1
|
Afra F, Eftekhar SP, Farid AS, Ala M. Non-coding RNAs in cancer immunotherapy: A solution to overcome immune resistance? PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 209:215-240. [PMID: 39461753 DOI: 10.1016/bs.pmbts.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
With the rapid advancement in immunotherapy, cancer immune resistance has become more evident, which demands new treatment approaches to achieve greater efficacy. Non-coding RNAs (ncRNAs) are a heterogeneous group of RNAs that are not translated to proteins but instead regulate different stages of gene expression. Recent studies have increasingly supported the critical role of ncRNAs in immune cell-cancer cell cross-talk, and numerous ncRNAs have been implicated in the immune evasion of cancer cells. Cancer cells take advantage of ncRNAs to modulate several signaling pathways and upregulate the expression of immune checkpoints and anti-inflammatory mediators, thereby dampening the anti-tumor response of M1 macrophages, dendritic cells, cytotoxic T cells, and natural killer cells or potentiating the immunosuppressive properties of M2 macrophages, regulatory T cells, and myeloid-derived suppressive cells. Upregulation of immunosuppressive ncRNAs or downregulation of immunogenic ncNRAs is a major driver of resistance to immune checkpoint inhibitors, cancer vaccines, and other means of cancer immunotherapy, making ncRNAs ideal targets for treatment. In addition, ncRNAs released by cancer cells have been demonstrated to possess prognostic values for patients who undergo cancer immunotherapy. Future clinical trials are urged to consider the potential of ncRNAs in cancer immunotherapy.
Collapse
Affiliation(s)
- Fatemeh Afra
- Clinical Pharmacy Department, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Parsa Eftekhar
- Student Research Committee, Health Research Center, Babol University of Medical Sciences, Babol, Iran
| | - Amir Salehi Farid
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Moein Ala
- Experimental Medicine Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Tu Y, Wang L, Wang X, Wu W, Tu Y, Zou D, Deng Y, Qi J, Cao C, Xu D, Chai Y, Zhu Y, Zhang J, Sun J, Lai F, He L. LncRNA-WAKMAR2 regulates expression of CLDN1 to affect skin barrier through recruiting c-Fos. Contact Dermatitis 2023; 88:188-200. [PMID: 36461623 DOI: 10.1111/cod.14256] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/31/2022] [Accepted: 11/27/2022] [Indexed: 12/04/2022]
Abstract
BACKGROUND Chronic actinic dermatitis (CAD) is an immune-mediated photo-allergic skin disease. In the clinic, the treatment of this disease is hampered by the lack of proper understanding of the skin barrier dysfunction mechanism. OBJECTIVE To illuminate the mechanism of skin barrier dysfunction in CAD. METHODS Transcriptome sequencing and protein profiling were used to detect skin barrier injury-related genes. RNA pull down, a promoter-reporter gene assay, and chromatin isolation by RNA purification-sequencing were used to elucidate the effect of WAKMAR2 in skin barrier functionality. RESULTS Transcriptome sequencing from patient's tissues showed a significantly decreased expression of WAKMAR2. Down-regulation of WAKMAR2 destroyed the keratinocyte barrier. Moreover, WAKMAR2 can directly bind to the c-Fos protein. This novel long non-coding RNA (LncRNA)-protein complexes were targeted to the CLDN1 promotor. Overexpression of WAKMAR2 enhanced the promoter activity of CLDN1, while the addition of AP-1 inhibitor could reverse this phenomenon. Furthermore, our in vivo results suggested that expression of WAKMAR2 was required for the repair of skin damage in mice induced by ultraviolet irradiation. CONCLUSIONS We identified a crucial LncRNA (WAKMAR2) for the protection of the skin barrier in vitro and in vivo. Mechanically, it can specifically interact with c-Fos protein for the regulation of CLDN1, a finding which could be applied for CAD treatment.
Collapse
Affiliation(s)
- Yunhua Tu
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China.,Department of Dermatology, The Second People's Hospital of Guiyang, Guiyang, China
| | - Li Wang
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiaoli Wang
- Department of Dermatology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Wenjuan Wu
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ying Tu
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Dandan Zou
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yuanyuan Deng
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jue Qi
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Can Cao
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Dan Xu
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yanjie Chai
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yun Zhu
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Juan Zhang
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jun Sun
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Fan Lai
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Center for Life Science, School of Life Sciences, Yunnan University, Kunming, China
| | - Li He
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
3
|
Liu H, Yu B, Deng Z, Zhao H, Zeng A, Li R, Fu M. Role of immune cell infiltration and small molecule drugs in adhesive capsulitis: Novel exploration based on bioinformatics analyses. Front Immunol 2023; 14:1075395. [PMID: 36875119 PMCID: PMC9976580 DOI: 10.3389/fimmu.2023.1075395] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Background Adhesive capsulitis (AC) is a type of arthritis that causes shoulder joint pain, stiffness, and limited mobility. The pathogenesis of AC is still controversial. This study aims to explore the role of immune related factors in the occurrence and development of AC. Methods The AC dataset was downloaded from Gene Expression Omnibus (GEO) data repository. Differentially expressed immune-related genes (DEIRGs) were obtained based on R package "DESeq2" and Immport database. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were performed to explore the functional correlation of DEIRGs. MCC method and Least Absolute Shrinkage and Selection Operator (LASSO) regression were conducted to identify the hub genes. The immune cell infiltration in shoulder joint capsule between AC and control was evaluated by CIBERSORTx, and the relationship between hub genes and infiltrating immune cells was analyzed by Spearman's rank correlation. Finally, potential small molecule drugs for AC were screened by the Connectivity Map database (CMap) and further verified by molecular docking. Results A total of 137 DEIRGs and eight significantly different types of infiltrating immune cells (M0 macrophages, M1 macrophages, regulatory T cells, Tfh cells, monocytes, activated NK cells, memory resting CD4+T cells and resting dendritic cells) were screened between AC and control tissues. MMP9, FOS, SOCS3, and EGF were identified as potential targets for AC. MMP9 was negatively correlated with memory resting CD4+T cells and activated NK cells, but positively correlated with M0 macrophages. SOCS3 was positively correlated with M1 macrophages. FOS was positively correlated with M1 macrophages. EGF was positively correlated with monocytes. Additionally, dactolisib (ranked first) was identified as a potential small-molecule drug for the targeted therapy of AC. Conclusions This is the first study on immune cell infiltration analysis in AC, and these findings may provide a new idea for the diagnosis and treatment of AC.
Collapse
Affiliation(s)
- Hailong Liu
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Baoxi Yu
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zengfa Deng
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hang Zhao
- China-Japan Friendship School of Clinical Medicine, Peking University, Beijing, China
| | - Anyu Zeng
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ruiyun Li
- Department of Anesthesiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Ming Fu
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Wolf J, Boneva S, Rosmus DD, Agostini H, Schlunck G, Wieghofer P, Schlecht A, Lange C. Deciphering the Molecular Signature of Human Hyalocytes in Relation to Other Innate Immune Cell Populations. Invest Ophthalmol Vis Sci 2022; 63:9. [PMID: 35266958 PMCID: PMC8934546 DOI: 10.1167/iovs.63.3.9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Purpose Hyalocytes are the tissue-resident innate immune cell population of the vitreous body with important functions in health and vitreoretinal disease. The purpose of this study is to gain new insights into the biology and function of human hyalocytes in comparison to other innate immune cells. Methods The present study applies fluorescence-activated cell sorting and RNA sequencing to compare the transcriptional profiles of human hyalocytes, retinal microglia (rMG) and classical, intermediate, and non-classical monocytes isolated from the same patients. Immunohistochemistry was applied for morphological characterization of human hyalocytes. Results Pairwise analysis indicates distinct differences between hyalocytes and monocytes, whereas a high degree of similarity to rMG is apparent, with comparable expression levels of established microglia markers, such as TREM2, P2RY12, and TMEM119. Among the top expressed genes in hyalocytes, SPP1, CD74, and C3, were significantly upregulated when compared with monocytes. Despite the high level of similarity of hyalocytes and rMG, ten highly expressed genes in hyalocytes compared to microglia were identified, among them FOS, DUSP1, and EGR2. Conclusions This study reveals a high degree of similarity between hyalocytes and retinal microglia. Nevertheless, hyalocytes exhibit some expression differences that may adapt them to the specific needs of the vitreous and provide the basis for deciphering the multiple roles of this fascinating cell population in health and vitreoretinal diseases.
Collapse
Affiliation(s)
- Julian Wolf
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Baden-Wuerttemberg, Germany
| | - Stefaniya Boneva
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Baden-Wuerttemberg, Germany
| | | | - Hansjürgen Agostini
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Baden-Wuerttemberg, Germany
| | - Günther Schlunck
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Baden-Wuerttemberg, Germany
| | - Peter Wieghofer
- Institute of Anatomy, University of Leipzig, Leipzig, Saxony, Germany.,Cellular Neuroanatomy, Institute of Theoretical Medicine, Medical Faculty, University of Augsburg, Bavaria, Germany
| | - Anja Schlecht
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Baden-Wuerttemberg, Germany.,Institute of Anatomy and Cell Biology, Julius-Maximilians-University Wuerzburg, Wuerzburg, Bavaria, Germany
| | - Clemens Lange
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Baden-Wuerttemberg, Germany.,Ophtha-Lab, Department of Ophthalmology, St. Franziskus Hospital, Muenster, Germany
| |
Collapse
|
5
|
Yang M, Chen M, Liu G, Yang C, Li Z. Molecular cloning and characterization of a cDNA encoding extracellular signal-regulated kinase (ERK) from the blood clam Tegillarca granosa. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 105:103602. [PMID: 31918206 DOI: 10.1016/j.dci.2019.103602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/27/2019] [Accepted: 12/27/2019] [Indexed: 06/10/2023]
Abstract
The blood clam Tegillarca granosa is a member of the most economically important bivalve mollusk species in the Asia-Pacific region. T. granosa entirely depends on innate immunity for pathogen defense. However, there are very few reports on the immune responses of T. granosa to various pathogens. In our study, we cloned and characterized an ERK homolog from T. granosa, which was defined as TgERK. The full-length cDNA sequence of TgERK was 1644 bp in length and encoded a conserved S_TKc domain (residues 21-309) in the N terminus. The TgERK mRNA was universally expressed in all examined tissues, with the highest expression level found in hemocytes. Lipopolysaccharide (LPS) and Vibrio alginolyticus challenges strongly enhanced the expression of ERK in T. granosa, which was consistent with the results of an in vitro challenge study with cultured T. granosa hemocytes. Pathogen invasion also upregulated the expression of downstream genes in the ERK signaling pathway, such as CREB, c-Fos and SIRT1. Moreover, TgERK knockdown resulted in decreased expression of these downstream genes. Inhibition of ERK by its inhibitor U0126 decreased T. granosa hemocyte viability in a dose-dependent manner. Taken together, our results demonstrated that TgERK was a crucial regulator of the immune response to pathogen invasion, which indicated new knowledge of hemocyte immunity in T. granosa and provided a novel key molecule in immune regulation for controlling diseases in T. granosa aquaculture.
Collapse
Affiliation(s)
- Minghan Yang
- State Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, PR China
| | - Mingliang Chen
- State Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, PR China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, PR China.
| | - Guosheng Liu
- State Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, PR China
| | - Chunyan Yang
- School of Life Science, Xiamen University, Xiamen, 361005, PR China.
| | - Zengpeng Li
- State Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, PR China.
| |
Collapse
|
6
|
Tao Y, Ai R, Hao Y, Jiang L, Dan H, Ji N, Zeng X, Zhou Y, Chen Q. Role of miR-155 in immune regulation and its relevance in oral lichen planus. Exp Ther Med 2018; 17:575-586. [PMID: 30651838 PMCID: PMC6307429 DOI: 10.3892/etm.2018.7019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 10/04/2018] [Indexed: 02/05/2023] Open
Abstract
Oral lichen planus (OLP) is a chronic mucosal inflammatory disease. The World Health Organization has described it as a potentially malignant condition. The pathogenesis of OLP remains to be fully elucidated, but extensive evidence suggests that immunologic and inflammatory factors have important roles. MicroRNAs (miRs), which are small non-coding RNAs, have been reported to be involved in OLP. In particular, miR-155 is significantly upregulated in patients with OLP. miR-155 has numerous functions and is closely linked to inflammation and immune system regulation. However, in-depth studies of the mechanisms via which miR-155 is involved in OLP are currently insufficient. Considering the close association between miR-155 and immune regulation as well as the importance of immune factors in OLP, the role of miR-155 in the immune system was herein summarized with a focus on OLP. The present review provides a basis for further study of the molecular mechanisms underlying the development and progression of OLP.
Collapse
Affiliation(s)
- Yan Tao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral Medicine of West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ruixue Ai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral Medicine of West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yilong Hao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral Medicine of West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Lu Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral Medicine of West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Hongxia Dan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral Medicine of West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ning Ji
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral Medicine of West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xin Zeng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral Medicine of West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yu Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral Medicine of West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral Medicine of West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
7
|
Lino AC, Dang VD, Lampropoulou V, Welle A, Joedicke J, Pohar J, Simon Q, Thalmensi J, Baures A, Flühler V, Sakwa I, Stervbo U, Ries S, Jouneau L, Boudinot P, Tsubata T, Adachi T, Hutloff A, Dörner T, Zimber-Strobl U, de Vos AF, Dahlke K, Loh G, Korniotis S, Goosmann C, Weill JC, Reynaud CA, Kaufmann SHE, Walter J, Fillatreau S. LAG-3 Inhibitory Receptor Expression Identifies Immunosuppressive Natural Regulatory Plasma Cells. Immunity 2018; 49:120-133.e9. [PMID: 30005826 PMCID: PMC6057275 DOI: 10.1016/j.immuni.2018.06.007] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 04/18/2018] [Accepted: 06/15/2018] [Indexed: 01/24/2023]
Abstract
B lymphocytes can suppress immunity through interleukin (IL)-10 production in infectious, autoimmune, and malignant diseases. Here, we have identified a natural plasma cell subset that distinctively expresses the inhibitory receptor LAG-3 and mediates this function in vivo. These plasma cells also express the inhibitory receptors CD200, PD-L1, and PD-L2. They develop from various B cell subsets in a B cell receptor (BCR)-dependent manner independently of microbiota in naive mice. After challenge they upregulate IL-10 expression via a Toll-like receptor-driven mechanism within hours and without proliferating. This function is associated with a unique transcriptome and epigenome, including the lowest amount of DNA methylation at the Il10 locus compared to other B cell subsets. Their augmented accumulation in naive mutant mice with increased BCR signaling correlates with the inhibition of memory T cell formation and vaccine efficacy after challenge. These natural regulatory plasma cells may be of broad relevance for disease intervention. LAG-3 expression identifies natural regulatory plasma cells LAG-3+CD138hi plasma cells express IL-10 within hours of stimulation LAG-3+CD138hi plasma cells have a unique epigenome poised to express IL-10 LAG-3+CD138hi plasma cells develop via an antigen-specific mechanism
Collapse
Affiliation(s)
- Andreia C Lino
- Deutsches Rheuma-Forschungszentrum, a Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany
| | - Van Duc Dang
- Deutsches Rheuma-Forschungszentrum, a Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany
| | - Vicky Lampropoulou
- Deutsches Rheuma-Forschungszentrum, a Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany
| | - Anna Welle
- Department of EpiGenetics, Saarland University, Campus A2.4, Saarbrücken 66123, Germany
| | - Jara Joedicke
- Deutsches Rheuma-Forschungszentrum, a Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany
| | - Jelka Pohar
- Institut Necker-Enfants Malades, INSERM U1151-CNRS UMR 8253, Paris, France
| | - Quentin Simon
- Institut Necker-Enfants Malades, INSERM U1151-CNRS UMR 8253, Paris, France
| | - Jessie Thalmensi
- Institut Necker-Enfants Malades, INSERM U1151-CNRS UMR 8253, Paris, France
| | - Aurelia Baures
- Institut Necker-Enfants Malades, INSERM U1151-CNRS UMR 8253, Paris, France
| | - Vinciane Flühler
- Institut Necker-Enfants Malades, INSERM U1151-CNRS UMR 8253, Paris, France
| | - Imme Sakwa
- Deutsches Rheuma-Forschungszentrum, a Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany
| | - Ulrik Stervbo
- Deutsches Rheuma-Forschungszentrum, a Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany
| | - Stefanie Ries
- Deutsches Rheuma-Forschungszentrum, a Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany
| | - Luc Jouneau
- Virologie et Immunologie Moléculaires, INRA, Université Paris-Saclay, 78352 Jouy-en-Josas, France
| | - Pierre Boudinot
- Virologie et Immunologie Moléculaires, INRA, Université Paris-Saclay, 78352 Jouy-en-Josas, France
| | - Takeshi Tsubata
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Takahiro Adachi
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Andreas Hutloff
- Deutsches Rheuma-Forschungszentrum, a Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany
| | - Thomas Dörner
- Deutsches Rheuma-Forschungszentrum, a Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany; Department Medicine/Rheumatology and Clinical Immunology, Charite Universitätsmedizin Berlin, Germany
| | - Ursula Zimber-Strobl
- Department of Gene Vectors, Helmholtz Center Munich, Marchioninistrasse 25, 81377 Munich, Germany
| | - Alex F de Vos
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Katja Dahlke
- German Institute of Human Nutrition Potsdam-Rehbruecke, Department of Gastrointestinal Microbiology, 14558 Nuthetal, Germany
| | - Gunnar Loh
- German Institute of Human Nutrition Potsdam-Rehbruecke, Department of Gastrointestinal Microbiology, 14558 Nuthetal, Germany
| | - Sarantis Korniotis
- Institut Necker-Enfants Malades, INSERM U1151-CNRS UMR 8253, Paris, France
| | - Christian Goosmann
- Max Planck Institute of Infection Biology, Charitéplatz 1, 10117 Berlin, Germany
| | - Jean-Claude Weill
- Institut Necker-Enfants Malades, INSERM U1151-CNRS UMR 8253, Paris, France
| | | | - Stefan H E Kaufmann
- Max Planck Institute of Infection Biology, Charitéplatz 1, 10117 Berlin, Germany
| | - Jörn Walter
- Department of EpiGenetics, Saarland University, Campus A2.4, Saarbrücken 66123, Germany
| | - Simon Fillatreau
- Deutsches Rheuma-Forschungszentrum, a Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany; Institut Necker-Enfants Malades, INSERM U1151-CNRS UMR 8253, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France; AP-HP, Hôpital Necker Enfants Malades, Paris, France.
| |
Collapse
|
8
|
Kittaka M, Mayahara K, Mukai T, Yoshimoto T, Yoshitaka T, Gorski JP, Ueki Y. Cherubism Mice Also Deficient in c-Fos Exhibit Inflammatory Bone Destruction Executed by Macrophages That Express MMP14 Despite the Absence of TRAP+ Osteoclasts. J Bone Miner Res 2018; 33:167-181. [PMID: 28914985 PMCID: PMC5771992 DOI: 10.1002/jbmr.3295] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 08/28/2017] [Accepted: 09/07/2017] [Indexed: 11/10/2022]
Abstract
Currently, it is believed that osteoclasts positive for tartrate-resistant acid phosphatase (TRAP+) are the exclusive bone-resorbing cells responsible for focal bone destruction in inflammatory arthritis. Recently, a mouse model of cherubism (Sh3bp2KI/KI ) with a homozygous gain-of-function mutation in the SH3-domain binding protein 2 (SH3BP2) was shown to develop auto-inflammatory joint destruction. Here, we demonstrate that Sh3bp2KI/KI mice also deficient in the FBJ osteosarcoma oncogene (c-Fos) still exhibit noticeable bone erosion at the distal tibia even in the absence of osteoclasts at 12 weeks old. Levels of serum collagen I C-terminal telopeptide (ICTP), a marker of bone resorption generated by matrix metalloproteinases (MMPs), were elevated, whereas levels of serum cross-linked C-telopeptide (CTX), another resorption marker produced by cathepsin K, were not increased. Collagenolytic MMP levels were increased in the inflamed joints of the Sh3bp2KI/KI mice deficient in c-Fos. Resorption pits contained a large number of F4/80+ macrophages and genetic depletion of macrophages rescued these erosive changes. Importantly, administration of NSC405020, an MMP14 inhibitor targeted to the hemopexin (PEX) domain, suppressed bone erosion in c-Fos-deficient Sh3bp2KI/KI mice. After activation of the NF-κB pathway, macrophage colony-stimulating factor (M-CSF)-dependent macrophages from c-Fos-deficient Sh3bp2KI/KI mice expressed increased amounts of MMP14 compared with wild-type macrophages. Interestingly, receptor activator of NF-κB ligand (RANKL)-deficient Sh3bp2KI/KI mice failed to show notable bone erosion, whereas c-Fos deletion did restore bone erosion to the RANKL-deficient Sh3bp2KI/KI mice, suggesting that osteolytic transformation of macrophages requires both loss-of-function of c-Fos and gain-of-function of SH3BP2 in this model. These data provide the first genetic evidence that cells other than osteoclasts can cause focal bone destruction in inflammatory bone disease and suggest that MMP14 is a key mediator conferring pathological bone-resorbing capacity on c-Fos-deficient Sh3bp2KI/KI macrophages. In summary, the paradigm that osteoclasts are the exclusive cells executing inflammatory bone destruction may need to be reevaluated based on our findings with c-Fos-deficient cherubism mice lacking osteoclasts. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Mizuho Kittaka
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Kotoe Mayahara
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA.,Department of Orthodontics, Nihon University, School of Dentistry, Tokyo, Japan
| | - Tomoyuki Mukai
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Tetsuya Yoshimoto
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Teruhito Yoshitaka
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Jeffrey P Gorski
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA.,University of Missouri-Kansas City (UMKC) Center of Excellence in the Study of Dental and Musculoskeletal Tissues (CEMT), Kansas City, MO, USA
| | - Yasuyoshi Ueki
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA.,University of Missouri-Kansas City (UMKC) Center of Excellence in the Study of Dental and Musculoskeletal Tissues (CEMT), Kansas City, MO, USA
| |
Collapse
|
9
|
Zanoni M, Aventurato ÍK, Hunter J, Sucupira MCA, Diaz RS. Uniquely altered transcripts are associated with immune preservation in HIV infection. PLoS One 2017; 12:e0169868. [PMID: 28350860 PMCID: PMC5370105 DOI: 10.1371/journal.pone.0169868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 12/23/2016] [Indexed: 01/13/2023] Open
Abstract
The mechanisms underlying host HIV control hold much promise in the search for a functional HIV cure. We investigated the host genomic signatures in elite controllers or rapid progressors following recent infection and the correlates of immune reconstitution during combination antiretroviral therapy. We characterized the HIV-specific longitudinal host transcriptional response of peripheral blood mononuclear cells from elite controllers, rapid progressors, immune responders and non-responders using a RT-qPCR array in a cohort of recently HIV-infected Brazilian individuals. The elite controllers expressed unique transcripts early in infection that were closely associated with specialized cross-presentation between XCR1+ DCs and antigen-specific CD8+ T cells (XCL1). The natural suppression of HIV was also associated with the highly functional co-expression of cytokines and chemokines (CCL2, TNF and IL-10) concomitant with the maintenance of important anti-inflammatory and anticoagulant properties (Antithrombin III). Immune responders exhibited exclusively upregulated mRNAs possibly related to stem cell mobilization before combination antiretroviral therapy (neutrophil elastase). Our longitudinal approach to gene expression permitted us to discover previously unrecognized determinants that contribute to natural or antiretroviral-mediated HIV-1 immune control.
Collapse
Affiliation(s)
- Michelle Zanoni
- Retrovirology Laboratory, Department of Medicine, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Ítalo Karmann Aventurato
- Retrovirology Laboratory, Department of Medicine, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - James Hunter
- Retrovirology Laboratory, Department of Medicine, Federal University of Sao Paulo, Sao Paulo, Brazil
| | | | - Ricardo Sobhie Diaz
- Retrovirology Laboratory, Department of Medicine, Federal University of Sao Paulo, Sao Paulo, Brazil
- * E-mail:
| |
Collapse
|
10
|
Zhu Y, Wang S, Lin F, Li Q, Xu A. The therapeutic effects of EGCG on vitiligo. Fitoterapia 2014; 99:243-51. [PMID: 25128425 DOI: 10.1016/j.fitote.2014.08.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 08/03/2014] [Accepted: 08/05/2014] [Indexed: 02/06/2023]
Abstract
Epigallocatechin-3-gallate (EGCG) is one of the main chemical constituents of green tea, which has been used as an important traditional Chinese medicine. Green tea has anti-inflammatory, anti-oxidant, and immunomodulatory properties. However, the effects of EGCG on vitiligo are not known. We assessed the role of EGCG in vitiligo induced by monobenzone in mice. We demonstrated that EGCG: delayed the time of depigmentation; reduced the prevalence of depigmentation; and decreased the area of depigmentation. Examination of depigmented skin treated with EGCG by reflectance confocal microscopy suggested increased numbers of epidermal melanocytes and histologic examination showed decreased perilesional accumulation of CD8(+) T cells. To further investigate the mechanism of the anti-inflammatory effects of EGCG, levels of inflammatory mediator tumor necrosis factor (TNF)-α, interferon (IFN)-γ and interleukin (IL)-6 were tested by enzyme-linked immunosorbent assay. Serum cytokine levels were significantly decreased after administration of EGCG compared with the model group. These results suggested that EGCG may have protective effects against vitiligo, and that it could contribute to suppression of activation of CD8(+) T cells and inflammatory mediators. Based on these results, 5% EGCG was considered to be the most suitable concentration for treating vitiligo, and was used for further study. In addition, we investigated the gene-expression profile of this model in relation to EGCG. Using a 4×44K whole genome oligo microarray assay, 1264 down-regulated genes and 1332 up-regulated genes were recorded in the 5% EGCG group compared with the model group, and selected genes were validated by real-time polymerase chain reaction. Our study demonstrated that EGCG administration was significantly associated with a decreased risk of vitiligo. EGCG could be a new preventive agent against vitiligo in the clinical setting.
Collapse
Affiliation(s)
- Yiping Zhu
- Department of Dermatology, The Third People's Hospital of Hangzhou, Hangzhou 310009, PR. China
| | - Suiquan Wang
- Department of Dermatology, The Third People's Hospital of Hangzhou, Hangzhou 310009, PR. China
| | - Fuquan Lin
- Department of Dermatology, The Third People's Hospital of Hangzhou, Hangzhou 310009, PR. China
| | - Qing Li
- Zhejiang University of Traditional Chinese Medicine, Hangzhou 310053, PR China
| | - Aie Xu
- Department of Dermatology, The Third People's Hospital of Hangzhou, Hangzhou 310009, PR. China.
| |
Collapse
|
11
|
Elcombe SE, Naqvi S, Van Den Bosch MWM, MacKenzie KF, Cianfanelli F, Brown GD, Arthur JSC. Dectin-1 regulates IL-10 production via a MSK1/2 and CREB dependent pathway and promotes the induction of regulatory macrophage markers. PLoS One 2013; 8:e60086. [PMID: 23533666 PMCID: PMC3606242 DOI: 10.1371/journal.pone.0060086] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 02/25/2013] [Indexed: 12/25/2022] Open
Abstract
In response to infection by fungal pathogens, the innate immune system recognises specific fungal pathogen associated molecular patterns (PAMPs) via pattern recognition receptors including the C-type lectin dectin-1 and members of the Toll Like Receptor (TLR) family. Stimulation of these receptors leads to the induction of both pro- and anti-inflammatory cytokines. The protein kinases MSK1 and 2 are known to be important in limiting inflammatory cytokine production by macrophages in response to the TLR4 agonist LPS. In this study we show that MSKs are also activated in macrophages by the fungal derived ligand zymosan, as well as the dectin-1 specific agonists curdlan and depleted zymosan, via the ERK1/2 and p38α MAPK pathways. Furthermore, we show that MSKs regulate dectin-1 induced IL-10 production, and that this regulation is dependent on the ability of MSKs to phosphorylate the transcription factor CREB. IL-10 secreted in response to zymosan was able to promote STAT3 phosphorylation via an autocrine feedback loop. Consistent with the decreased IL-10 secretion in MSK1/2 knockout macrophages, these cells also had decreased STAT3 tyrosine phosphorylation relative to wild type controls after stimulation with zymosan. We further show that the reduction in IL-10 production in the MSK1/2 macrophages results in increased secretion of IL-12p40 in response to zymosan relative to wild type controls. The production of high levels of IL-10 but low levels of IL-12 has previously been associated with an M2b or 'regulatory' macrophage phenotype, which was initially described in macrophages stimulated with a combination of immune complexes and LPS. We found that zymosan, via dectin-1 activation, also leads to the expression of SphK1 and LIGHT, markers of a regulatory like phenotype in mouse macrophages. The expression of these makers was further reinforced by the high level of IL-10 secreted in response to zymosan stimulation.
Collapse
Affiliation(s)
- Suzanne E. Elcombe
- MRC Protein Phosphorylation Unit, College of Life Sciences, Sir James Black Complex, The University of Dundee, Dundee, Scotland, United Kingdom
| | - Shaista Naqvi
- MRC Protein Phosphorylation Unit, College of Life Sciences, Sir James Black Complex, The University of Dundee, Dundee, Scotland, United Kingdom
- Division of Cell Signaling and Immunology, College of Life Sciences, Sir James Black Complex, The University of Dundee, Dundee, Scotland, United Kingdom
| | - Mirjam W. M. Van Den Bosch
- MRC Protein Phosphorylation Unit, College of Life Sciences, Sir James Black Complex, The University of Dundee, Dundee, Scotland, United Kingdom
| | - Kirsty F. MacKenzie
- MRC Protein Phosphorylation Unit, College of Life Sciences, Sir James Black Complex, The University of Dundee, Dundee, Scotland, United Kingdom
- Division of Cell Signaling and Immunology, College of Life Sciences, Sir James Black Complex, The University of Dundee, Dundee, Scotland, United Kingdom
| | - Francesca Cianfanelli
- Division of Cell Signaling and Immunology, College of Life Sciences, Sir James Black Complex, The University of Dundee, Dundee, Scotland, United Kingdom
| | - Gordon D. Brown
- Section of Infection and Immunity, Institute of Molecular Sciences, School of Medicine and Dentistry, University of Aberdeen, Aberdeen, United Kingdom
| | - J. Simon C. Arthur
- MRC Protein Phosphorylation Unit, College of Life Sciences, Sir James Black Complex, The University of Dundee, Dundee, Scotland, United Kingdom
- Division of Cell Signaling and Immunology, College of Life Sciences, Sir James Black Complex, The University of Dundee, Dundee, Scotland, United Kingdom
- * E-mail:
| |
Collapse
|