ALD, and therefore, identifying therapeutic targets is needed. Our previous work demonstrated that ethanol exposure leads to up-regulation of cAMP-degrading phosphodiesterase 4 (PDE4) expression, which compromises normal cAMP signaling in monocytes/macrophages and hepatocytes. This effect of ethanol on cAMP signaling contributes to dysregulated inflammatory response and altered lipid metabolism. It is unknown whether chronic alcohol consumption in humans alters hepatic PDE4 expression and cAMP signaling and whether inadequate cAMP signaling plays a pathogenic role in alcohol-induced liver injury. Our present work shows that expression of the PDE4 subfamily of enzymes is significantly up-regulated and cAMP levels are markedly decreased in hepatic tissues of patients with severe ALD. We also demonstrate the anti-inflammatory efficacy of roflumilast, a clinically available PDE4 inhibitor, on endotoxin-inducible proinflammatory cytokine production ex vivo in whole blood of patients with alcoholic hepatitis. Moreover, we demonstrate that ethanol-mediated changes in hepatic PDE4 and cAMP levels play a causal role in liver injury in in vivo and in vitro models of ALD. This study employs a drug delivery system that specifically delivers the PDE4 inhibitor rolipram to the liver to avoid central nervous system side effects associated with this drug. Our results show that PDE4 inhibition significantly attenuates ethanol-induced hepatic steatosis and injury through multiple mechanisms, including reduced oxidative and endoplasmic reticulum stress both in vivo and in vitro. Conclusion: Increased PDE4 plays a pathogenic role in the development of ALD; hence, directed interventions aimed at inhibiting PDE4 might be an effective treatment for ALD.
Collapse
Affiliation(s)
- Walter E. Rodriguez
- University of Louisville Alcohol Research Center, University of Louisville, Kentucky, USA,,Hepatobiology and Toxicology Center, University of Louisville, Kentucky, USA,,Department of Medicine, School of Medicine, University of Louisville, Kentucky, USA
| | - Banrida Wahlang
- University of Louisville Alcohol Research Center, University of Louisville, Kentucky, USA,,Hepatobiology and Toxicology Center, University of Louisville, Kentucky, USA,,Department of Medicine, School of Medicine, University of Louisville, Kentucky, USA
| | - Yali Wang
- University of Louisville Alcohol Research Center, University of Louisville, Kentucky, USA,,Hepatobiology and Toxicology Center, University of Louisville, Kentucky, USA,,Department of Medicine, School of Medicine, University of Louisville, Kentucky, USA
| | - Jingwen Zhang
- University of Louisville Alcohol Research Center, University of Louisville, Kentucky, USA,,Hepatobiology and Toxicology Center, University of Louisville, Kentucky, USA,,Department of Medicine, School of Medicine, University of Louisville, Kentucky, USA
| | - Manicka V. Vadhanam
- University of Louisville Alcohol Research Center, University of Louisville, Kentucky, USA,,Hepatobiology and Toxicology Center, University of Louisville, Kentucky, USA,,Department of Medicine, School of Medicine, University of Louisville, Kentucky, USA
| | - Swati Joshi-Barve
- University of Louisville Alcohol Research Center, University of Louisville, Kentucky, USA,,Hepatobiology and Toxicology Center, University of Louisville, Kentucky, USA,,Department of Medicine, School of Medicine, University of Louisville, Kentucky, USA,,Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Kentucky, USA
| | - Philip Bauer
- Department of Physiology, School of Medicine, University of Louisville, Kentucky, USA,,EndoProtech, Inc., Louisville, Kentucky, USA
| | - Robert Cannon
- Department of Surgery, School of Medicine, University of Louisville, Kentucky, USA
| | - Ali Reza Ahmadi
- Department of Surgery and Transplant Biology Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Zhaoli Sun
- Department of Surgery and Transplant Biology Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andrew Cameron
- Department of Surgery and Transplant Biology Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shirish Barve
- University of Louisville Alcohol Research Center, University of Louisville, Kentucky, USA,,Hepatobiology and Toxicology Center, University of Louisville, Kentucky, USA,,Department of Medicine, School of Medicine, University of Louisville, Kentucky, USA,,Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Kentucky, USA
| | - Claudio Maldonado
- Department of Physiology, School of Medicine, University of Louisville, Kentucky, USA,,EndoProtech, Inc., Louisville, Kentucky, USA
| | - Craig McClain
- University of Louisville Alcohol Research Center, University of Louisville, Kentucky, USA,,Hepatobiology and Toxicology Center, University of Louisville, Kentucky, USA,,Department of Medicine, School of Medicine, University of Louisville, Kentucky, USA,,Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Kentucky, USA,,Robley Rex VA Medical Center, Louisville, Kentucky, USA
| | - Leila Gobejishvili
- University of Louisville Alcohol Research Center, University of Louisville, Kentucky, USA,,Hepatobiology and Toxicology Center, University of Louisville, Kentucky, USA,,Department of Medicine, School of Medicine, University of Louisville, Kentucky, USA,,Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Kentucky, USA
| |
Collapse
|
7
|
Lee YJ, Shu MS, Kim JY, Kim YH, Sim KH, Sung WJ, Eun JR. Cilostazol protects hepatocytes against alcohol-induced apoptosis via activation of AMPK pathway. PLoS One 2019; 14:e0211415. [PMID: 30695051 PMCID: PMC6350983 DOI: 10.1371/journal.pone.0211415] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 01/14/2019] [Indexed: 02/07/2023] Open
Abstract
Alcoholic liver disease (ALD) is a worldwide health problem and hepatocyte apoptosis has been associated with the development/progression of ALD. However, no definite effective pharmacotherapy for ALD is currently available. Cilostazol, a selective type III phosphodiesterase inhibitor has been shown to protect hepatocytes from ethanol-induced apoptosis. In the present study, the underlying mechanisms for the protective effects of cilostazol were examined. Primary rat hepatocytes were treated with ethanol in the presence or absence of cilostazol. Cell viability and intracellular cAMP were measured. Apoptosis was detected by Hoechst staining, TUNEL assay, and caspase-3 activity assay. The roles of cAMP and AMP-activated protein kinase (AMPK) pathways in the action of CTZ were explored using pharmacological inhibitors and siRNAs. Liver from mice received ethanol (5 g/kg body weight) by oral gavage following cilostazol treatment intraperitoneally was obtained for measurement of apoptosis and activation of AMPK pathway. Cilostazol inhibited ethanol-induced hepatocyte apoptosis and potentiated the increases in cAMP level induced by forskolin. However, the anti-apoptotic effect of cilostazol was not reversed by an inhibitor of adenylyl cyclase. Interestingly, cilostazol activated AMPK and increased the level of LC3-II, a marker of autophagy. The inhibition of AMPK abolished the effects of cilostazol on LC3-II expression and apoptosis. Moreover, the inhibition of LKB1 and CaMKK2, upstream kinases of AMPK, dampened cilostazol-inhibited apoptosis as well as AMPK activation. In conclusion, cilostazol protected hepatocytes from apoptosis induced by ethanol mainly via AMPK pathway which is regulated by both LKB1 and CaMKK2. Our results suggest that cilostazol may have potential as a promising therapeutic drug for treatment of ALD.
Collapse
Affiliation(s)
- Youn Ju Lee
- Department of Pharmacology, School of Medicine, Catholic University of Daegu, Daegu, Korea
| | - Mi-Sun Shu
- Department of Pharmacology, School of Medicine, Catholic University of Daegu, Daegu, Korea
| | - Jong-Yeon Kim
- Deparment of Physiology, School of Medicine, Yeungnam University, Daegu, Korea
| | - Yun-Hye Kim
- Deparment of Physiology, School of Medicine, Yeungnam University, Daegu, Korea
| | - Kyeong Hwa Sim
- Department of Pharmacology, School of Medicine, Catholic University of Daegu, Daegu, Korea
| | - Woo Jung Sung
- Department of Pathology, School of Medicine, Catholic University of Daegu, Daegu, Korea
| | - Jong Ryeol Eun
- Department of Internal medicine, Myongj Hospital, Hanyang University College of Medicine, Goyang, Korea
- * E-mail:
| |
Collapse
|
8
|
Wu X, Ji K, Wang H, Zhao Y, Jia J, Gao X, Zang B. Retracted
: microRNA‐542‐5p protects against acute lung injury in mice with severe acute pancreatitis by suppressing the mitogen‐activated protein kinase signaling pathway through the negative regulation of P21‐activated kinase 1. J Cell Biochem 2018; 120:290-304. [DOI: 10.1002/jcb.27356] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 06/22/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Xing‐Mao Wu
- Intensive Care Unit Shengjing Hospital, China Medical University Shenyang China
| | - Kai‐Qiang Ji
- Intensive Care Unit Shengjing Hospital, China Medical University Shenyang China
| | - Hai‐Yuan Wang
- Intensive Care Unit Shengjing Hospital, China Medical University Shenyang China
| | - Yang Zhao
- Intensive Care Unit Shengjing Hospital, China Medical University Shenyang China
| | - Jia Jia
- Intensive Care Unit Shengjing Hospital, China Medical University Shenyang China
| | - Xiao‐Peng Gao
- Intensive Care Unit Shengjing Hospital, China Medical University Shenyang China
| | - Bin Zang
- Intensive Care Unit Shengjing Hospital, China Medical University Shenyang China
| |
Collapse
|
9
|
Wahlang B, McClain C, Barve S, Gobejishvili L. Role of cAMP and phosphodiesterase signaling in liver health and disease. Cell Signal 2018; 49:105-115. [PMID: 29902522 PMCID: PMC6445381 DOI: 10.1016/j.cellsig.2018.06.005] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/08/2018] [Accepted: 06/09/2018] [Indexed: 02/06/2023]
Abstract
Liver disease is a significant health problem worldwide with mortality reaching around 2 million deaths a year. Non-alcoholic fatty liver disease (NAFLD) and alcoholic liver disease (ALD) are the major causes of chronic liver disease. Pathologically, NAFLD and ALD share similar patterns of hepatic disorders ranging from simple steatosis to steatohepatitis, fibrosis and cirrhosis. It is becoming increasingly important to identify new pharmacological targets, given that there is no FDA-approved therapy yet for either NAFLD or ALD. Since the evolution of liver diseases is a multifactorial process, several mechanisms involving parenchymal and non-parenchymal hepatic cells contribute to the initiation and progression of liver pathologies. Moreover, certain protective molecular pathways become repressed during liver injury including signaling pathways such as the cyclic adenosine monophosphate (cAMP) pathway. cAMP, a key second messenger molecule, regulates various cellular functions including lipid metabolism, inflammation, cell differentiation and injury by affecting gene/protein expression and function. This review addresses the current understanding of the role of cAMP metabolism and consequent cAMP signaling pathway(s) in the context of liver health and disease. The cAMP pathway is extremely sophisticated and complex with specific cellular functions dictated by numerous factors such abundance, localization and degradation by phosphodiesterases (PDEs). Furthermore, because of the distinct yet divergent roles of both of its effector molecules, the cAMP pathway is extensively targeted in liver injury to modify its role from physiological to therapeutic, depending on the hepatic condition. This review also examines the behavior of the cAMP-dependent pathway in NAFLD, ALD and in other liver diseases and focuses on PDE inhibition as an excellent therapeutic target in these conditions.
Collapse
Affiliation(s)
- Banrida Wahlang
- University of Louisville Alcohol Research Center, School of Medicine, University of Louisville, KY, USA; Department of Medicine, School of Medicine, University of Louisville, KY, USA
| | - Craig McClain
- University of Louisville Alcohol Research Center, School of Medicine, University of Louisville, KY, USA; Department of Medicine, School of Medicine, University of Louisville, KY, USA; Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, KY, USA; Hepatobiology & Toxicology Center, School of Medicine, University of Louisville, KY, USA; Robley Rex Louisville VAMC, Louisville, KY, USA
| | - Shirish Barve
- University of Louisville Alcohol Research Center, School of Medicine, University of Louisville, KY, USA; Department of Medicine, School of Medicine, University of Louisville, KY, USA; Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, KY, USA; Hepatobiology & Toxicology Center, School of Medicine, University of Louisville, KY, USA
| | - Leila Gobejishvili
- University of Louisville Alcohol Research Center, School of Medicine, University of Louisville, KY, USA; Department of Medicine, School of Medicine, University of Louisville, KY, USA; Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, KY, USA; Hepatobiology & Toxicology Center, School of Medicine, University of Louisville, KY, USA.
| |
Collapse
|
10
|
Up-regulation of TRAF2 Suppresses Neuronal Apoptosis after Rat Spinal Cord Injury. Tissue Cell 2017; 49:589-596. [DOI: 10.1016/j.tice.2017.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 08/06/2017] [Accepted: 08/07/2017] [Indexed: 11/19/2022]
|
11
|
Li M, Yang X, Zhuang C, Cao Z, Ren L, Xiu C, Li Y, Zhu Y. NE strengthens the immunosuppression induced by AlCl₃ through β₂-AR/cAMP pathway in cultured rat peritoneal macrophages. Biol Trace Elem Res 2015; 164:234-41. [PMID: 25556934 DOI: 10.1007/s12011-014-0217-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 12/18/2014] [Indexed: 01/22/2023]
Abstract
To investigate the effect of noradrenaline (NE) on the immunosuppression induced by aluminum trichloride (AlCl3), the peritoneal macrophages were cultured with RPMI-1640 medium containing 0.97 mM AlCl3 (1/10 IC50). NE was added to the medium at the final concentrations of 0 (control group, N-C), 0.1 (low-dose group, N-L), 1 (mid-dose group, N-M), and 10 (high-dose group, N-H) nM, respectively. No addition of both AlCl3 and NE serviced as blank group (D-C). Chemotaxis, adhesion, phagocytosis, tumor necrosis factor α (TNF-α) secretion, cyclic adenosine monophosphate (cAMP) content, β2 adrenergic receptors (β2-AR) density, and messenger RNA (mRNA) expression of macrophages were detected. The results showed that AlCl3 reduced the chemotaxis, adhesion, phagocytosis, and TNF-α secretion and increased the cAMP content, β2-AR density, and mRNA expression of peritoneal macrophages. Meanwhile, the chemotaxis, adhesion, phagocytosis, TNF-α secretion, β2-AR density, and mRNA expression were reduced while the cAMP content was increased in NE-treated groups than those in N-C group. The results indicated that NE strengthens the immunosuppression induced by AlCl3 in cultured rat peritoneal macrophages through the β2-AR/cAMP pathway.
Collapse
MESH Headings
- Adrenergic alpha-Agonists/pharmacology
- Aluminum Chloride
- Aluminum Compounds/pharmacology
- Animals
- Cells, Cultured
- Chemotaxis/drug effects
- Chemotaxis/immunology
- Chlorides/pharmacology
- Cyclic AMP/immunology
- Cyclic AMP/metabolism
- Dose-Response Relationship, Drug
- Gene Expression/drug effects
- Gene Expression/immunology
- Immune Tolerance/drug effects
- Macrophages, Peritoneal/drug effects
- Macrophages, Peritoneal/immunology
- Macrophages, Peritoneal/metabolism
- Norepinephrine/pharmacology
- Phagocytosis/drug effects
- Phagocytosis/immunology
- Rats, Wistar
- Receptors, Adrenergic, beta-2/genetics
- Receptors, Adrenergic, beta-2/immunology
- Receptors, Adrenergic, beta-2/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction/drug effects
- Signal Transduction/immunology
- Tumor Necrosis Factor-alpha/immunology
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Miao Li
- College of Veterinary Medicine, Northeast Agricultural University, 150030, Harbin, China
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Liao J, Zhang L, Zheng J, Yu D, Ke M, Xu T. Electroacupuncture inhibits annulus fibrosis cell apoptosis in vivo via TNF-α-TNFR1-caspase-8 and integrin β1/Akt signaling pathways. J TRADIT CHIN MED 2014; 34:684-90. [DOI: 10.1016/s0254-6272(15)30083-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
13
|
Hau CS, Kanda N, Watanabe S. Suppressive effects of antimycotics on thymic stromal lymphopoietin production in human keratinocytes. J Dermatol Sci 2013; 71:174-83. [PMID: 23688403 DOI: 10.1016/j.jdermsci.2013.04.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 04/14/2013] [Accepted: 04/21/2013] [Indexed: 01/11/2023]
Abstract
BACKGROUND Thymic stromal lymphopoietin (TSLP) is produced by epidermal keratinocytes, and it induces Th2-mediated inflammation. TSLP expression is enhanced in lesions with atopic dermatitis, and is a therapeutic target. Antimycotic agents improve the symptoms of atopic dermatitis. OBJECTIVE The objective of this study was to examine whether antimycotics suppress TSLP expression in human keratinocytes. METHODS Normal human keratinocytes were incubated with polyinosinic-polycytidylic acid (poly I:C) plus IL-4 in the presence of antimycotics. TSLP expression was analyzed by ELISA and real time PCR. Luciferase assays were performed to analyze NF-κB activity. IκBα degradation was analyzed by Western blot analysis. RESULTS Poly I:C plus IL-4 increased the secretion and mRNA levels of TSLP, which was suppressed by an NF-κB inhibitor, and also enhanced NF-κB transcriptional activities and induced the degradation of IκBα in keratinocytes. The antimycotics itraconazole, ketoconazole, luliconazole, terbinafine, butenafine, and amorolfine suppressed the secretion and mRNA expression of TSLP, NF-κB activity, and IκBα degradation induced by poly I:C plus IL-4. These suppressive effects were similarly manifested by 15-deoxy-Δ-(12,14)-PGJ2 (15d-PGJ2), a prostaglandin D2 metabolite. Antimycotics increased the release of 15d-PGJ2 from keratinocytes and decreased the release of thromboxane B2, a thromboxane A2 metabolite. Antimycotic-induced suppression of TSLP production and NF-κB activity was counteracted by an inhibitor of lipocalin type-prostaglandin D synthase. CONCLUSIONS Antimycotics itraconazole, ketoconazole, luliconazole, terbinafine, butenafine, and amorolfine may suppress poly I:C plus IL-4-induced production of TSLP by inhibiting NF-κB via increasing 15d-PGJ2 production in keratinocytes. These antimycotics may block the overexpression of TSLP in lesions with atopic dermatitis.
Collapse
Affiliation(s)
- Carren S Hau
- Department of Dermatology, Teikyo University School of Medicine, Tokyo, Japan.
| | | | | |
Collapse
|
14
|
Skill N, Wu J, Xu Y, Zhao Z, Maluccio M. Lysophosphatidic acid aberrancies and hepatocellular carcinoma: studies in the MDR2 gene knockout mouse. Cancer Invest 2013; 31:145-55. [PMID: 23362952 DOI: 10.3109/07357907.2012.762779] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Studies show that lysophosphatidic acid (LPA) reprogramming is associated with the development of hepatocellular carcinoma (HCC). This manuscript evaluates the MDR2(-/-) model of HCC as a tool to examine the role of LPA reprogramming in the initiation/progression of HCC and identify novel treatment targets. Hepatic tumors developed in MDR2(-/-) mice between 9-12 m and serum LPA levels were greater in MDR2(-/-) when compared to controls. Blocking LPA biosynthesis/signaling significantly reduced tumor burden. LPA biosynthesis/signaling plays an important role in murine MDR2(-/-) model and is potentially linked to regulation of TNFα or other cytokines that are relevant to high-risk patients.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/deficiency
- ATP Binding Cassette Transporter, Subfamily B/genetics
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- Animals
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Drug Resistance, Multiple
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Liver Neoplasms, Experimental/blood
- Liver Neoplasms, Experimental/genetics
- Liver Neoplasms, Experimental/metabolism
- Liver Neoplasms, Experimental/pathology
- Lysophospholipids/blood
- Lysophospholipids/genetics
- Lysophospholipids/metabolism
- Mice
- Mice, Knockout
- Phosphodiesterase Inhibitors/pharmacology
- Phospholipids/metabolism
- Phosphoric Diester Hydrolases/metabolism
- Receptors, Lysosphingolipid/antagonists & inhibitors
- Receptors, Lysosphingolipid/metabolism
- Signal Transduction/drug effects
- ATP-Binding Cassette Sub-Family B Member 4
Collapse
Affiliation(s)
- Nicholas Skill
- Department of Surgery, Indiana University, Indianapolis, IN, USA.
| | | | | | | | | |
Collapse
|
15
|
Kawaguchi S, Bowolaksono A, Yoshioka S, Sakumoto R, Okuda K. Luteoprotective mechanisms of prostaglandin F2α stimulated by luteinizing hormone in the bovine corpus luteum. J Reprod Dev 2013; 59:225-30. [PMID: 23358309 PMCID: PMC3934132 DOI: 10.1262/jrd.2012-187] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Luteinizing hormone (LH) regulates several ovarian functions. However, the
luteoprotective mechanisms of LH involved in the maintenance of bovine corpus luteum (CL)
function are not well understood. Since prostaglandin F2α (PGF), PGE2 and progesterone
(P4) are well documented as antiapoptotic factors in the bovine CL, we hypothesized that
LH protects the CL by stimulating the local production and action of PGF, PGE2 and P4.
Cultured bovine luteal cells obtained at the mid-luteal stage (days 8–12 of the estrous
cycle) were treated with LH (10 ng/ml), onapristone (OP: a specific P4 receptor
antagonist, 100 μM) and indomethacin [INDO; a cyclooxygenase (COX) inhibitor, 100 μM] for
24 h. LH with and without OP significantly increased the mRNA and protein expressions of
COX-2, PGF synthase and carbonyl reductase (P<0.05) but not the mRNA and protein
expressions of COX-1 and PGE synthase in bovine luteal cells. In addition, these
treatments significantly increased PGF and P4 production (P<0.05) but not PGE2
production. Luteal cell viability was significantly increased by LH alone (P<0.05), but
LH-increased cell viability was reduced by LH in combination with INDO as well as OP
(P<0.05). The overall results suggest that LH prevents luteal cell death by stimulating
luteal PGF and P4 production and supports CL function during the luteal phase in
cattle.
Collapse
Affiliation(s)
- Syota Kawaguchi
- Laboratory of Reproductive Physiology, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | | | | | | | | |
Collapse
|
16
|
Zaika OA, Dolmatova LS. Cooperative apoptosis of coelomocytes of the holothurian <i>Eupentacta fraudatrix</i> and its modulation by dexamethasone. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/abb.2013.49119] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Chanthaphavong RS, Loughran PA, Lee TYS, Scott MJ, Billiar TR. A role for cGMP in inducible nitric-oxide synthase (iNOS)-induced tumor necrosis factor (TNF) α-converting enzyme (TACE/ADAM17) activation, translocation, and TNF receptor 1 (TNFR1) shedding in hepatocytes. J Biol Chem 2012; 287:35887-98. [PMID: 22898814 DOI: 10.1074/jbc.m112.365171] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We and others have previously shown that the inducible nitric-oxide synthase (iNOS) and nitric oxide (NO) are hepatoprotective in a number of circumstances, including endotoxemia. In vitro, hepatocytes are protected from tumor necrosis factor (TNF) α-induced apoptosis via cGMP-dependent and cGMP-independent mechanisms. We have shown that the cGMP-dependent protective mechanisms involve the inhibition of death-inducing signaling complex formation. We show here that LPS-induced iNOS expression leads to rapid TNF receptor shedding from the surface of hepatocytes via NO/cGMP/protein kinase G-dependent activation and surface translocation of TNFα-converting enzyme (TACE/ADAM17). The activation of TACE is associated with the up-regulation of iRhom2 as well as the interaction and phosphorylation of TACE and iRhom2, which are also NO/cGMP/protein kinase G-dependent. These findings suggest that one mechanism of iNOS/NO-mediated protection of hepatocytes involves the rapid shedding of TNF receptor 1 to limit TNFα signaling.
Collapse
Affiliation(s)
- R Savanh Chanthaphavong
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | |
Collapse
|