1
|
Wang W, Ding M, Wang Q, Song Y, Huo K, Chen X, Xiang Z, Liu L. Advances in Foxp3+ regulatory T cells (Foxp3+ Treg) and key factors in digestive malignancies. Front Immunol 2024; 15:1404974. [PMID: 38919615 PMCID: PMC11196412 DOI: 10.3389/fimmu.2024.1404974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024] Open
Abstract
Foxp3+ regulatory T cells (Foxp3+ Treg) play a role in regulating various types of tumors, but uncertainty still exists regarding the exact mechanism underlying Foxp3+ Treg activation in gastrointestinal malignancies. As of now, research has shown that Foxp3+ Treg expression, altered glucose metabolism, or a hypoxic tumor microenvironment all affect Foxp3+ Treg function in the bodies of tumor patients. Furthermore, it has been demonstrated that post-translational modifications are essential for mature Foxp3 to function properly. Additionally, a considerable number of non-coding RNAs (ncRNAs) have been implicated in the activation of the Foxp3 signaling pathway. These mechanisms regulating Foxp3 may one day serve as potential therapeutic targets for gastrointestinal malignancies. This review primarily focuses on the properties and capabilities of Foxp3 and Foxp3+Treg. It emphasizes the advancement of research on the regulatory mechanisms of Foxp3 in different malignant tumors of the digestive system, providing new insights for the exploration of anticancer treatments.
Collapse
Affiliation(s)
- Wanyao Wang
- School of Basic Medicine, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Minglu Ding
- Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Qiuhong Wang
- Mudanjiang Hospital for Cardiovascular Diseases, Department of Anesthesiology, Mudanjiang, Heilongjiang, China
| | - Yidan Song
- School of Basic Medicine, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Keyuan Huo
- School of Basic Medicine, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Xiaojie Chen
- School of Basic Medicine, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Zihan Xiang
- School of Basic Medicine, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Lantao Liu
- School of Basic Medicine, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| |
Collapse
|
2
|
An NF-κB- and Therapy-Related Regulatory Network in Glioma: A Potential Mechanism of Action for Natural Antiglioma Agents. Biomedicines 2022; 10:biomedicines10050935. [PMID: 35625673 PMCID: PMC9138293 DOI: 10.3390/biomedicines10050935] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/14/2022] [Accepted: 04/17/2022] [Indexed: 01/27/2023] Open
Abstract
High-grade gliomas are among the most aggressive malignancies, with significantly low median survival. Recent experimental research in the field has highlighted the importance of natural substances as possible antiglioma agents, also known for their antioxidant and anti-inflammatory action. We have previously shown that natural substances target several surface cluster of differentiation (CD) markers in glioma cells, as part of their mechanism of action. We analyzed the genome-wide NF-κB binding sites residing in consensus regulatory elements, based on ENCODE data. We found that NF-κB binding sites reside adjacent to the promoter regions of genes encoding CD markers targeted by antiglioma agents (namely, CD15/FUT4, CD28, CD44, CD58, CD61/SELL, CD71/TFRC, and CD122/IL2RB). Network and pathway analysis revealed that the markers are associated with a core network of genes that, altogether, participate in processes that associate tumorigenesis with inflammation and immune evasion. Our results reveal a core regulatory network that can be targeted in glioblastoma, with apparent implications in individuals that suffer from this devastating malignancy.
Collapse
|
3
|
Yaegashi LB, Baldavira CM, Prieto TG, Machado-Rugolo J, Velosa APP, da Silveira LKR, Assato A, Ab'Saber AM, Falzoni R, Takagaki T, Silva PL, Teodoro WR, Capelozzi VL. In Situ Overexpression of Matricellular Mechanical Proteins Demands Functional Immune Signature and Mitigates Non-Small Cell Lung Cancer Progression. Front Immunol 2021; 12:714230. [PMID: 34484217 PMCID: PMC8415570 DOI: 10.3389/fimmu.2021.714230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/26/2021] [Indexed: 12/19/2022] Open
Abstract
Non-small cell lung carcinoma (NSCLC) is a complex cancer biome composed of malignant cells embedded in a sophisticated tumor microenvironment (TME) combined with different initiating cell types, including immune cells and cancer-associated fibroblasts (CAFs), and extracellular matrix (ECM) proteins. However, little is known about these tumors’ immune-matricellular relationship as functional and mechanical barriers. This study investigated 120 patients with NSCLC to describe the immune-matricellular phenotypes of their TME and their relationship with malignant cells. Immunohistochemistry (IHC) was performed to characterize immune checkpoints (PD-L1, LAG-3, CTLA-4+, VISTA 1), T cells (CD3+), cytotoxic T cells (CD8+, Granzyme B), macrophages (CD68+), regulatory T cells (FOXP3+, CD4+), natural killer cells (CD57+), and B lymphocytes (CD20+), whereas CAFs and collagen types I, III, and V were characterized by immunofluorescence (IF). We observed two distinct functional immune-cellular barriers—the first of which showed proximity between malignant cells and cytotoxic T cells, and the second of which showed distant proximity between non-cohesive nests of malignant cells and regulatory T cells. We also identified three tumor-associated matricellular barriers: the first, with a localized increase in CAFs and a low deposition of Col V, the second with increased CAFs, Col III and Col I fibers, and the third with a high amount of Col fibers and CAFs bundled and aligned perpendicularly to the tumor border. The Cox regression analysis was designed in two steps. First, we investigated the relationship between the immune-matricellular components and tumor pathological stage (I, II, and IIIA), and better survival rates were seen in patients whose tumors expressed collagen type III > 24.89 fibers/mm². Then, we included patients who had progressed to pathological stage IV and found an association between poor survival and tumor VISTA 1 expression > 52.86 cells/mm² and CD3+ ≤ 278.5 cells/mm². We thus concluded that differential patterns in the distribution of immune-matricellular phenotypes in the TME of NSCLC patients could be used in translational studies to predict new treatment strategies and improve patient outcome. These data raise the possibility that proteins with mechanical barrier function in NSCLC may be used by cancer cells to protect them from immune cell infiltration and immune-mediated destruction, which can otherwise be targeted effectively with immunotherapy or collagen therapy.
Collapse
Affiliation(s)
| | | | | | - Juliana Machado-Rugolo
- Department of Pathology, University of São Paulo Medical School, São Paulo, Brazil.,Health Technology Assessment Center (NATS), Clinical Hospital (HCFMB), Medical School of São Paulo State University (UNESP), Botucatu, Brazil
| | - Ana Paula Pereira Velosa
- Rheumatology Division of the Hospital das Clinicas, University of São Paulo Medical School, São Paulo, Brazil
| | | | - Aline Assato
- Department of Pathology, University of São Paulo Medical School, São Paulo, Brazil
| | | | - Roberto Falzoni
- Department of Pathology, University of São Paulo Medical School, São Paulo, Brazil
| | - Teresa Takagaki
- Division of Pneumology, Instituto do Coração (Incor), University of São Paulo Medical School (USP), São Paulo, Brazil
| | - Pedro Leme Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Rio de Janeiro, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Walcy Rosolia Teodoro
- Rheumatology Division of the Hospital das Clinicas, University of São Paulo Medical School, São Paulo, Brazil
| | - Vera Luiza Capelozzi
- Department of Pathology, University of São Paulo Medical School, São Paulo, Brazil
| |
Collapse
|
4
|
Kim JH, Hwang J, Jung JH, Lee HJ, Lee DY, Kim SH. Molecular networks of FOXP family: dual biologic functions, interplay with other molecules and clinical implications in cancer progression. Mol Cancer 2019; 18:180. [PMID: 31815635 PMCID: PMC6900861 DOI: 10.1186/s12943-019-1110-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023] Open
Abstract
Though Forkhead box P (FOXP) transcription factors comprising of FOXP1, FOXP2, FOXP3 and FOXP4 are involved in the embryonic development, immune disorders and cancer progression, the underlying function of FOXP3 targeting CD4 + CD25+ regulatory T (Treg) cells and the dual roles of FOXP proteins as an oncogene or a tumor suppressor are unclear and controversial in cancers to date. Thus, the present review highlighted research history, dual roles of FOXP proteins as a tumor suppressor or an oncogene, their molecular networks with other proteins and noncoding RNAs, cellular immunotherapy targeting FOXP3, and clinical implications in cancer progression.
Collapse
Affiliation(s)
- Ju-Ha Kim
- Cancer Molecular Target Herbal Research Lab, College of Korean Medicine, Kyung Hee university, 1 Hoegi-dong, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Jisung Hwang
- Cancer Molecular Target Herbal Research Lab, College of Korean Medicine, Kyung Hee university, 1 Hoegi-dong, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Ji Hoon Jung
- Cancer Molecular Target Herbal Research Lab, College of Korean Medicine, Kyung Hee university, 1 Hoegi-dong, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Hyo-Jung Lee
- Cancer Molecular Target Herbal Research Lab, College of Korean Medicine, Kyung Hee university, 1 Hoegi-dong, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Dae Young Lee
- Department of Herbal Crop Research, Rural Development Administration, National Institute of Horticultural and Herbal Science, Eumseong, 27709, Republic of Korea
| | - Sung-Hoon Kim
- Cancer Molecular Target Herbal Research Lab, College of Korean Medicine, Kyung Hee university, 1 Hoegi-dong, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| |
Collapse
|
5
|
Jia H, Qi H, Gong Z, Yang S, Ren J, Liu Y, Li MY, Chen GG. The expression of FOXP3 and its role in human cancers. Biochim Biophys Acta Rev Cancer 2019; 1871:170-178. [PMID: 30630091 DOI: 10.1016/j.bbcan.2018.12.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/28/2018] [Accepted: 12/10/2018] [Indexed: 01/11/2023]
Abstract
FOXP3 is a transcription factor, which belongs to the family of FOX protein. FOXP3 was initially discovered in regulatory T cells and supposed to play a significant role in the process of regulatory T cell differentiation. Increasing evidence has shown that FOXP3 is also expressed in tumor cells. However, the results of tumor FOXP3 is inconsistent and even the opposite. In some types of human cancers, the expression of FOXP3 is upregulated, and it can promote the development of cancers, leading to a poor prognosis. While in some other types of cancers, it is a different story. The reason for the contradictory data is unknown. The discovery of FOXP3 isoforms, interaction between tumor cells and lymphocytes in the tumor microenvironment, subcellular location, and mutation of FOXP3 may provide some clues. In this review, we first summarize and analyze the recent development. The final section focuses on the regulation of FOXP3 expression.
Collapse
Affiliation(s)
- Hao Jia
- Department of Surgery, the Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong, China.
| | - Haolong Qi
- Department of Surgery, the Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong, China.
| | - Zhongqin Gong
- Department of Surgery, the Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong, China.
| | - Shucai Yang
- Department of Clinical Laboratory, Pingshan District People's Hospital of Shenzhen, Shenzhen, Guangdong Province, China
| | - Jianwei Ren
- Department of Surgery, the Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong, China.
| | - Yi Liu
- Department of Surgery, the Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong, China.
| | - Ming-Yue Li
- Department of Surgery, the Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong, China.
| | - George Gong Chen
- Department of Surgery, the Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong, China.
| |
Collapse
|
6
|
Zhu X, Li Y, Meng Q. Islet-1 promotes the proliferation and invasion, and inhibits the apoptosis of A375 human melanoma cells. Int J Mol Med 2018; 41:3680-3690. [PMID: 29568936 DOI: 10.3892/ijmm.2018.3569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 03/12/2018] [Indexed: 11/06/2022] Open
Abstract
The aim of this study was to examine the effects of the insulin gene enhancer-binding protein, islet-1 (ISL1), on the proliferation, invasion and apoptosis of the human melanoma cell line, A375. An ISL1 overexpression lentiviral vector was constructed and transfected into the A375 cells. The proliferation of the A375 cells transfected with the ISL1 vector (termed A375/ISL1 cells) was examined by MTT assay, flow cytometry and TUNEL assay, and cell invasion was examined by Transwell assay. The expression levels of matrix metalloproteinase (MMP)-2 and MMP-9 were measured by qPCR and western blot analysis; the expression levels of Akt and p-Akt were measured in the cells treated with vascular endothelial growth factor (VEGF) and the PI3K/Akt inhibitor, LY294002, by western blot analysis. The optical density value of the A375/ISL1 cells was increased after 12 h of culture (P<0.001), as shown by MTT assay. The ratio of apoptotic A375/ISL1 cells was significantly decreased (P<0.001), as shown by flow cytometry and TUNEL assay. In addition, the average penetration rate of the A375/ISL1 cells significantly increased (P<0.001), as shown by Transwell assay. The expression levels of MMP-2 and MMP-9 were significantly increased in the A375/ISL1 cells, as shown by qPCR and western blot analysis (P<0.001). Moreover, treatment of the A375/ISL1 cells with VEGF for 48 h increased the expression of Akt and p-Akt compared with the control cells transfected with A375/green fluorescent protein (GFP) (P<0.05; P<0.001, respectively). In addition, in the A375/ISL1 cells treated with the LY294002 inhibitor for 24 and 48 h, the level of Akt was also found to increase compared to the control A375/GFP cells (P<0.05). On the whole, the findings of this study indicate that the overexpression of ISL1 promotes the proliferation and invasion, and inhibits the apoptosis of A375 melanoma cells. ISL1 thus plays an important role in A375 cell survival, and these effects are possibly mediate via the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Xiaoling Zhu
- Department of Dermatology, The First Hospital of Harbin, Harbin, Heilongjiang 150010, P.R. China
| | - Yuzhen Li
- Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Qinggang Meng
- Department of Orthopaedic Surgery, The First Hospital of Harbin, Harbin, Heilongjiang 150010, P.R. China
| |
Collapse
|
7
|
Shi JY, Ma LJ, Zhang JW, Duan M, Ding ZB, Yang LX, Cao Y, Zhou J, Fan J, Zhang X, Zhao YJ, Wang XY, Gao Q. FOXP3 Is a HCC suppressor gene and Acts through regulating the TGF-β/Smad2/3 signaling pathway. BMC Cancer 2017; 17:648. [PMID: 28903735 PMCID: PMC5598072 DOI: 10.1186/s12885-017-3633-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 08/28/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND FOXP3 has been discovered to be expressed in tumor cells and participate in the regulation of tumor behavior. Herein, we investigated the clinical relevance and biological significance of FOXP3 expression in human hepatocellular carcinoma (HCC). METHODS Expression profile of FOXP3 was analyzed using real-time RT-PCR, western blotting and immunofluorescence on HCC cell lines, and immunostaing of a tissue microarray containing of 240 primary HCC samples. The potential regulatory roles of FOXP3 were dissected by an integrated approach, combining biochemical assays, analysis of patient survival, genetic manipulation of HCC cell lines, mouse xenograft tumor models and chromatin immunoprecipitation (ChIP) sequencing. RESULTS FOXP3 was constitutively expressed in HCC cells with the existence of splice variants (especially exon 3 and 4 deleted, Δ3,4-FOXP3). High expression of FOXP3 significantly correlated with low serum α-fetoprotein (AFP) level, absence of vascular invasion and early TNM stage. Survival analyses revealed that increased FOXP3 expression was significantly associated with better survival and reduced recurrence, and served as an independent prognosticator for HCC patients. Furthermore, FOXP3 could potently suppress the proliferation and invasion of HCC cells in vitro and reduce tumor growth in vivo. However, Δ3,4-FOXP3 showed a significant reduction in the tumor-inhibiting effect. The inhibition of FOXP3 on HCC aggressiveness was acted probably by enhancing the TGF-β/Smad2/3 signaling pathway. CONCLUSION Our findings suggest that FOXP3 suppresses tumor progression in HCC via TGF-β/Smad2/3 signaling pathway, highlighting the role of FOXP3 as a prognostic factor and novel target for an optimal therapy against this fatal malignancy.
Collapse
Affiliation(s)
- Jie-Yi Shi
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, 180 Fenglin Road, Shanghai, 200032 People’s Republic of China
| | - Li-Jie Ma
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, 180 Fenglin Road, Shanghai, 200032 People’s Republic of China
| | - Ji-Wei Zhang
- Cancer Research Institute, Fudan University Shanghai Cancer Center, Shanghai, People’s Republic of China
| | - Meng Duan
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, 180 Fenglin Road, Shanghai, 200032 People’s Republic of China
| | - Zhen-Bin Ding
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, 180 Fenglin Road, Shanghai, 200032 People’s Republic of China
| | - Liu-Xiao Yang
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, 180 Fenglin Road, Shanghai, 200032 People’s Republic of China
| | - Ya Cao
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, Hunan People’s Republic of China
| | - Jian Zhou
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, 180 Fenglin Road, Shanghai, 200032 People’s Republic of China
- Institute of Biomedical Sciences, Fudan University, Shanghai, People’s Republic of China
| | - Jia Fan
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, 180 Fenglin Road, Shanghai, 200032 People’s Republic of China
- Institute of Biomedical Sciences, Fudan University, Shanghai, People’s Republic of China
| | - Xiaoming Zhang
- Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Ying-Jun Zhao
- Cancer Research Institute, Fudan University Shanghai Cancer Center, Shanghai, People’s Republic of China
| | - Xiao-Ying Wang
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, 180 Fenglin Road, Shanghai, 200032 People’s Republic of China
| | - Qiang Gao
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, 180 Fenglin Road, Shanghai, 200032 People’s Republic of China
| |
Collapse
|
8
|
Liu S, Zhang C, Zhang K, Gao Y, Wang Z, Li X, Cheng G, Wang S, Xue X, Li W, Zhang W, Zhang Y, Xing X, Li M, Hao Q. FOXP3 inhibits cancer stem cell self-renewal via transcriptional repression of COX2 in colorectal cancer cells. Oncotarget 2017; 8:44694-44704. [PMID: 28591725 PMCID: PMC5546511 DOI: 10.18632/oncotarget.17974] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 04/25/2017] [Indexed: 01/06/2023] Open
Abstract
Colon cancer stem cell (cCSC) is considered as the seed cell of colon cancer initiation and metastasis. Cyclooxygenase-2 (COX2), a downstream target of NFκB, is found to be essential in promoting cancer stem cell renewal. However, how COX2 is dysregulated in cCSCs is largely unknown. In this study, we found that the expression of transcription factor FOXP3 was much lower in the spheroids than that in the parental tumor cells. Overexpression of FOXP3 significantly decreased the numbers of spheres, reduced the side population. Accordingly, FOXP3 expression decreased the tumor size and weight in the xenograft model. The tumor inhibitory effects of FOXP3 were rarely seen when COX2 was additionally knocked down. Mechanically, FOXP3 transcriptionally repressed COX2 expression via interacting with and thus inhibiting p65 activity on the putative NFκB response elements in COX2 promoter. Taken together, we here revealed possible involvement of FOXP3 in regulating cCSC self-renewal via tuning COX2 expression, and thus providing a new target for the eradication of colon cancer stem cells.
Collapse
Affiliation(s)
- Shuo Liu
- The State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China
| | - Cun Zhang
- The State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China
| | - Kuo Zhang
- The State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China
| | - Yuan Gao
- The State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China
| | - Zhaowei Wang
- The State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China
| | - Xiaoju Li
- The State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China
| | - Guang Cheng
- Department of Neurosurgery, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Shuning Wang
- The State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China
| | - Xiaochang Xue
- The State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China
| | - Weina Li
- The State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China
| | - Wei Zhang
- The State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China
| | - Yingqi Zhang
- The State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China
| | - Xianghui Xing
- State Key Laboratory of Military Stomatology, Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Meng Li
- Department of Pharmacogenomics, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China
| | - Qiang Hao
- The State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
9
|
Liu R, Liu C, Chen D, Yang WH, Liu X, Liu CG, Dugas CM, Tang F, Zheng P, Liu Y, Wang L. FOXP3 Controls an miR-146/NF-κB Negative Feedback Loop That Inhibits Apoptosis in Breast Cancer Cells. Cancer Res 2015; 75:1703-13. [PMID: 25712342 DOI: 10.1158/0008-5472.can-14-2108] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 01/03/2015] [Indexed: 12/22/2022]
Abstract
FOXP3 functions not only as the master regulator in regulatory T cells, but also as an X-linked tumor suppressor. The tumor-suppressive activity of FOXP3 has been observed in tumor initiation, but its role during tumor progression remains controversial. Moreover, the mechanism of FOXP3-mediated tumor-suppressive activity remains largely unknown. Using chromatin immunoprecipitation (ChIP) sequencing, we identified a series of potential FOXP3-targeted miRNAs in MCF7 cells. Notably, FOXP3 significantly induced the expression of miR-146a/b. In vitro, FOXP3-induced miR-146a/b prevented tumor cell proliferation and enhanced apoptosis. Functional analyses in vitro and in vivo revealed that FOXP3-induced miR-146a/b negatively regulates NF-κB activation by inhibiting the expression of IRAK1 and TRAF6. In ChIP assays, FOXP3 directly bound the promoter region of miR-146a but not of miR-146b, and FOXP3 interacted directly with NF-κB p65 to regulate an miR-146-NF-κB negative feedback regulation loop in normal breast epithelial and tumor cells, as demonstrated with luciferase reporter assays. Although FOXP3 significantly inhibited breast tumor growth and migration in vitro and metastasis in vivo, FOXP3-induced miR-146a/b contributed only to the inhibition of breast tumor growth. These data suggest that miR-146a/b contributes to FOXP3-mediated tumor suppression during tumor growth by triggering apoptosis. The identification of a FOXP3-miR-146-NF-κB axis provides an underlying mechanism for disruption of miR-146 family member expression and constitutive NF-κB activation in breast cancer cells. Linking the tumor suppressor function of FOXP3 to NF-κB activation reveals a potential therapeutic approach for cancers with FOXP3 defects.
Collapse
Affiliation(s)
- Runhua Liu
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama. Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama.
| | - Cong Liu
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama. Department of Endocrinology, ShengJing Hospital of China Medical University, Shenyang, PR China
| | - Dongquan Chen
- Division of Preventive Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Wei-Hsiung Yang
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, Georgia
| | - Xiuping Liu
- Department of Experimental Therapeutics, MD Anderson Cancer Center, Houston, Texas
| | - Chang-Gong Liu
- Department of Experimental Therapeutics, MD Anderson Cancer Center, Houston, Texas
| | - Courtney M Dugas
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Fei Tang
- Center for Cancer and Immunology Research, Children's National Medical Center, Washington, District of Columbia
| | - Pan Zheng
- Center for Cancer and Immunology Research, Children's National Medical Center, Washington, District of Columbia
| | - Yang Liu
- Center for Cancer and Immunology Research, Children's National Medical Center, Washington, District of Columbia
| | - Lizhong Wang
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama. Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama.
| |
Collapse
|
10
|
Ma C, Peng C, Lu X, Ding X, Zhang S, Zou X, Zhang X. Downregulation of FOXP3 inhibits invasion and immune escape in cholangiocarcinoma. Biochem Biophys Res Commun 2015; 458:234-9. [PMID: 25623530 DOI: 10.1016/j.bbrc.2015.01.067] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 01/14/2015] [Indexed: 10/24/2022]
Abstract
FOXP3 is known as a master control of regulatory T cells with recently studies indicating its expression in several tumor cells. In order to study the precise role of FOXP3 in cholangiocarcinoma, FOXP3 was knocked down in cholangiocarcinoma cell lines. Down regulation of FOXP3 inhibits tumor cell invasion by reducing the quantity of MMP-9 and MMP-2. With FOXP3 knocking down, IL-10 and TGF-β1 secreted by cancer cells diminishes and the cell survival of T cells is significant up-regulation. These results suggest that FOXP3 plays an important role in tumor malignant phenotype, especially the invasion and immune escape.
Collapse
Affiliation(s)
- Chao Ma
- The Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, Jiangsu Province 210008, PR China
| | - Chunyan Peng
- The Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, Jiangsu Province 210008, PR China
| | - Xuejia Lu
- The Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, Jiangsu Province 210008, PR China
| | - Xiwei Ding
- The Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, Jiangsu Province 210008, PR China
| | - Shu Zhang
- The Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, Jiangsu Province 210008, PR China
| | - Xiaoping Zou
- The Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, Jiangsu Province 210008, PR China.
| | - Xiaoqi Zhang
- The Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, Jiangsu Province 210008, PR China.
| |
Collapse
|
11
|
Chu R, Liu SYW, Vlantis AC, van Hasselt CA, Ng EKW, Fan MD, Ng SK, Chan ABW, Du J, Wei W, Liu X, Liu Z, Chen GG. Inhibition of Foxp3 in cancer cells induces apoptosis of thyroid cancer cells. Mol Cell Endocrinol 2015; 399:228-34. [PMID: 25312920 DOI: 10.1016/j.mce.2014.10.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 09/25/2014] [Accepted: 10/08/2014] [Indexed: 12/31/2022]
Abstract
Foxp3+ regulatory T cells (Tregs) in lymphocytes facilitate the thyroid tumor growth and invasion. Very limited information is available on Foxp3 expression in thyroid cancer cells and its function is totally unknown. This study demonstrated that Foxp3 expression was increased in thyroid cancer cells. Inhibition of Foxp3 decreased cell proliferation and migration, but increased apoptosis, suggesting a positive role of Foxp3 in cancer growth. Interestingly, Foxp3 inhibition enhanced PPARγ expression and activity. In addition, Foxp3 inhibition downregulated NF-κB subunit p65 and cyclin D1 but upregulated caspase-3 levels. These molecular changes are in line with Foxp3 shRNA-mediated alteration of cell functions. Collectively, our study demonstrates that thyroid cancer cells express a high level of functional Foxp3 and that the inhibition of the Foxp3 suppresses the proliferation and migration but promotes apoptosis, suggesting that targeting Foxp3 in thyroid cancer cells may offer a novel therapeutic option for thyroid cancer.
Collapse
Affiliation(s)
- Ryan Chu
- Department of Otorhinolaryngology, Head and Neck Surgery, Prince of Wales Hospital, Shatin, NT, Hong Kong, China
| | - Shirley Y W Liu
- Department of Surgery, Prince of Wales Hospital, Shatin, NT, Hong Kong, China
| | - Alexander C Vlantis
- Department of Otorhinolaryngology, Head and Neck Surgery, Prince of Wales Hospital, Shatin, NT, Hong Kong, China
| | - C Andrew van Hasselt
- Department of Otorhinolaryngology, Head and Neck Surgery, Prince of Wales Hospital, Shatin, NT, Hong Kong, China
| | - Enders K W Ng
- Department of Surgery, Prince of Wales Hospital, Shatin, NT, Hong Kong, China
| | - Michael Dahua Fan
- Department of Otorhinolaryngology, Head and Neck Surgery, Prince of Wales Hospital, Shatin, NT, Hong Kong, China
| | - Siu Kwan Ng
- Department of Otorhinolaryngology, Head and Neck Surgery, Prince of Wales Hospital, Shatin, NT, Hong Kong, China
| | - Amy B W Chan
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, Hong Kong, China
| | - Jing Du
- Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Wei Wei
- Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Xiaoling Liu
- Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Zhimin Liu
- Department of Biochemistry and Molecular Biology, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - George G Chen
- Department of Surgery, Prince of Wales Hospital, Shatin, NT, Hong Kong, China.
| |
Collapse
|
12
|
Devaud C, Darcy PK, Kershaw MH. Foxp3 expression in T regulatory cells and other cell lineages. Cancer Immunol Immunother 2014; 63:869-76. [PMID: 25063364 PMCID: PMC11028988 DOI: 10.1007/s00262-014-1581-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Accepted: 07/03/2014] [Indexed: 01/23/2023]
Abstract
Forkhead box P3 (Foxp3) is an important transcription factor that belongs to the forkhead/winged-helix family of transcriptional regulators. Foxp3 has been extensively studied over the past 13 years as a master regulator of transcription in a specific T-cell type, CD4(+) regulatory T cells (Treg), both in humans and in mice. Compelling data characterize Foxp3 as critically important and necessary for the development and the differentiation of Treg. It has been considered initially as the only specific marker for Treg. However, recent work has proposed that Foxp3 can be expressed by other types of lymphoid cells or myeloid cells and also by some non-hematopoietic cells such as epithelial cells. It remains controversial about the expression of Foxp3 in cells other than Treg, but understanding the potential expression and function of this master regulator in different cell subsets could have a wide range of implications for immune tolerance and several pathologies including autoimmune disorders and immune responses to cancer.
Collapse
Affiliation(s)
- Christel Devaud
- Cancer Immunology Research Program, Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010 Australia
- Cancer Immunology Research Program, Peter MacCallum Cancer Center, Saint Andrews Place, Melbourne, VIC 3002 Australia
| | - Phillip K. Darcy
- Cancer Immunology Research Program, Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010 Australia
- Department of Immunology, Monash University, Prahran, VIC 3181 Australia
| | - Michael H. Kershaw
- Cancer Immunology Research Program, Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010 Australia
- Department of Immunology, Monash University, Prahran, VIC 3181 Australia
- Cancer Immunology Research Program, Peter MacCallum Cancer Center, Saint Andrews Place, Melbourne, VIC 3002 Australia
| |
Collapse
|
13
|
Hao Q, Zhang C, Gao Y, Wang S, Li J, Li M, Xue X, Li W, Zhang W, Zhang Y. FOXP3 inhibits NF-κB activity and hence COX2 expression in gastric cancer cells. Cell Signal 2013; 26:564-9. [PMID: 24308961 DOI: 10.1016/j.cellsig.2013.11.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Revised: 11/24/2013] [Accepted: 11/26/2013] [Indexed: 12/14/2022]
Abstract
Gastric cancer remains the main cause of cancer related deaths all over the world, and upregulated COX2 is a key player in its development. The mechanism as to how COX2 is regulated during the gastric cancer development is largely unknown. In this study, we found that the expression of COX2 was closely correlated with NF-κB activity. Strikingly, NF-κB activity was not absolutely consistent with its nuclear localization. Especially, in some cancer cell lines, such as MKN28, there were abundant nuclear localized NF-κB, while NF-κB luciferase activity in this cell line was relatively low. Furthermore, FOXP3 was found to be abundantly expressed in these cells. When the nuclear localized NF-κB expression was adjusted with the expression of FOXP3, it then correlated well with NF-κB activity. Molecularly, increased FOXP3 expression can interact with NF-κB and thus repress its activity. Knockdown of FOXP3 could increase NF-κB activity, COX2 expression, and cell migration. Taken together, our study revealed that function of FOXP3 as a negative regulator of NF-κB activity and thus plays a tumor suppressor role by reducing cell metastasis.
Collapse
Affiliation(s)
- Qiang Hao
- The State Key Laboratory of Cancer Biology, School of Pharmacy, Department of Biopharmaceutics, The Fourth Military Medical University, Xi'an 710032, China
| | - Cun Zhang
- The State Key Laboratory of Cancer Biology, School of Pharmacy, Department of Biopharmaceutics, The Fourth Military Medical University, Xi'an 710032, China
| | - Yuan Gao
- The State Key Laboratory of Cancer Biology, School of Pharmacy, Department of Biopharmaceutics, The Fourth Military Medical University, Xi'an 710032, China
| | - Shuning Wang
- The State Key Laboratory of Cancer Biology, School of Pharmacy, Department of Biopharmaceutics, The Fourth Military Medical University, Xi'an 710032, China
| | - Jialin Li
- The State Key Laboratory of Cancer Biology, School of Pharmacy, Department of Biopharmaceutics, The Fourth Military Medical University, Xi'an 710032, China
| | - Meng Li
- The State Key Laboratory of Cancer Biology, School of Pharmacy, Department of Biopharmaceutics, The Fourth Military Medical University, Xi'an 710032, China
| | - Xiaochang Xue
- The State Key Laboratory of Cancer Biology, School of Pharmacy, Department of Biopharmaceutics, The Fourth Military Medical University, Xi'an 710032, China
| | - Weina Li
- The State Key Laboratory of Cancer Biology, School of Pharmacy, Department of Biopharmaceutics, The Fourth Military Medical University, Xi'an 710032, China
| | - Wei Zhang
- The State Key Laboratory of Cancer Biology, School of Pharmacy, Department of Biopharmaceutics, The Fourth Military Medical University, Xi'an 710032, China.
| | - Yingqi Zhang
- The State Key Laboratory of Cancer Biology, School of Pharmacy, Department of Biopharmaceutics, The Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|