1
|
Voronkova MA, Hansen HL, Cooper MP, Miller J, Sukumar N, Geldenhuys WJ, Robart AR, Webb BA. Cancer-associated somatic mutations in human phosphofructokinase-1 reveal a critical electrostatic interaction for allosteric regulation of enzyme activity. Biochem J 2023; 480:1411-1427. [PMID: 37622331 PMCID: PMC10586780 DOI: 10.1042/bcj20230207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 08/26/2023]
Abstract
Metabolic reprogramming, including increased glucose uptake and lactic acid excretion, is a hallmark of cancer. The glycolytic 'gatekeeper' enzyme phosphofructokinase-1 (PFK1), which catalyzes the step committing glucose to breakdown, is dysregulated in cancers. While altered PFK1 activity and expression in tumors have been demonstrated, little is known about the effects of cancer-associated somatic mutations. Somatic mutations in PFK1 inform our understanding of allosteric regulation by identifying key amino acid residues involved in the regulation of enzyme activity. Here, we characterized mutations disrupting an evolutionarily conserved salt bridge between aspartic acid and arginine in human platelet (PFKP) and liver (PFKL) isoforms. Using purified recombinant proteins, we showed that disruption of the Asp-Arg pair in two PFK1 isoforms decreased enzyme activity and altered allosteric regulation. We determined the crystal structure of PFK1 to 3.6 Å resolution and used molecular dynamic simulations to understand molecular mechanisms of altered allosteric regulation. We showed that PFKP-D564N had a decreased total system energy and changes in the electrostatic surface potential of the effector site. Cells expressing PFKP-D564N demonstrated a decreased rate of glycolysis, while their ability to induce glycolytic flux under conditions of low cellular energy was enhanced compared with cells expressing wild-type PFKP. Taken together, these results suggest that mutations in Arg-Asp pair at the interface of the catalytic-regulatory domains stabilizes the t-state and presents novel mechanistic insight for therapeutic development in cancer.
Collapse
Affiliation(s)
- Maria A. Voronkova
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, WV 26506, U.S.A
| | - Heather L. Hansen
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, WV 26506, U.S.A
| | - Madison P. Cooper
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, WV 26506, U.S.A
| | - Jacob Miller
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, WV 26506, U.S.A
| | - Narayanasami Sukumar
- Northeastern Collaborative Access Team Center for Advanced Macromolecular Crystallography, Argonne National Laboratory, Lemont, IL 60439, U.S.A
| | - Werner J. Geldenhuys
- Department of Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV 26506, U.S.A
| | - Aaron R. Robart
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, WV 26506, U.S.A
| | - Bradley A. Webb
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, WV 26506, U.S.A
| |
Collapse
|
2
|
Genetic and Physiological Characterization of Fructose-1,6-Bisphosphate Aldolase and Glyceraldehyde-3-Phosphate Dehydrogenase in the Crabtree-Negative Yeast Kluyveromyces lactis. Int J Mol Sci 2022; 23:ijms23020772. [PMID: 35054955 PMCID: PMC8776025 DOI: 10.3390/ijms23020772] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 02/01/2023] Open
Abstract
The milk yeast Kluyveromyces lactis degrades glucose through glycolysis and the pentose phosphate pathway and follows a mainly respiratory metabolism. Here, we investigated the role of two reactions which are required for the final steps of glucose degradation from both pathways, as well as for gluconeogenesis, namely fructose-1,6-bisphosphate aldolase (FBA) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). In silico analyses identified one gene encoding the former (KlFBA1), and three genes encoding isoforms of the latter (KlTDH1, KlTDH2, KlGDP1). Phenotypic analyses were performed by deleting the genes from the haploid K. lactis genome. While Klfba1 deletions lacked detectable FBA activity, they still grew poorly on glucose. To investigate the in vivo importance of the GAPDH isoforms, different mutant combinations were analyzed for their growth behavior and enzymatic activity. KlTdh2 represented the major glycolytic GAPDH isoform, as its lack caused a slower growth on glucose. Cells lacking both KlTdh1 and KlTdh2 failed to grow on glucose but were still able to use ethanol as sole carbon sources, indicating that KlGdp1 is sufficient to promote gluconeogenesis. Life-cell fluorescence microscopy revealed that KlTdh2 accumulated in the nucleus upon exposure to oxidative stress, suggesting a moonlighting function of this isoform in the regulation of gene expression. Heterologous complementation of the Klfba1 deletion by the human ALDOA gene renders K. lactis a promising host for heterologous expression of human disease alleles and/or a screening system for specific drugs.
Collapse
|
3
|
Liu T, Wang Y, Zhao M, Jiang J, Li T, Zhang M. Differential expression of aerobic oxidative metabolism-related proteins in diabetic urinary exosomes. Front Endocrinol (Lausanne) 2022; 13:992827. [PMID: 36187097 PMCID: PMC9515495 DOI: 10.3389/fendo.2022.992827] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND As a metabolic disease, any abnormality in the aerobic oxidation pathway of glucose may lead to the occurrence of diabetes. This study aimed to investigate the changes in proteins related to aerobic oxidative metabolism in urinary exosomes of diabetic patients and normal controls of different ages, and to further verify their correlation with the pathogenesis of diabetes. METHODS Samples were collected, and proteomic information of urinary exosomes was collected by LC-MS/MS. ELISA was used to further detect the expression of aerobic and oxidative metabolism-related proteins in urinary exosomes of diabetic patients and normal controls of different ages, and to draw receiver operating characteristic (ROC) curve to evaluate its value in diabetes monitoring. RESULTS A total of 17 proteins involved in aerobic oxidative metabolism of glucose were identified in urinary exosome proteins. Compared with normal control, the expressions of PFKM, GAPDH, ACO2 and MDH2 in diabetic patients were decreased, and the expression of IDH3G was increased. The concentrations of PFKM, GAPDH and ACO2 in urinary exosomes were linearly correlated with the expression of MDH2 (P<0.05). These four proteins vary with age, with the maximum concentration in the 45-59 age group. PFKM, GAPDH, ACO2, and MDH2 in urinary exosomes have certain monitoring value. When used in combination, the AUC was 0.840 (95% CI 0.764-0.915). CONCLUSIONS In diabetic patients, aerobic oxidative metabolism is reduced, and the expression of aerobic oxidative metabolism-related proteins PFKM, GAPDH, ACO2, and MDH2 in urinary exosomes is reduced, which may become potential biomarkers for monitoring changes in diabetes.
Collapse
Affiliation(s)
- Tianci Liu
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
| | - Yizhao Wang
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
| | - Man Zhao
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
| | - Jun Jiang
- Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
- Clinical Laboratory Medicine, Peking University Ninth School of Clinical Medicine, Beijing, China
| | - Tao Li
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
| | - Man Zhang
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
- Clinical Laboratory Medicine, Peking University Ninth School of Clinical Medicine, Beijing, China
- *Correspondence: Man Zhang,
| |
Collapse
|
4
|
Hassan A, Huang Q, Xu H, Wu J, Mehmood N. Silencing of the phosphofructokinase gene impairs glycolysis and causes abnormal locomotion in the subterranean termite Reticulitermes chinensis Snyder. INSECT MOLECULAR BIOLOGY 2021; 30:57-70. [PMID: 33068440 DOI: 10.1111/imb.12672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/29/2020] [Accepted: 10/05/2020] [Indexed: 06/11/2023]
Abstract
Phosphofructokinase (PFK) is a rate-limiting enzyme in glycolysis, but its linkage with locomotion in termites is not well understood, despite the demonstrated involvement of this gene in the locomotion of different animals. Here, we investigated the effect of the pfk gene on locomotion in the subterranean termite Reticulitermes chinensis Snyder through RNA interference and the use of an Ethovision XT tracking system. The knockdown of pfk resulted in significantly decreased expression of the pfk gene in different castes of termites. The pfk-silenced workers displayed higher levels of glucose but lower levels of nicotinamide adenine dinucleotide (NADH) and adenosine triphosphate (ATP) production and decreased activity of the PFK enzyme. Furthermore, abnormal locomotion (decreased distance travelled, velocity and acceleration but increased turn angle, angular velocity and meander) was observed in different castes of pfk-silenced termites. We found caste-specific locomotion among workers, soldiers and dealates. Additionally, soldiers and dealates showed higher velocity in the inner zone than in the wall zone, which is considered an effective behaviour to avoid predation. These findings reveal the close linkage between the pfk gene and locomotion in termites, which helps us to better understand the regulatory mechanism and caste specificity of social behaviours in social insects.
Collapse
Affiliation(s)
- A Hassan
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Q Huang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, China
| | - H Xu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, China
| | - J Wu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, China
| | - N Mehmood
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
5
|
Kanai S, Shimada T, Narita T, Okabayashi K. Phosphofructokinase-1 and fructose bisphosphatase-1 in canine liver and kidney. J Vet Med Sci 2019; 81:1515-1521. [PMID: 31474665 PMCID: PMC6863710 DOI: 10.1292/jvms.19-0361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In healthy individuals, plasma glucose levels are maintained within a normal range.
During fasting, endogenous glucose is released either through glycogenolysis or
gluconeogenesis. Gluconeogenesis involves the formation of glucose-6-phosphate from a
variety of precursors followed by its subsequent hydrolysis to glucose. Gluconeogenesis
occurs in the liver and the kidney. In order to compare gluconeogenesis in canine liver
and kidney, the activity and expression of the rate limiting enzymes that catalyze the
fructose-6-phosphate and fructose 1,6-bisphosphate steps, namely, phosphofructokinase-1
(PFK-1) (glycolysis) and fructose bisphosphatase-1 (FBP-1) (gluconeogenesis), were
examined. Healthy male and female beagle dogs aged 1–2 years were euthanized humanely, and
samples of their liver and kidney were obtained for analysis. The levels of PFK-1 and
FBP-1 in canine liver and kidney were assessed by enzymatic assays, Western blotting, and
RT-qPCR. Enzyme assays showed that, in dogs, the kidney had higher specific activity of
PFK-1 and FBP-1 than the liver. Western blotting and RT-qPCR data demonstrated that of the
three different subunits (PFK-M, PFK-L, and PFK-P) the PFK-1 in canine liver mainly
comprised PFK-L, whereas the PFK-1 in the canine kidney comprised all three subunits. As a
result of these differences in the subunit composition of PFK-1, glucose metabolism might
be regulated differently in the liver and kidney.
Collapse
Affiliation(s)
- Shuichiro Kanai
- Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan.,Mutsuai Animal Hospital, 577-7 Kameino, Fujisawa, Kanagawa 252-0813, Japan
| | - Takuro Shimada
- Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Takanori Narita
- Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Ken Okabayashi
- Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| |
Collapse
|
6
|
Analysis of Proteins Associated with Quality Deterioration of Grouper Fillets Based on TMT Quantitative Proteomics during Refrigerated Storage. Molecules 2019; 24:molecules24142641. [PMID: 31330849 PMCID: PMC6680736 DOI: 10.3390/molecules24142641] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 01/02/2023] Open
Abstract
A TMT (Tandem Mass Tag)-based strategy was applied to elucidate proteins that change in proteomes of grouper fillets during refrigerated storage. In addition, quality analyses on pH, centrifugal loss, color (L *, a *, b *) and texture (hardness, chewiness, and gumminess) for grouper fillets were performed. A total of 64 differentially significant expressed proteins (DSEPs) were found in the results in the Day 0 vs. Day 6 group comparison and the Day 0 vs. Day 12 group comparison. It is worth mentioning that more proteome changes were found in the Day 0 vs. Day 12 comparisons. Bioinformatics was utilized to analyze the DSEP. UniProt Knowledgebase (UniProtKB), Gene Ontology (GO) enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) and protein interaction network analysis were adopted. All DSEPs were classified into seven areas by function: binding proteins, calcium handling, enzymes, heat shock protein, protein turnover, structural proteins and miscellaneous. The numbers of proteins that correlated closely with pH, centrifugal loss, color (L *, a *, b *) and texture (hardness, chewiness, and gumminess) were 4, 3, 6 and 8, respectively.
Collapse
|
7
|
Sun B, Brooks ED, Koeberl DD. Preclinical Development of New Therapy for Glycogen Storage Diseases. Curr Gene Ther 2016; 15:338-47. [PMID: 26122079 DOI: 10.2174/1566523215666150630132253] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 03/24/2015] [Accepted: 04/01/2015] [Indexed: 02/07/2023]
Abstract
Glycogen storage disease (GSD) consists of more than 10 discrete conditions for which the biochemical and genetic bases have been determined, and new therapies have been under development for several of these conditions. Gene therapy research has generated proof-of-concept for GSD types I (von Gierke disease) and II (Pompe disease). Key features of these gene therapy strategies include the choice of vector and regulatory cassette, and recently adeno-associated virus (AAV) vectors containing tissue-specific promoters have achieved a high degree of efficacy. Efficacy of gene therapy for Pompe disease depend upon the induction of immune tolerance to the therapeutic enzyme. Efficacy of von Gierke disease is transient, waning gradually over the months following vector administration. Small molecule therapies have been evaluated with the goal of improving standard of care therapy or ameliorating the cellular abnormalities associated with specific GSDs. The receptor-mediated uptake of the therapeutic enzyme in Pompe disease was enhanced by administration of β2 agonists. Rapamycin reduced the liver fibrosis observed in GSD III. Further development of gene therapy could provide curative therapy for patients with GSD, if efficacy from preclinical research is observed in future clinical trials and these treatments become clinically available.
Collapse
|
8
|
Abstract
Phosphofructokinase-1 (Pfk) acts as the main control point of flux through glycolysis. It is involved in complex allosteric regulation and Pfk mutations have been linked to cancer development. Whereas the 3D structure and structural basis of allosteric regulation of prokaryotic Pfk has been studied in great detail, our knowledge about the molecular basis of the allosteric behaviour of the more complex mammalian Pfk is still very limited. To characterize the structural basis of allosteric regulation, the subunit interfaces and the functional consequences of modifications in Tarui's disease and cancer, we analysed the physiological homotetramer of human platelet Pfk at up to 2.67 Å resolution in two crystal forms. The crystallized enzyme is permanently activated by a deletion of the 22 C-terminal residues. Complex structures with ADP and fructose-6-phosphate (F6P) and with ATP suggest a role of three aspartates in the deprotonation of the OH-nucleophile of F6P and in the co-ordination of the catalytic magnesium ion. Changes at the dimer interface, including an asymmetry observed in both crystal forms, are the primary mechanism of allosteric regulation of Pfk by influencing the F6P-binding site. Whereas the nature of this conformational switch appears to be largely conserved in bacterial, yeast and mammalian Pfk, initiation of these changes differs significantly in eukaryotic Pfk.
Collapse
|
9
|
Vives-Corrons JL, Koralkova P, Grau JM, Mañú Pereira MDM, Van Wijk R. First description of phosphofructokinase deficiency in spain: identification of a novel homozygous missense mutation in the PFKM gene. Front Physiol 2013; 4:393. [PMID: 24427140 PMCID: PMC3875906 DOI: 10.3389/fphys.2013.00393] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 12/13/2013] [Indexed: 12/04/2022] Open
Abstract
Phosphofructokinase deficiency is a very rare autosomal recessive disorder, which belongs to group of rare inborn errors of metabolism called glycogen storage disease. Here we report on a new mutation in the phosphofructokinase (PFK) gene PFKM identified in a 65-years-old woman who suffered from lifelong intermittent muscle weakness and painful spasms of random occurrence, episodic dark urines, and slight haemolytic anemia. After ruling out the most common causes of chronic haemolytic anemia, the study of a panel of 24 enzyme activities showed a markedly decreased PFK activity in red blood cells (RBCs) from the patient. DNA sequence analysis of the PFKM gene subsequently revealed a novel homozygous mutation: c.926A>G; p.Asp309Gly. This mutation is predicted to severely affect enzyme catalysis thereby accounting for the observed enzyme deficiency. This case represents a prime example of classical PFK deficiency and is the first reported case of this very rare red blood cell disorder in Spain.
Collapse
Affiliation(s)
- Joan-Lluis Vives-Corrons
- Red Cell Pathology Unit, Biomedical Dianostic Centre, University Hospital Clínic de Barcelona Barcelona, Spain
| | - Pavla Koralkova
- Faculty of Medicine and Dentistry, Department of Biology, Palacky University Olomouc, Czech Republic
| | - Josep M Grau
- Service of Internal Medicine and Muscle, University Hospital Clínic de Barcelona Barcelona, Spain
| | - Maria Del Mar Mañú Pereira
- Red Cell Pathology Unit, Biomedical Dianostic Centre, University Hospital Clínic de Barcelona Barcelona, Spain
| | - Richard Van Wijk
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht Utrecht, Netherlands
| |
Collapse
|