1
|
The electrogenic sodium bicarbonate cotransporter and its roles in the myocardial ischemia-reperfusion induced cardiac diseases. Life Sci 2021; 270:119153. [PMID: 33539911 DOI: 10.1016/j.lfs.2021.119153] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 01/06/2021] [Accepted: 01/22/2021] [Indexed: 12/19/2022]
Abstract
Cardiac tissue ischemia/hypoxia increases glycolysis and lactic acid accumulation in cardiomyocytes, leading to intracellular metabolic acidosis. Sodium bicarbonate cotransporters (NBCs) play a vital role in modulating intracellular pH and maintaining sodium ion concentrations in cardiomyocytes. Cardiomyocytes mainly express electrogenic sodium bicarbonate cotransporter (NBCe1), which has been demonstrated to participate in myocardial ischemia/reperfusion (I/R) injury. This review outlines the structural and functional properties of NBCe1, summarizes the signaling pathways and factors that may regulate the activity of NBCe1, and reviews the roles of NBCe1 in the pathogenesis of I/R-induced cardiac diseases. Further studies revealing the regulatory mechanisms of NBCe1 activity should provide novel therapeutic targets for preventing I/R-induced cardiac diseases.
Collapse
|
2
|
Fang L, Lee HW, Chen C, Harris AN, Romero MF, Verlander JW, Weiner ID. Expression of the B splice variant of NBCe1 (SLC4A4) in the mouse kidney. Am J Physiol Renal Physiol 2018; 315:F417-F428. [PMID: 29631353 PMCID: PMC6172571 DOI: 10.1152/ajprenal.00515.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 03/07/2018] [Accepted: 03/29/2018] [Indexed: 01/10/2023] Open
Abstract
Sodium-coupled bicarbonate transporters are critical for renal electrolyte transport. The electrogenic, sodium-coupled bicarbonate cotransporter, isoform 1 (NBCe1), encoded by the SLC4A4 geneencoded by the SLC4A4 gene has five multiple splice variants; the A splice variant, NBCe1-A, is the primary basolateral bicarbonate transporter in the proximal convoluted tubule. This study's purpose was to determine if there is expression of additional NBCe1 splice variants in the mouse kidney, their cellular distribution, and their regulation by metabolic acidosis. In wild-type mice, an antibody reactive only to NBCe1-A showed basolateral immunolabel only in cortical proximal tubule (PT) segments, whereas an antibody reactive to all NBCe1 splice variants (pan-NBCe1) showed basolateral immunolabel in PT segments in both the cortex and outer medulla. In mice with NBCe1-A deletion, the pan-NBCe1 antibody showed basolateral PT immunolabel in both the renal cortex and outer stripe of the outer medulla, and immunoblot analysis showed expression of a ~121-kDa protein. RT-PCR of mRNA from NBCe1-A knockout mice directed at splice variant-specific regions showed expression of only NBCe1-B mRNA. In wild-type kidney, RT-PCR confirmed expression of mRNA for the NBCe1-B splice variant and absence of mRNA for the C, D, and E splice variants. Finally, exogenous acid loading increased expression in the proximal straight tubule in the outer stripe of the outer medulla. These studies demonstrate that the NBCe1-B splice variant is present in the PT, and its expression increases in response to exogenous acid loading, suggesting it participates in the PT contribution to acid-base homeostasis.
Collapse
Affiliation(s)
- Lijuan Fang
- Division of Nephrology, Hypertension and Transplantation, University of Florida College of Medicine , Gainesville, Florida
| | - Hyun-Wook Lee
- Division of Nephrology, Hypertension and Transplantation, University of Florida College of Medicine , Gainesville, Florida
| | - Chao Chen
- Division of Nephrology, Hypertension and Transplantation, University of Florida College of Medicine , Gainesville, Florida
| | - Autumn N Harris
- Division of Nephrology, Hypertension and Transplantation, University of Florida College of Medicine , Gainesville, Florida
| | - Michael F Romero
- Department of Physiology and Biomedical Engineering, Mayo Clinic , Rochester, Minnesota
| | - Jill W Verlander
- Division of Nephrology, Hypertension and Transplantation, University of Florida College of Medicine , Gainesville, Florida
| | - I David Weiner
- Division of Nephrology, Hypertension and Transplantation, University of Florida College of Medicine , Gainesville, Florida
- Nephrology and Hypertension Section, North Florida/South Georgia Veterans Health System, Gainesville, Florida
| |
Collapse
|
3
|
Thornell IM, Bevensee MO. Phosphatidylinositol 4,5-bisphosphate degradation inhibits the Na+/bicarbonate cotransporter NBCe1-B and -C variants expressed in Xenopus oocytes. J Physiol 2016; 593:541-58. [PMID: 25398525 DOI: 10.1113/jphysiol.2014.284307] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 11/04/2014] [Indexed: 12/16/2022] Open
Abstract
KEY POINTS We previously reported that the phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2 ) directly stimulates heterologously expressed electrogenic Na(+)/bicarbonate cotransporter NBCe1-A in an excised macropatch from the Xenopus oocyte, and indirectly stimulates NBCe1-B and -C in the intact oocyte primarily through inositol 1,4,5-trisphosphate/Ca(2+). In the current study, we expand on a previous observation that PIP2 may also directly stimulate NBCe1 in the intact oocyte. In this study on oocytes, we co-expressed either NBCe1-B or -C and a voltage-sensitive phosphatase (VSP), which depletes PIP2 without changing inositol 1,4,5-trisphosphate, and monitored NBCe1-mediated currents with the two-electrode voltage-clamp technique or pHi changes using Vm/pH-sensitive microelectrodes. Activating VSP inhibited NBCe1-B and -C outward currents and NBCe1-mediated pHi increases, and changes in NBCe1 activity paralleled changes in surface PIP2. This study is a quantitative assessment of PIP2 itself as a regulator of NBCe1-B and -C in the intact cell, and represents the first use of VSP to characterize the PIP2 sensitivity of a transporter. These data combined with our previous work demonstrate that NBCe1-B and -C are regulated by two PIP2-mediated signalling pathways. Specifically, a decrease in PIP2 per se can inhibit NBCe1, whereas hydrolysis of PIP2 to inositol 1,4,5-trisphosphate/Ca(2+) can stimulate the transporter. ABSTRACT The electrogenic Na(+)/bicarbonate cotransporter (NBCe1) of the Slc4 gene family is a powerful regulator of intracellular pH (pHi) and extracellular pH (pHo), and contributes to solute reabsorption and secretion in many epithelia. Using Xenopus laevis oocytes expressing NBCe1 variants, we have previously reported that the phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2) directly stimulates NBCe1-A in an excised macropatch, and indirectly stimulates NBCe1-B and -C in the intact oocyte primarily through inositol 1,4,5-trisphosphate (InsP3)/Ca(2+). In the current study, we used the two-electrode voltage-clamp technique alone or in combination with pH/voltage-sensitive microelectrodes or confocal fluorescence imaging of plasma membrane PIP2 to characterize the PIP2 sensitivity of NBCe1-B and -C in whole oocytes by co-expressing a voltage-sensitive phosphatase (VSP) that decreases PIP2 and bypasses the InsP3/Ca(2+) pathway. An oocyte depolarization that activated VSP only transiently stimulated the NBCe1-B/C current, consistent with an initial rapid depolarization-induced NBCe1 activation, and then a subsequent slower VSP-mediated NBCe1 inhibition. Upon repolarization, the NBCe1 current decreased, and then slowly recovered with an exponential time course that paralleled PIP2 resynthesis as measured with a PIP2-sensitive fluorophore and confocal imaging. A subthreshold depolarization that minimally activated VSP caused a more sustained increase in NBCe1 current, and did not lead to an exponential current recovery following repolarization. Similar results were obtained with oocytes expressing a catalytically dead VSP mutant at all depolarized potentials. Depleting endoplasmic reticulum Ca(2+) did not inhibit the NBCe1 current recovery following repolarization from VSP activation, demonstrating that changes in InsP3/Ca(2+) were not responsible. This study demonstrates for the first time that depleting PIP2 per se inhibits NBCe1 activity. The data in conjunction with previous findings implicate a dual PIP2 regulatory pathway for NBCe1 involving both PIP2 itself and generated InsP3/Ca(2+).
Collapse
Affiliation(s)
- Ian M Thornell
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | | |
Collapse
|
4
|
Ando H, Hirose M, Gainche L, Kawaai K, Bonneau B, Ijuin T, Itoh T, Takenawa T, Mikoshiba K. IRBIT Interacts with the Catalytic Core of Phosphatidylinositol Phosphate Kinase Type Iα and IIα through Conserved Catalytic Aspartate Residues. PLoS One 2015; 10:e0141569. [PMID: 26509711 PMCID: PMC4624786 DOI: 10.1371/journal.pone.0141569] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 10/10/2015] [Indexed: 11/18/2022] Open
Abstract
Phosphatidylinositol phosphate kinases (PIPKs) are lipid kinases that generate phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), a critical lipid signaling molecule that regulates diverse cellular functions, including the activities of membrane channels and transporters. IRBIT (IP3R-binding protein released with inositol 1,4,5-trisphosphate) is a multifunctional protein that regulates diverse target proteins. Here, we report that IRBIT forms signaling complexes with members of the PIPK family. IRBIT bound to all PIPK isoforms in heterologous expression systems and specifically interacted with PIPK type Iα (PIPKIα) and type IIα (PIPKIIα) in mouse cerebellum. Site-directed mutagenesis revealed that two conserved catalytic aspartate residues of PIPKIα and PIPKIIα are involved in the interaction with IRBIT. Furthermore, phosphatidylinositol 4-phosphate, Mg2+, and/or ATP interfered with the interaction, suggesting that IRBIT interacts with catalytic cores of PIPKs. Mutations of phosphorylation sites in the serine-rich region of IRBIT affected the selectivity of its interaction with PIPKIα and PIPKIIα. The structural flexibility of the serine-rich region, located in the intrinsically disordered protein region, is assumed to underlie the mechanism of this interaction. Furthermore, in vitro binding experiments and immunocytochemistry suggest that IRBIT and PIPKIα interact with the Na+/HCO3− cotransporter NBCe1-B. These results suggest that IRBIT forms signaling complexes with PIPKIα and NBCe1-B, whose activity is regulated by PI(4,5)P2.
Collapse
Affiliation(s)
- Hideaki Ando
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, Wako, Saitama, Japan
- * E-mail: (HA); (KM)
| | - Matsumi Hirose
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Laura Gainche
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Katsuhiro Kawaai
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Benjamin Bonneau
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Takeshi Ijuin
- Division of Biochemistry, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Toshiki Itoh
- Biosignal Research Center, Organization of Advanced Science and Technology, Kobe University, Kobe, Hyogo, Japan
| | - Tadaomi Takenawa
- Biosignal Research Center, Organization of Advanced Science and Technology, Kobe University, Kobe, Hyogo, Japan
| | - Katsuhiko Mikoshiba
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, Wako, Saitama, Japan
- * E-mail: (HA); (KM)
| |
Collapse
|
5
|
Thornell IM, Bevensee MO. Regulators of Slc4 bicarbonate transporter activity. Front Physiol 2015; 6:166. [PMID: 26124722 PMCID: PMC4464172 DOI: 10.3389/fphys.2015.00166] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 05/15/2015] [Indexed: 12/11/2022] Open
Abstract
The Slc4 family of transporters is comprised of anion exchangers (AE1-4), Na+-coupled bicarbonate transporters (NCBTs) including electrogenic Na/bicarbonate cotransporters (NBCe1 and NBCe2), electroneutral Na/bicarbonate cotransporters (NBCn1 and NBCn2), and the electroneutral Na-driven Cl-bicarbonate exchanger (NDCBE), as well as a borate transporter (BTR1). These transporters regulate intracellular pH (pHi) and contribute to steady-state pHi, but are also involved in other physiological processes including CO2 carriage by red blood cells and solute secretion/reabsorption across epithelia. Acid-base transporters function as either acid extruders or acid loaders, with the Slc4 proteins moving HCO−3 either into or out of cells. According to results from both molecular and functional studies, multiple Slc4 proteins and/or associated splice variants with similar expected effects on pHi are often found in the same tissue or cell. Such apparent redundancy is likely to be physiologically important. In addition to regulating pHi, a HCO−3 transporter contributes to a cell's ability to fine tune the intracellular regulation of the cotransported/exchanged ion(s) (e.g., Na+ or Cl−). In addition, functionally similar transporters or splice variants with different regulatory profiles will optimize pH physiology and solute transport under various conditions or within subcellular domains. Such optimization will depend on activated signaling pathways and transporter expression profiles. In this review, we will summarize and discuss both well-known and more recently identified regulators of the Slc4 proteins. Some of these regulators include traditional second messengers, lipids, binding proteins, autoregulatory domains, and less conventional regulators. The material presented will provide insight into the diversity and physiological significance of multiple members within the Slc4 gene family.
Collapse
Affiliation(s)
- Ian M Thornell
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham Birmingham, AL, USA
| | - Mark O Bevensee
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham Birmingham, AL, USA ; Nephrology Research and Training Center, University of Alabama at Birmingham Birmingham, AL, USA ; Center of Glial Biology in Medicine, University of Alabama at Birmingham Birmingham, AL, USA ; Civitan International Research Center, University of Alabama at Birmingham Birmingham, AL, USA
| |
Collapse
|
6
|
Structure, function, and regulation of the SLC4 NBCe1 transporter and its role in causing proximal renal tubular acidosis. Curr Opin Nephrol Hypertens 2014; 22:572-83. [PMID: 23917030 DOI: 10.1097/mnh.0b013e328363ff43] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
PURPOSE OF REVIEW There has been significant progress in our understanding of the structural and functional properties and regulation of the electrogenic sodium bicarbonate cotansporter NBCe1, a membrane transporter that plays a key role in renal acid-base physiology. The NBCe1 variant NBCe1-A mediates basolateral electrogenic sodium-base transport in the proximal tubule and is critically required for transepithelial bicarbonate absorption. Mutations in NBCe1 cause autosomal recessive proximal renal tubular acidosis (pRTA). The review summarizes recent advances in this area. RECENT FINDINGS A topological model of NBCe1 has been established that provides a foundation for future structure-functional studies of the transporter. Critical residues and regions have been identified in NBCe1 that play key roles in its structure, function (substrate transport, electrogenicity) and regulation. The mechanisms of how NBCe1 mutations cause pRTA have also recently been elucidated. SUMMARY Given the important role of proximal tubule transepithelial bicarbonate absorption in systemic acid-base balance, a clear understanding of the structure-functional properties of NBCe1 is a prerequisite for elucidating the mechanisms of defective transepithelial bicarbonate transport in pRTA.
Collapse
|
7
|
Ambudkar IS. Ca²⁺ signaling and regulation of fluid secretion in salivary gland acinar cells. Cell Calcium 2014; 55:297-305. [PMID: 24646566 DOI: 10.1016/j.ceca.2014.02.009] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 02/10/2014] [Accepted: 02/11/2014] [Indexed: 01/04/2023]
Abstract
Neurotransmitter stimulation of plasma membrane receptors stimulates salivary gland fluid secretion via a complex process that is determined by coordinated temporal and spatial regulation of several Ca(2+) signaling processes as well as ion flux systems. Studies over the past four decades have demonstrated that Ca(2+) is a critical factor in the control of salivary gland function. Importantly, critical components of this process have now been identified, including plasma membrane receptors, calcium channels, and regulatory proteins. The key event in activation of fluid secretion is an increase in intracellular [Ca(2+)] ([Ca(2+)]i) triggered by IP3-induced release of Ca(2+) from ER via the IP3R. This increase regulates the ion fluxes required to drive vectorial fluid secretion. IP3Rs determine the site of initiation and the pattern of [Ca(2+)]i signal in the cell. However, Ca(2+) entry into the cell is required to sustain the elevation of [Ca(2+)]i and fluid secretion. This Ca(2+) influx pathway, store-operated calcium influx pathway (SOCE), has been studied in great detail and the regulatory mechanisms as well as key molecular components have now been identified. Orai1, TRPC1, and STIM1 are critical components of SOCE and among these, Ca(2+) entry via TRPC1 is a major determinant of fluid secretion. The receptor-evoked Ca(2+) signal in salivary gland acinar cells is unique in that it starts at the apical pole and then rapidly increases across the cell. The basis for the polarized Ca(2+) signal can be ascribed to the polarized arrangement of the Ca(2+) channels, transporters, and signaling proteins. Distinct localization of these proteins in the cell suggests compartmentalization of Ca(2+) signals during regulation of fluid secretion. This chapter will discuss new concepts and findings regarding the polarization and control of Ca(2+) signals in the regulation of fluid secretion.
Collapse
Affiliation(s)
- Indu S Ambudkar
- Secretory Physiology Section, Molecular Physiology and Therapeutics Branch, National Institute of Dental Research, National Institutes of Health, Bethesda, MD 20892, United States.
| |
Collapse
|
8
|
Kurtz I. NBCe1 as a model carrier for understanding the structure-function properties of Na⁺ -coupled SLC4 transporters in health and disease. Pflugers Arch 2014; 466:1501-16. [PMID: 24515290 DOI: 10.1007/s00424-014-1448-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 01/07/2014] [Accepted: 01/08/2014] [Indexed: 01/17/2023]
Abstract
SLC4 transporters are membrane proteins that in general mediate the coupled transport of bicarbonate (carbonate) and share amino acid sequence homology. These proteins differ as to whether they also transport Na(+) and/or Cl(-), in addition to their charge transport stoichiometry, membrane targeting, substrate affinities, developmental expression, regulatory motifs, and protein-protein interactions. These differences account in part for the fact that functionally, SLC4 transporters have various physiological roles in mammals including transepithelial bicarbonate transport, intracellular pH regulation, transport of Na(+) and/or Cl(-), and possibly water. Bicarbonate transport is not unique to the SLC4 family since the structurally unrelated SLC26 family has at least three proteins that mediate anion exchange. The present review focuses on the first of the sodium-dependent SLC4 transporters that was identified whose structure has been most extensively studied: the electrogenic Na(+)-base cotransporter NBCe1. Mutations in NBCe1 cause proximal renal tubular acidosis (pRTA) with neurologic and ophthalmologic extrarenal manifestations. Recent studies have characterized the important structure-function properties of the transporter and how they are perturbed as a result of mutations that cause pRTA. It has become increasingly apparent that the structure of NBCe1 differs in several key features from the SLC4 Cl(-)-HCO3 (-) exchanger AE1 whose structural properties have been well-studied. In this review, the structure-function properties and regulation of NBCe1 will be highlighted, and its role in health and disease will be reviewed in detail.
Collapse
Affiliation(s)
- Ira Kurtz
- Division of Nephrology, David Geffen School of Medicine, and Brain Research Institute, UCLA, Los Angeles, CA, USA,
| |
Collapse
|
9
|
Ando H, Kawaai K, Mikoshiba K. IRBIT: a regulator of ion channels and ion transporters. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2195-204. [PMID: 24518248 DOI: 10.1016/j.bbamcr.2014.01.031] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/22/2014] [Accepted: 01/24/2014] [Indexed: 12/20/2022]
Abstract
IRBIT (also called AHCYL1) was originally identified as a binding protein of the intracellular Ca(2+) channel inositol 1,4,5-trisphosphate (IP3) receptor and functions as an inhibitory regulator of this receptor. Unexpectedly, many functions have subsequently been identified for IRBIT including the activation of multiple ion channels and ion transporters, such as the Na(+)/HCO3(-) co-transporter NBCe1-B, the Na(+)/H(+) exchanger NHE3, the Cl(-) channel cystic fibrosis transmembrane conductance regulator (CFTR), and the Cl(-)/HCO3(-) exchanger Slc26a6. The characteristic serine-rich region in IRBIT plays a critical role in the functions of this protein. In this review, we describe the evolution, domain structure, expression pattern, and physiological roles of IRBIT and discuss the potential molecular mechanisms underlying the coordinated regulation of these diverse ion channels/transporters through IRBIT. This article is part of a Special Issue entitled: Calcium signaling in health and disease. Guest Editors: Geert Bultynck, Jacques Haiech, Claus W. Heizmann, Joachim Krebs, and Marc Moreau.
Collapse
Affiliation(s)
- Hideaki Ando
- Laboratories for Developmental Neurobiology, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Katsuhiro Kawaai
- Laboratories for Developmental Neurobiology, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Katsuhiko Mikoshiba
- Laboratories for Developmental Neurobiology, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
10
|
Yamaguchi S, Ishikawa T. AHCYL2 (long-IRBIT) as a potential regulator of the electrogenic Na(+)-HCO3(-) cotransporter NBCe1-B. FEBS Lett 2014; 588:672-7. [PMID: 24472682 DOI: 10.1016/j.febslet.2013.12.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 12/27/2013] [Indexed: 10/25/2022]
Abstract
Although AHCYL2 (long-IRBIT) is highly homologous to IRBIT, which regulates ion-transporting proteins including the electrogenic Na(+)-HCO3(-) cotransporter NBCe1-B, its functions are poorly understood. Here, we found that AHCYL2 interacts with NBCe1-B in bovine parotid acinar cells using yeast two-hybrid, immunofluorescence confocal microscopy and co-immunoprecipitation analyses. Whole-cell patch-clamp experiments revealed that co-expression of AHCYL2 reduces the apparent affinity for intracellular Mg(2+) in inhibition of NBCe1-B currents specifically in a HCO3(-)-deficient cellular condition. Our data unveil AHCYL2 as a potential regulator of NBCe1-B in mammalian cells. We propose that cytosolic ionic condition appropriate for AHCYL2 to function might be different from IRBIT.
Collapse
Affiliation(s)
- Soichiro Yamaguchi
- Laboratory of Physiology, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Toru Ishikawa
- Laboratory of Physiology, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
11
|
Kurtz I, Zhu Q. Proximal renal tubular acidosis mediated by mutations in NBCe1-A: unraveling the transporter's structure-functional properties. Front Physiol 2013; 4:350. [PMID: 24391589 PMCID: PMC3867943 DOI: 10.3389/fphys.2013.00350] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 11/13/2013] [Indexed: 12/20/2022] Open
Abstract
NBCe1 belongs to the SLC4 family of base transporting membrane proteins that plays a significant role in renal, extrarenal, and systemic acid-base homeostasis. Recent progress has been made in characterizing the structure-function properties of NBCe1 (encoded by the SLC4A4 gene), and those factors that regulate its function. In the kidney, the NBCe1-A variant that is expressed on the basolateral membrane of proximal tubule is the key transporter responsible for overall transepithelial bicarbonate absorption in this nephron segment. NBCe1 mutations impair transepithelial bicarbonate absorption causing the syndrome of proximal renal tubular acidosis (pRTA). Studies of naturally occurring NBCe1 mutant proteins in heterologous expression systems have been very helpful in elucidation the structure-functional properties of the transporter. NBCe1 mutations are now known to cause pRTA by various mechanisms including the alteration of the transporter function (substrate ion interaction, electrogenicity), abnormal processing to the plasma membrane, and a perturbation in its structural properties. The elucidation of how NBCe1 mutations cause pRTA in addition to the recent studies which have provided further insight into the topology of the transporter have played an important role in uncovering its critically important structural-function properties.
Collapse
Affiliation(s)
- Ira Kurtz
- Division of Nephrology, David Geffen School of Medicine, UCLA Los Angeles, CA, USA ; Brain Research Institute, UCLA Los Angeles, CA, USA
| | - Quansheng Zhu
- Division of Nephrology, David Geffen School of Medicine, UCLA Los Angeles, CA, USA
| |
Collapse
|
12
|
Park S, Shcheynikov N, Hong JH, Zheng C, Suh SH, Kawaai K, Ando H, Mizutani A, Abe T, Kiyonari H, Seki G, Yule D, Mikoshiba K, Muallem S. Irbit mediates synergy between ca(2+) and cAMP signaling pathways during epithelial transport in mice. Gastroenterology 2013; 145:232-241. [PMID: 23542070 PMCID: PMC3696401 DOI: 10.1053/j.gastro.2013.03.047] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Revised: 03/20/2013] [Accepted: 03/22/2013] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS The cyclic adenosine monophosphate (cAMP) and Ca(2+) signaling pathways synergize to regulate many physiological functions. However, little is known about the mechanisms by which these pathways interact. We investigated the synergy between these signaling pathways in mouse pancreatic and salivary gland ducts. METHODS We created mice with disruptions in genes encoding the solute carrier family 26, member 6 (Slc26a6(-/-) mice) and inositol 1,4,5-triphosphate (InsP3) receptor-binding protein released with InsP3 (Irbit(-/-)) mice. We investigated fluid secretion by sealed pancreatic ducts and the function of Slc26a6 and the cystic fibrosis transmembrane conductance regulator (CFTR) in HeLa cells and in ducts isolated from mouse pancreatic and salivary glands. Slc26a6 activity was assayed by measuring intracellular pH, and CFTR activity was assayed by measuring Cl(-) current. Protein interactions were determined by immunoprecipitation analyses. RESULTS Irbit mediated the synergistic activation of CFTR and Slc26a6 by Ca(2+) and cAMP. In resting cells, Irbit was sequestered by InsP3 receptors (IP3Rs) in the endoplasmic reticulum. Stimulation of Gs-coupled receptors led to phosphorylation of IP3Rs, which increased their affinity for InsP3 and reduced their affinity for Irbit. Subsequent weak stimulation of Gq-coupled receptors, which led to production of low levels of IP3, caused dissociation of Irbit from IP3Rs and allowed translocation of Irbit to CFTR and Slc26a6 in the plasma membrane. These processes stimulated epithelial secretion of electrolytes and fluid. These pathways were not observed in pancreatic and salivary glands from Irbit(-/-) or Slc26a6(-/-) mice, or in salivary gland ducts expressing mutant forms of IP3Rs that could not undergo protein kinase A-mediated phosphorylation. CONCLUSIONS Irbit promotes synergy between the Ca(2+) and cAMP signaling pathways in cultured cells and in pancreatic and salivary ducts from mice. Defects in this pathway could be involved in cystic fibrosis, pancreatitis, or Sjögren syndrome.
Collapse
Affiliation(s)
- Seonghee Park
- Epithelial Signaling and Transport Section, Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institute of Health, Bethesda MD, 20892,Department of Physiology, School of Medicine, Ewha Womans University, 911-1 Mok-6-dong, Yang Chun-gu, Seoul 158-710, Republic of Korea
| | - Nikolay Shcheynikov
- Epithelial Signaling and Transport Section, Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institute of Health, Bethesda MD, 20892
| | - Jeong Hee Hong
- Epithelial Signaling and Transport Section, Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institute of Health, Bethesda MD, 20892
| | - Changyu Zheng
- Epithelial Signaling and Transport Section, Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institute of Health, Bethesda MD, 20892
| | - Suk Hyo Suh
- Department of Physiology, School of Medicine, Ewha Womans University, 911-1 Mok-6-dong, Yang Chun-gu, Seoul 158-710, Republic of Korea
| | - Katsuhiro Kawaai
- Laboratory for Developmental Neurobiology, Brain Science Institute, Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hideaki Ando
- Laboratory for Developmental Neurobiology, Brain Science Institute, Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Akihiro Mizutani
- Department of Pharmacotherapeutics, Showa Pharmaceutical University, 3-3165 Higashi-tamagawagakuen, Machida, Tokyo 194-8543
| | - Takaya Abe
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Developmental Biology, 2-2-3 Minatojima Minami, Chuou-ku, Kobe 650-0047
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Developmental Biology, 2-2-3 Minatojima Minami, Chuou-ku, Kobe 650-0047
| | - George Seki
- Department of Internal Medicine, Faculty of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8635, Japan
| | - David Yule
- Department of Pharmacology & Physiology, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY, USA
| | - Katsuhiko Mikoshiba
- Laboratory for Developmental Neurobiology, Brain Science Institute, Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan,Address for correspondence: or
| | - Shmuel Muallem
- Epithelial Signaling and Transport Section, Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
13
|
Parker MD, Boron WF. The divergence, actions, roles, and relatives of sodium-coupled bicarbonate transporters. Physiol Rev 2013; 93:803-959. [PMID: 23589833 PMCID: PMC3768104 DOI: 10.1152/physrev.00023.2012] [Citation(s) in RCA: 197] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The mammalian Slc4 (Solute carrier 4) family of transporters is a functionally diverse group of 10 multi-spanning membrane proteins that includes three Cl-HCO3 exchangers (AE1-3), five Na(+)-coupled HCO3(-) transporters (NCBTs), and two other unusual members (AE4, BTR1). In this review, we mainly focus on the five mammalian NCBTs-NBCe1, NBCe2, NBCn1, NDCBE, and NBCn2. Each plays a specialized role in maintaining intracellular pH and, by contributing to the movement of HCO3(-) across epithelia, in maintaining whole-body pH and otherwise contributing to epithelial transport. Disruptions involving NCBT genes are linked to blindness, deafness, proximal renal tubular acidosis, mental retardation, and epilepsy. We also review AE1-3, AE4, and BTR1, addressing their relevance to the study of NCBTs. This review draws together recent advances in our understanding of the phylogenetic origins and physiological relevance of NCBTs and their progenitors. Underlying these advances is progress in such diverse disciplines as physiology, molecular biology, genetics, immunocytochemistry, proteomics, and structural biology. This review highlights the key similarities and differences between individual NCBTs and the genes that encode them and also clarifies the sometimes confusing NCBT nomenclature.
Collapse
Affiliation(s)
- Mark D Parker
- Dept. of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106-4970, USA.
| | | |
Collapse
|