1
|
Mattison DR, Momoli F, Alyanak C, Aschner M, Baker M, Cashman N, Dydak U, Farhat N, Guilarte TR, Karyakina N, Ramoju S, Shilnikova N, Taba P, Krewski D. Diagnosis of manganism and manganese neurotoxicity: A workshop report. MEDICINE INTERNATIONAL 2024; 4:11. [PMID: 38410758 PMCID: PMC10895461 DOI: 10.3892/mi.2024.135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 01/19/2024] [Indexed: 02/28/2024]
Abstract
With declining exposures to manganese (Mn) in occupational settings, there is a need for more sensitive exposure assessments and clinical diagnostic criteria for manganism and Mn neurotoxicity. To address this issue, a workshop was held on November 12-13, 2020, with international experts on Mn toxicity. The workshop discussions focused on the history of the diagnostic criteria for manganism, including those developed by the Institut de Recherche Robert-Sauvé en Santé et en Sécurité du Travail (IRSST) in Quebec in 2005 and criteria developed by the Chinese government in 2002 and updated in 2006; the utility of biomarkers of exposure; recent developments in magnetic resonance imaging (MRI) for assessing Mn accumulation in the brain and diagnosing manganism; and potential future applications of metabolomics. The suggestions of the participants for updating manganism diagnostic criteria included the consideration of: i) A history of previous occupational and environmental exposure to Mn; ii) relevant clinical symptoms such as dystonia; iii) MRI imaging to document Mn accumulation in the neural tissues, including the basal ganglia; and iv) criteria for the differential diagnosis of manganism and other neurological conditions. Important research gaps include the characterization of Mn exposure and other co-exposures, exploration of the roles of different brain regions with MRI, understanding the complexity of metal ion transporters involved in Mn homeostasis, and a need for information on other neurotransmitter systems and brain regions underlying the pathophysiology of manganism.
Collapse
Affiliation(s)
- Donald R. Mattison
- Risk Sciences International, Ottawa, ON K1P 5J6, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON K1G 5Z3, Canada
- Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Franco Momoli
- Risk Sciences International, Ottawa, ON K1P 5J6, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON K1G 5Z3, Canada
| | - Cemil Alyanak
- Risk Sciences International, Ottawa, ON K1P 5J6, Canada
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Marissa Baker
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Neil Cashman
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- ProMIS Neurosciences, Inc., Toronto, ON M4S 3E2, Canada
| | - Ulrike Dydak
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Nawal Farhat
- Risk Sciences International, Ottawa, ON K1P 5J6, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON K1G 5Z3, Canada
| | - Tomás R. Guilarte
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL 33199, USA
| | | | - Siva Ramoju
- Risk Sciences International, Ottawa, ON K1P 5J6, Canada
| | - Natalia Shilnikova
- Risk Sciences International, Ottawa, ON K1P 5J6, Canada
- R. Samuel McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, ON K1G 5Z3, Canada
| | - Pille Taba
- Department of Neurology and Neurosurgery, Institute of Clinical Medicine, University of Tartu, 50406 Tartu, Estonia
- Neurology Clinic, Tartu University Hospital, 50406 Tartu, Estonia
| | - Daniel Krewski
- Risk Sciences International, Ottawa, ON K1P 5J6, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON K1G 5Z3, Canada
- R. Samuel McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, ON K1G 5Z3, Canada
| |
Collapse
|
2
|
Fan YG, Wu TY, Zhao LX, Jia RJ, Ren H, Hou WJ, Wang ZY. From zinc homeostasis to disease progression: Unveiling the neurodegenerative puzzle. Pharmacol Res 2024; 199:107039. [PMID: 38123108 DOI: 10.1016/j.phrs.2023.107039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/16/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023]
Abstract
Zinc is a crucial trace element in the human body, playing a role in various physiological processes such as oxidative stress, neurotransmission, protein synthesis, and DNA repair. The zinc transporters (ZnTs) family members are responsible for exporting intracellular zinc, while Zrt- and Irt-like proteins (ZIPs) are involved in importing extracellular zinc. These processes are essential for maintaining cellular zinc homeostasis. Imbalances in zinc metabolism have been linked to the development of neurodegenerative diseases. Disruptions in zinc levels can impact the survival and activity of neurons, thereby contributing to the progression of neurodegenerative diseases through mechanisms like cell apoptosis regulation, protein phase separation, ferroptosis, oxidative stress, and neuroinflammation. Therefore, conducting a systematic review of the regulatory network of zinc and investigating the relationship between zinc dysmetabolism and neurodegenerative diseases can enhance our understanding of the pathogenesis of these diseases. Additionally, it may offer new insights and approaches for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yong-Gang Fan
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China.
| | - Ting-Yao Wu
- First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| | - Ling-Xiao Zhao
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Rong-Jun Jia
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Hang Ren
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Wen-Jia Hou
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Zhan-You Wang
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China.
| |
Collapse
|
3
|
Baj J, Flieger W, Barbachowska A, Kowalska B, Flieger M, Forma A, Teresiński G, Portincasa P, Buszewicz G, Radzikowska-Büchner E, Flieger J. Consequences of Disturbing Manganese Homeostasis. Int J Mol Sci 2023; 24:14959. [PMID: 37834407 PMCID: PMC10573482 DOI: 10.3390/ijms241914959] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/01/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Manganese (Mn) is an essential trace element with unique functions in the body; it acts as a cofactor for many enzymes involved in energy metabolism, the endogenous antioxidant enzyme systems, neurotransmitter production, and the regulation of reproductive hormones. However, overexposure to Mn is toxic, particularly to the central nervous system (CNS) due to it causing the progressive destruction of nerve cells. Exposure to manganese is widespread and occurs by inhalation, ingestion, or dermal contact. Associations have been observed between Mn accumulation and neurodegenerative diseases such as manganism, Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. People with genetic diseases associated with a mutation in the gene associated with impaired Mn excretion, kidney disease, iron deficiency, or a vegetarian diet are at particular risk of excessive exposure to Mn. This review has collected data on the current knowledge of the source of Mn exposure, the experimental data supporting the dispersive accumulation of Mn in the brain, the controversies surrounding the reference values of biomarkers related to Mn status in different matrices, and the competitiveness of Mn with other metals, such as iron (Fe), magnesium (Mg), zinc (Zn), copper (Cu), lead (Pb), calcium (Ca). The disturbed homeostasis of Mn in the body has been connected with susceptibility to neurodegenerative diseases, fertility, and infectious diseases. The current evidence on the involvement of Mn in metabolic diseases, such as type 2 diabetes mellitus/insulin resistance, osteoporosis, obesity, atherosclerosis, and non-alcoholic fatty liver disease, was collected and discussed.
Collapse
Affiliation(s)
- Jacek Baj
- Chair and Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (W.F.); (A.F.)
| | - Wojciech Flieger
- Chair and Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (W.F.); (A.F.)
| | - Aleksandra Barbachowska
- Department of Plastic, Reconstructive and Burn Surgery, Medical University of Lublin, 21-010 Łęczna, Poland;
| | - Beata Kowalska
- Department of Water Supply and Wastewater Disposal, Lublin University of Technology, 20-618 Lublin, Poland;
| | - Michał Flieger
- Chair and Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland; (M.F.); (G.T.); (G.B.)
| | - Alicja Forma
- Chair and Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (W.F.); (A.F.)
| | - Grzegorz Teresiński
- Chair and Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland; (M.F.); (G.T.); (G.B.)
| | - Piero Portincasa
- Clinica Medica A. Murri, Department of Biomedical Sciences & Human Oncology, Medical School, University of Bari, 70124 Bari, Italy;
| | - Grzegorz Buszewicz
- Chair and Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland; (M.F.); (G.T.); (G.B.)
| | | | - Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
4
|
Shaffer RM, Wright JM, Cote I, Bateson TF. Comparative susceptibility of children and adults to neurological effects of inhaled manganese: A review of the published literature. ENVIRONMENTAL RESEARCH 2023; 221:115319. [PMID: 36669586 DOI: 10.1016/j.envres.2023.115319] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Manganese (Mn) is neurotoxic in adults and children. Current assessments are based on the more extensive adult epidemiological data, but the potential for greater childhood susceptibility remains a concern. To better understand potential lifestage-based variations, we compared susceptibilities to neurotoxicity in children and adults using Mn biomarker data. METHODS We developed a literature search strategy based on a Population, Exposures, Comparators, and Outcomes statement focusing on inhalation exposures and neurological outcomes in humans. Screening was performed using DistillerSR. Hair biomarker studies were selected for evaluation because studies with air measurements were unavailable or considered inadequate for children. Studies were paired based on concordant Mn source, biomarker, and outcome. Comparisons were made based on reported dose-response slopes (children vs. adults). Study evaluation was conducted to understand the confidence in our comparisons. RESULTS We identified five studies evaluating seven pairings of hair Mn and neurological outcomes (cognition and motor effects) in children and adults matched on sources of environmental Mn inhalation exposure. Two Brazilian studies of children and one of adults reported intelligent quotient (IQ) effects; effects in both comparisons were stronger in children (1.21 to 2.03-fold difference). In paired analyses of children and adults from the United States, children exhibited both stronger and weaker effects compared to adults (0.37 to 1.75-fold differences) on postural sway metrics. CONCLUSION There is limited information on the comparative susceptibility of children and adults to inhaled Mn. We report that children may be 0.37 to 2.03 times as susceptible as adults to neurotoxic effects of Mn, thereby providing a quantitative estimate for some aspects of lifestage variation. Due to the limited number of paired studies available in the literature, this quantitative estimate should be interpreted with caution. Our analyses do not account for other sources of inter-individual variation. Additional studies of Mn-exposed children with direct air concentration measurements would improve the evidence base.
Collapse
Affiliation(s)
- Rachel M Shaffer
- Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Washington, DC, USA
| | - J Michael Wright
- Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH, USA
| | - Ila Cote
- University of Colorado, School of Public Health, Aurora, CO, USA
| | - Thomas F Bateson
- Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Washington, DC, USA.
| |
Collapse
|
5
|
Fujishiro H, Kambe T. Manganese transport in mammals by zinc transporter family proteins, ZNT and ZIP. J Pharmacol Sci 2021; 148:125-133. [PMID: 34924116 DOI: 10.1016/j.jphs.2021.10.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/07/2021] [Accepted: 10/07/2021] [Indexed: 12/14/2022] Open
Abstract
Manganese (Mn) is an essential trace element required for various biological processes. However, excess Mn causes serious side effects in humans, including parkinsonism. Thus, elucidation of Mn homeostasis at the systemic, cellular, and molecular levels is important. Many metal transporters and channels can be involved in the transport and homeostasis of Mn, and an increasing body of evidence shows that several zinc (Zn) transporters belonging to the ZIP and ZNT families, specifically, ZNT10, ZIP8, and ZIP14, play pivotal roles in Mn metabolism. Mutations in the genes encoding these transporter proteins are associated with congenital disorders related to dysregulated Mn homeostasis in humans. Moreover, single nucleotide polymorphisms of ZIP8 are associated with multiple clinical phenotypes. In this review, we discuss the recent literature on the structural and biochemical features of ZNT10, ZIP8, and ZIP14, including transport mechanisms, regulation of expression, and pathophysiological functions. Because a disturbance in Mn homeostasis is closely associated with a variety of phenotypes and risk of human diseases, these transporters constitute a significant target for drug development. An understanding of the roles of these key transporters in Mn metabolism should provide new insights into pharmacological applications of their inhibitors and enhancers in human diseases.
Collapse
Affiliation(s)
- Hitomi Fujishiro
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan.
| | - Taiho Kambe
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan.
| |
Collapse
|
6
|
Poon K, Lu Z, De Deene Y, Ramaswamy Y, Zreiqat H, Singh G. Tuneable manganese oxide nanoparticle based theranostic agents for potential diagnosis and drug delivery. NANOSCALE ADVANCES 2021; 3:4052-4061. [PMID: 36132835 PMCID: PMC9419237 DOI: 10.1039/d0na00991a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 06/04/2021] [Indexed: 06/16/2023]
Abstract
Among various magnetic nanoparticles, manganese oxide nanoparticles are considered as established T 1 magnetic resonance imaging (MRI) contrast agents for preclinical research. The implications of their degradation properties and use as therapeutic carriers in drug delivery systems have not been explored. In addition, how the chemical composition and size of manganese oxide nanoparticles, as well as the surrounding environment, influence their degradation and MRI contrast properties (T 1 vs. T 2) have not been studied in great detail. A fundamental understanding of their characteristic properties, such as degradation, is highly desirable for developing simultaneous diagnosis and therapeutic solutions. Here, we demonstrate how the precursor type and reaction environment affect the size and chemical composition of manganese oxide nanoparticles and evaluate their influence on the nanoparticle degradability and release of the drug l-3,4-dihydroxyphenylalanine (l-dopa). The results show that the degradation rate (and the associated release of drug l-dopa molecules) of manganese oxide nanoparticles depends on their size, composition and the surrounding environment (aqueous or biometric fluid). The dependence of MRI relaxivities of manganese oxide nanoparticles on the size, chemical composition and nanoparticle degradation in water is also established. A preliminary cell viability study reveals the cytocompatible properties of l-dopa functionalized manganese oxide nanoparticles. Overall, this work provides new insights into smartly designed manganese oxide nanoparticles with multitasking capabilities to target bioimaging and therapeutic applications.
Collapse
Affiliation(s)
- Kingsley Poon
- ARC Centre for Innovative BioEngineering, Tissue Engineering and Biomaterials Research Unit, Sydney Nano Institute, School of Biomedical Engineering, The University of Sydney NSW 2008 Australia
| | - Zufu Lu
- ARC Centre for Innovative BioEngineering, Tissue Engineering and Biomaterials Research Unit, Sydney Nano Institute, School of Biomedical Engineering, The University of Sydney NSW 2008 Australia
| | - Yves De Deene
- Department of Engineering, The Biomedical Engineering Laboratory, Macquarie University Sydney 2109 Australia
| | - Yogambha Ramaswamy
- ARC Centre for Innovative BioEngineering, Tissue Engineering and Biomaterials Research Unit, Sydney Nano Institute, School of Biomedical Engineering, The University of Sydney NSW 2008 Australia
| | - Hala Zreiqat
- ARC Centre for Innovative BioEngineering, Tissue Engineering and Biomaterials Research Unit, Sydney Nano Institute, School of Biomedical Engineering, The University of Sydney NSW 2008 Australia
| | - Gurvinder Singh
- ARC Centre for Innovative BioEngineering, Tissue Engineering and Biomaterials Research Unit, Sydney Nano Institute, School of Biomedical Engineering, The University of Sydney NSW 2008 Australia
| |
Collapse
|
7
|
Horning KJ, Tang X, Thomas MG, Aschner M, Bowman AB. Identification of Three Small Molecules That Can Selectively Influence Cellular Manganese Levels in a Mouse Striatal Cell Model. Molecules 2021; 26:molecules26041175. [PMID: 33671818 PMCID: PMC7931103 DOI: 10.3390/molecules26041175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/12/2021] [Accepted: 02/18/2021] [Indexed: 12/03/2022] Open
Abstract
Manganese (Mn) is a biologically essential metal, critical as a cofactor for numerous enzymes such a glutamine synthetase and kinases such as ataxia-telangiectasia mutated (ATM). Similar to other essential metals such as iron and zinc, proper levels of Mn need to be achieved while simultaneously being careful to avoid excess levels of Mn that can be neurotoxic. A lifetime of occupational exposure to Mn can often lead to a Parkinsonian condition, also known as “manganism”, characterized by impaired gait, muscle spasms, and tremors. Despite the importance of its regulation, the mechanisms underlying the transport and homeostasis of Mn are poorly understood. Rather than taking a protein or gene-targeted approach, our lab recently took a high-throughput-screening approach to identify 41 small molecules that could significantly increase or decrease intracellular Mn in a neuronal cell model. Here, we report characterization of these small molecules, which we refer to as the “Mn toolbox”. We adapted a Fura-2-based assay for measuring Mn concentration and for measuring relative concentrations of other divalent metals: nickel, copper, cobalt, and zinc. Of these 41 small molecules, we report here the identification of three that selectively influence cellular Mn but do not influence the other divalent metals tested. The patterns of activity across divalent metals and the discovery of Mn-selective small molecules has potential pharmacological and scientific utility.
Collapse
Affiliation(s)
- Kyle J. Horning
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA;
| | - Xueqi Tang
- School of Health Sciences, Purdue University, West Lafayette, IN 47906, USA; (X.T.); (M.G.T.)
| | - Morgan G. Thomas
- School of Health Sciences, Purdue University, West Lafayette, IN 47906, USA; (X.T.); (M.G.T.)
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine Bronx, New York, NY 10461, USA
- Correspondence: (M.A.); (A.B.B.)
| | - Aaron B. Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN 47906, USA; (X.T.); (M.G.T.)
- Correspondence: (M.A.); (A.B.B.)
| |
Collapse
|
8
|
Soares ATG, da Silva AC, Tinkov AA, Khan H, Santamaría A, Skalnaya MG, Skalny AV, Tsatsakis A, Bowman AB, Aschner M, Ávila DS. The impact of manganese on neurotransmitter systems. J Trace Elem Med Biol 2020; 61:126554. [PMID: 32480053 PMCID: PMC7677177 DOI: 10.1016/j.jtemb.2020.126554] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/09/2020] [Accepted: 05/15/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Manganese (Mn) is a metal ubiquitously present in nature and essential for many living organisms. As a trace element, it is required in small amounts for the proper functioning of several important enzymes, and reports of Mn deficiency are indeed rare. METHODS This mini-review will cover aspects of Mn toxicokinetics and its impact on brain neurotransmission, as well as its Janus-faced effects on humans and other animal's health. RESULTS The estimated safe upper limit of intracellular Mn for physiological function is in anarrow range of 20-53 μM.Therefore, intake of higher levels of Mn and the outcomes, especially to the nervous system, have been well documented. CONCLUSION The metal affects mostly the brain by accumulating in specific areas, altering cognitive functions and locomotion, thus severely impacting the health of the exposed organisms.
Collapse
Affiliation(s)
- Ana Thalita Gonçalves Soares
- Laboratory of Biochemistry and Toxicology in Caenorhabditis elegans, Graduation Program in Biochemistry, Federal University of Pampa Campus Uruguaiana, RS, Brazil
| | - Aline Castro da Silva
- Laboratory of Biochemistry and Toxicology in Caenorhabditis elegans, Graduation Program in Biochemistry, Federal University of Pampa Campus Uruguaiana, RS, Brazil
| | - Alexey A. Tinkov
- Yaroslavl State University, Yaroslavl, Russia
- IM Sechenov First Moscow State Medical University, Moscow, Russia
- Federal Scientific Center of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 460000, Orenburg, Russia
| | - Haroon Khan
- Department of pharmacy, Abdul Wali khan University Mardan 23200, Pakistan
| | - Abel Santamaría
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, SSA. Mexico City, Mexico
| | | | - Anatoly V. Skalny
- IM Sechenov First Moscow State Medical University, Moscow, Russia
- Federal Scientific Center of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 460000, Orenburg, Russia
| | - Aristidis Tsatsakis
- Laboratory of Toxicology, Medical School, School of Medicine, University of Crete, Heraklion 71003, Greece
| | - Aaron B. Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN 47906, USA
| | - Michael Aschner
- IM Sechenov First Moscow State Medical University, Moscow, Russia
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Daiana Silva Ávila
- Laboratory of Biochemistry and Toxicology in Caenorhabditis elegans, Graduation Program in Biochemistry, Federal University of Pampa Campus Uruguaiana, RS, Brazil
| |
Collapse
|
9
|
Interactions between iron and manganese in neurotoxicity. Arch Toxicol 2020; 94:725-734. [PMID: 32180038 DOI: 10.1007/s00204-020-02652-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 01/27/2020] [Indexed: 12/31/2022]
Abstract
The essential and naturally occurring transition metal manganese (Mn) is present in the soil, water, air, and various foods. Manganese can accumulate in the brain if the Mn intake or exposure is excessive and this can result in neurotoxic effects. Manganese is important for the proper activation of different metabolic and antioxidant enzymes. There are numerous Mn importers and exporters. However, the exact transport mechanism for Mn is not fully understood. On the other hand, iron (Fe) is another well-known essential metal, which has redox activity in addition to chemical characteristics resembling those of Mn. Existing data show that interactions occur between Fe and Mn due to certain similarities regarding their mechanisms of the absorption and the transport. It has been disclosed that Mn-specific transporters, together with Fe transporters, regulate the Mn distribution in the brain and other peripheral tissues. In PC12 cells, a significant increase of transferrin receptor (TfR) mRNA expression was linked to Mn exposure and accompanied by elevated Fe uptake. In both humans and animals, there is a strong relationship between Fe and Mn metabolism. In the present review, special attention is paid to the interaction between Mn and Fe. In particular, Fe and Mn distribution, as well as the potential molecular mechanisms of Mn-induced neurotoxicity in cases of Fe deficiency, are discussed.
Collapse
|
10
|
Choi EK, Nguyen TT, Iwase S, Seo YA. Ferroportin disease mutations influence manganese accumulation and cytotoxicity. FASEB J 2019; 33:2228-2240. [PMID: 30247984 PMCID: PMC6338638 DOI: 10.1096/fj.201800831r] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/27/2018] [Indexed: 12/12/2022]
Abstract
Hemochromatosis is a frequent genetic disorder, characterized by the accumulation of excess iron across tissues. Mutations in the FPN1 gene, encoding a cell surface iron exporter [ferroportin (Fpn)], are responsible for hemochromatosis type 4, also known as ferroportin disease. Recently, Fpn has been implicated in the regulation of manganese (Mn), another essential nutrient required for numerous cellular enzymes. However, the roles of Fpn in Mn regulation remain ill-defined, and the impact of disease mutations on cellular Mn levels is unknown. Here, we provide evidence that Fpn can export Mn from cells into extracellular space. Fpn seems to play protective roles in Mn-induced cellular toxicity and oxidative stress. Finally, disease mutations interfere with the role of Fpn in controlling Mn levels as well as the stability of Fpn. These results define the function of Fpn as an exporter of both iron and Mn and highlight the potential involvement of Mn dysregulation in ferroportin disease.-Choi, E.-K., Nguyen, T.-T., Iwase, S., Seo, Y. A. Ferroportin disease mutations influence manganese accumulation and cytotoxicity.
Collapse
Affiliation(s)
- Eun-Kyung Choi
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA; and
| | - Trang-Tiffany Nguyen
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA; and
| | - Shigeki Iwase
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | - Young Ah Seo
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA; and
| |
Collapse
|
11
|
Yang H, Wang J, Yang X, Wu F, Qi Z, Xu B, Liu W, Deng Y. Occupational manganese exposure, reproductive hormones, and semen quality in male workers: A cross-sectional study. Toxicol Ind Health 2018; 35:53-62. [PMID: 30466360 DOI: 10.1177/0748233718810109] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
It has been found that exposure to manganese (Mn) could induce reproductive dysfunction, but its occupational risk in male workers is unclear. This study aims to assess the association of occupational Mn exposure with reproductive hormones and semen quality in a cross-sectional study. Urinary Mn, semen quality, and reproductive hormones were explored in 84 male workers occupationally exposed to Mn and 92 referents. Multiple linear regression analyses were used to assess the relationship. Urinary Mn levels in Mn-exposed workers ranged from 0.56 to 34.25 µg/L, and the average level was 15.92 ± 8.49 µg/L. Compared with the control group, gonadotropin-releasing hormone (GnRH) levels and luteinizing hormone (LH) levels increased significantly and the levels of testosterone (TSTO) decreased significantly in the Mn-exposed group. There was a significant positive linear association between urinary Mn and GnRH and LH, while the linear association between urinary Mn and TSTO was negative. Sperm progressive motility and total motility decreased significantly in the Mn-exposed group. There was a significantly negative linear association between urinary Mn and sperm progressive motility and total motility. In conclusion, occupational Mn exposure was inversely associated with reproductive health of male workers, resulting in the abnormality of hormones secretion and decrease of sperm motility.
Collapse
Affiliation(s)
- Haibo Yang
- 1 Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Jifeng Wang
- 2 Department of Clinical Laboratory, Linyi People's Hospital, Linyi, China
| | - Xinxin Yang
- 1 Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Fengdi Wu
- 1 Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Zhipeng Qi
- 1 Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Bin Xu
- 1 Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Wei Liu
- 1 Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Yu Deng
- 1 Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China
| |
Collapse
|
12
|
Juneja M, Shamim U, Joshi A, Mathur A, Uppili B, Sairam S, Ambawat S, Dixit R, Faruq M. A novel mutation in SLC39A14 causing hypermanganesemia associated with infantile onset dystonia. J Gene Med 2018; 20:e3012. [PMID: 29498153 DOI: 10.1002/jgm.3012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Mutations in SLC39A14 cause a recessive disorder of manganese (Mn) metabolism that manifests as childhood onset progressive neurodegeneration characterized by parkinsonism and dystonia. METHODS The present study genetically investigated a case of hypermanganesemia. We describe a family where an affected child with a history of progressive neurodegeneration showed symptoms of dystonia with increased levels of blood Mn and altered signal intensities in globus pallidus and dentate nucleus. Whole exome sequencing was conducted to genetically investigate the pathology in the child, which allowed us to identify a novel homozygous causal mutation in SLC39A14. RESULTS Insilico modeling of the novel homozygous causal mutation in SLC39A14 predicted that it was deleterious, affecting Mn binding and transportation of metal by transmembrane instability of the protein structure. The clinical features of other reported mutations in SLC39A14 were also reviewed and the clinical spectrum in our case conforms to the described neurological abnormalities. CONCLUSIONS We conclude that the mutation identified in SLC39A14 in our case is a novel variation linked to recessive disorders of hypermaganesemia and dystonia.
Collapse
Affiliation(s)
- Monica Juneja
- Department of Pediatrics, Maulana Azad Medical College, New Delhi, India
| | - Uzma Shamim
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Aditi Joshi
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Aaradhna Mathur
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Bharathram Uppili
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Smitha Sairam
- Child Development Centre, Department of Paediatrics Maulana Azad Medical College, New Delhi, India
| | - Sakshi Ambawat
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Rashmi Dixit
- Department of Radiodiagnosis, Maulana Azad Medical College, New Delhi, India
| | - Mohammed Faruq
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| |
Collapse
|
13
|
Foster ML, Bartnikas TB, Maresca-Fichter HC, Mercadante C, Dash M, Miller C, Dorman DC. Neonatal C57BL/6J and parkin mice respond differently following developmental manganese exposure: Result of a high dose pilot study. Neurotoxicology 2017; 64:291-299. [PMID: 29020610 DOI: 10.1016/j.neuro.2017.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 10/02/2017] [Accepted: 10/03/2017] [Indexed: 11/28/2022]
Abstract
It has been suggested that childhood exposure to neurotoxicants may increase the risk of Parkinson's disease (PD) or other neurodegenerative disease in adults. Some recessive forms of PD have been linked to loss-of-function mutations in the Park2 gene that encodes for parkin. The purpose of this pilot study was to evaluate whether responses to neonatal manganese (Mn) exposure differ in mice with a Park2 gene defect (parkin mice) when compared with a wildtype strain (C57BL/6J). Neonatal parkin and C57BL/6J littermates were randomly assigned to 0, 11, or 25mg Mn/kg-day dose groups with oral exposures occurring from postnatal day (PND) 1 through PND 28. Motor activity was measured on PND 19-22 and 29-32. Tissue Mn concentrations were measured in liver, femur, olfactory bulb, frontal cortex, and striatum on PND 29. Hepatic and frontal cortex gene expression of Slc11a2, Slc40a1, Slc30a10, Hamp (liver only), and Park2 were also measured on PND 29. Some strain differences were seen. As expected, decreased hepatic and frontal cortex Park2 expression was seen in the parkin mice when compared with C57BL/6J mice. Untreated parkin mice also had higher liver and femur Mn concentrations when compared with the C57BL/6J mice. Exposure to≥11mg Mn/kg-day was associated with increased brain Mn concentrations in all mice, no strain difference was observed. Manganese exposure in C57Bl6, but not parkin mice, was associated with a negative correlation between striatal Mn concentration and motor activity. Manganese exposure was not associated with changes in frontal cortex gene expression. Decreased hepatic Slc30a10, Slc40a1, and Hamp expression were seen in PND 29 C57BL/6J mice given 25mg Mn/kg-day. In contrast, Mn exposure was only associated with decreased Hamp expression in the parkin mice. Our results suggest that the Parkin gene defect did not increase the susceptibility of neonatal mice to adverse health effects associated with high-dose Mn exposure.
Collapse
Affiliation(s)
- Melanie L Foster
- North Carolina State University, College of Veterinary Medicine, 1060 William Moore Drive, Raleigh, NC 27607, USA.
| | - Thomas B Bartnikas
- Brown University, Department of Pathology and Laboratory Medicine, 70 Ship St., Rm. 522, Providence, RI 02912, USA.
| | - Hailey C Maresca-Fichter
- North Carolina State University, College of Veterinary Medicine, 1060 William Moore Drive, Raleigh, NC 27607, USA.
| | - Courtney Mercadante
- Brown University, Department of Pathology and Laboratory Medicine, 70 Ship St., Rm. 522, Providence, RI 02912, USA.
| | - Miriam Dash
- Brown University, Department of Pathology and Laboratory Medicine, 70 Ship St., Rm. 522, Providence, RI 02912, USA.
| | - Chelsea Miller
- Brown University, Department of Pathology and Laboratory Medicine, 70 Ship St., Rm. 522, Providence, RI 02912, USA.
| | - David C Dorman
- North Carolina State University, College of Veterinary Medicine, 1060 William Moore Drive, Raleigh, NC 27607, USA.
| |
Collapse
|
14
|
Lee S, Nam Y, Jang J, Na GH, Kim DG, Shin NY, Choi HS, Jung SL, Ahn KJ, Kim BS. Deep gray matter iron measurement in patients with liver cirrhosis using quantitative susceptibility mapping: Relationship with pallidal T1
hyperintensity. J Magn Reson Imaging 2017; 47:1342-1349. [DOI: 10.1002/jmri.25841] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 08/02/2017] [Indexed: 01/12/2023] Open
Affiliation(s)
- Song Lee
- Department of Radiology; Seoul St. Mary's Hospital, School of Medicine, Catholic University of Korea; Seoul Korea
| | - Yoonho Nam
- Department of Radiology; Seoul St. Mary's Hospital, School of Medicine, Catholic University of Korea; Seoul Korea
| | - Jinhee Jang
- Department of Radiology; Seoul St. Mary's Hospital, School of Medicine, Catholic University of Korea; Seoul Korea
| | - Gun Hyung Na
- Department of Surgery; Seoul St. Mary's Hospital, School of Medicine, Catholic University of Korea; Seoul Korea
- Department of Surgery; Bucheon St. Mary's Hospital, School of Medicine, Catholic University of Korea; Bucheon Korea
| | - Dong Goo Kim
- Department of Surgery; Seoul St. Mary's Hospital, School of Medicine, Catholic University of Korea; Seoul Korea
| | - Na-Young Shin
- Department of Radiology; Seoul St. Mary's Hospital, School of Medicine, Catholic University of Korea; Seoul Korea
| | - Hyun Seok Choi
- Department of Radiology; Seoul St. Mary's Hospital, School of Medicine, Catholic University of Korea; Seoul Korea
| | - So-Lyung Jung
- Department of Radiology; Seoul St. Mary's Hospital, School of Medicine, Catholic University of Korea; Seoul Korea
| | - Kook-Jin Ahn
- Department of Radiology; Seoul St. Mary's Hospital, School of Medicine, Catholic University of Korea; Seoul Korea
| | - Bum-soo Kim
- Department of Radiology; Seoul St. Mary's Hospital, School of Medicine, Catholic University of Korea; Seoul Korea
| |
Collapse
|
15
|
Nielsen BS, Larsen EH, Ladefoged O, Lam HR. Subchronic, Low-Level Intraperitoneal Injections of Manganese (IV) Oxide and Manganese (II) Chloride Affect Rat Brain Neurochemistry. Int J Toxicol 2017; 36:239-251. [PMID: 28460583 DOI: 10.1177/1091581817704378] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Manganese (Mn) is neurotoxic and can induce manganism, a Parkinson-like disease categorized as being a serious central nervous system irreversible neurodegenerative disease. An increased risk of developing symptoms of Parkinson disease has been linked to work-related exposure, for example, for workers in agriculture, horticulture, and people living near areas with frequent use of Mn-containing pesticides. In this study, the focus was placed on neurochemical effects of Mn. Rats were dosed intraperitoneally with 0.9% NaCl (control), 1.22 mg Mn (as MnO2)/kg bodyweight (bw)/day, or 2.5 mg Mn (as MnCl2)/kg bw/day for 7 d/wk for 8 or 12 weeks. This dosing regimen adds relevant new knowledge about Mn neurotoxicity as a consequence of low-dose subchronic Mn dosing. Manganese concentrations increased in the striatum, the rest of the brain, and in plasma, and regional brain neurotransmitter concentrations, including noradrenaline, dopamine (DA), 5-hydroxytrytamine, glutamate, taurine, and γ-amino butyric acid, and the activity of acetylcholinesterase changed. Importantly, a target parameter for Parkinson disease and manganism, the striatal DA concentration, was reduced after 12 weeks of dosing with MnCl2. Plasma prolactin concentration was not significantly affected due to a potentially reduced dopaminergic inhibition of the prolactin release from the anterior hypophysis. No effects on the striatal α-synuclein and synaptophysin protein levels were detected.
Collapse
Affiliation(s)
| | - Erik H Larsen
- 2 Division of Food Production, National Food Institute, Søborg, Denmark
| | - Ole Ladefoged
- 3 Division of Toxicology and Risk Assessment, National Food Institute, Søborg, Denmark
| | - Henrik R Lam
- 1 Environment and Toxicology, DHI, Hørsholm, Denmark
| |
Collapse
|
16
|
Abstract
Manganese (Mn) is an essential metal that plays a fundamental role for brain development and functioning. Environmental exposure to Mn may lead to accumulation in the basal ganglia and development of Parkinson-like disorders. The most recent research is focusing on early-life overexposure to Mn and the potential vulnerability of younger individuals to Mn toxicity also in regard to cognitive and executive functions through the involvement of the frontal cortex.Neurodevelopmental disturbances are increasing in the society, and understanding the potential role of environmental determinants is a key for prevention. Therefore, assessing the environmental sources of Mn exposure and the mechanisms of developmental neurotoxicity and defining appropriate biomarkers of exposure and early functional alterations represent key issues to improve and address preventive strategies. These themes will be reviewed in this chapter.
Collapse
|
17
|
Bryan MR, Bowman AB. Manganese and the Insulin-IGF Signaling Network in Huntington's Disease and Other Neurodegenerative Disorders. ADVANCES IN NEUROBIOLOGY 2017; 18:113-142. [PMID: 28889265 PMCID: PMC6559248 DOI: 10.1007/978-3-319-60189-2_6] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disease resulting in motor impairment and death in patients. Recently, several studies have demonstrated insulin or insulin-like growth factor (IGF) treatment in models of HD, resulting in potent amelioration of HD phenotypes via modulation of the PI3K/AKT/mTOR pathways. Administration of IGF and insulin can rescue microtubule transport, metabolic function, and autophagy defects, resulting in clearance of Huntingtin (HTT) aggregates, restoration of mitochondrial function, amelioration of motor abnormalities, and enhanced survival. Manganese (Mn) is an essential metal to all biological systems but, in excess, can be toxic. Interestingly, several studies have revealed the insulin-mimetic effects of Mn-demonstrating Mn can activate several of the same metabolic kinases and increase peripheral and neuronal insulin and IGF-1 levels in rodent models. Separate studies have shown mouse and human striatal neuroprogenitor cell (NPC) models exhibit a deficit in cellular Mn uptake, indicative of a Mn deficiency. Furthermore, evidence from the literature reveals a striking overlap between cellular consequences of Mn deficiency (i.e., impaired function of Mn-dependent enzymes) and known HD endophenotypes including excitotoxicity, increased reactive oxygen species (ROS) accumulation, and decreased mitochondrial function. Here we review published evidence supporting a hypothesis that (1) the potent effect of IGF or insulin treatment on HD models, (2) the insulin-mimetic effects of Mn, and (3) the newly discovered Mn-dependent perturbations in HD may all be functionally related. Together, this review will present the intriguing possibility that intricate regulatory cross-talk exists between Mn biology and/or toxicology and the insulin/IGF signaling pathways which may be deeply connected to HD pathology and, perhaps, other neurodegenerative diseases (NDDs) and other neuropathological conditions.
Collapse
Affiliation(s)
- Miles R Bryan
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
| | - Aaron B Bowman
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Center in Molecular Toxicology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| |
Collapse
|
18
|
Ramoju SP, Mattison DR, Milton B, McGough D, Shilnikova N, Clewell HJ, Yoon M, Taylor MD, Krewski D, Andersen ME. The application of PBPK models in estimating human brain tissue manganese concentrations. Neurotoxicology 2017; 58:226-237. [PMID: 27989617 DOI: 10.1016/j.neuro.2016.12.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 12/01/2016] [Accepted: 12/01/2016] [Indexed: 01/16/2023]
Affiliation(s)
- Siva P Ramoju
- Risk Sciences International, 55 Metcalfe Street, Suite 700, K1P 6L5, Ottawa, Canada.
| | - Donald R Mattison
- Risk Sciences International, 55 Metcalfe Street, Suite 700, K1P 6L5, Ottawa, Canada; Samuel R. McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, 850 Peter Morand Crescent, Room 119, University of Ottawa, Ottawa, K1G 3Z7, Canada
| | - Brittany Milton
- Risk Sciences International, 55 Metcalfe Street, Suite 700, K1P 6L5, Ottawa, Canada
| | - Doreen McGough
- International Manganese Institute, 17 rue Duphot, 75001 Paris, France
| | - Natalia Shilnikova
- Risk Sciences International, 55 Metcalfe Street, Suite 700, K1P 6L5, Ottawa, Canada; Samuel R. McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, 850 Peter Morand Crescent, Room 119, University of Ottawa, Ottawa, K1G 3Z7, Canada
| | - Harvey J Clewell
- ScitoVation, 6 Davis Drive, PO Box 110566, Research Triangle Park, NC 27709,United States
| | - Miyoung Yoon
- ScitoVation, 6 Davis Drive, PO Box 110566, Research Triangle Park, NC 27709,United States
| | - Michael D Taylor
- Nickel Producers Environmental Research Association (NiPERA), 2525 Meridian Parkway, Suite 240, Durham, NC 27713, United States
| | - Daniel Krewski
- Risk Sciences International, 55 Metcalfe Street, Suite 700, K1P 6L5, Ottawa, Canada; Samuel R. McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, 850 Peter Morand Crescent, Room 119, University of Ottawa, Ottawa, K1G 3Z7, Canada
| | - Melvin E Andersen
- ScitoVation, 6 Davis Drive, PO Box 110566, Research Triangle Park, NC 27709,United States
| |
Collapse
|
19
|
|
20
|
Guilarte TR, Gonzales KK. Manganese-Induced Parkinsonism Is Not Idiopathic Parkinson's Disease: Environmental and Genetic Evidence. Toxicol Sci 2016. [PMID: 26220508 DOI: 10.1093/toxsci/kfv099] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Movement abnormalities caused by chronic manganese (Mn) intoxication clinically resemble but are not identical to those in idiopathic Parkinson's disease. In fact, the most successful parkinsonian drug treatment, the dopamine precursor levodopa, is ineffective in alleviating Mn-induced motor symptoms, implying that parkinsonism in Mn-exposed individuals may not be linked to midbrain dopaminergic neuron cell loss. Over the last decade, supporting evidence from human and nonhuman primates has emerged that Mn-induced parkinsonism partially results from damage to basal ganglia nuclei of the striatal "direct pathway" (ie, the caudate/putamen, internal globus pallidus, and substantia nigra pars reticulata) and a marked inhibition of striatal dopamine release in the absence of nigrostriatal dopamine terminal degeneration. Recent neuroimaging studies have revealed similar findings in a particular group of young drug users intravenously injecting the Mn-containing psychostimulant ephedron and in individuals with inherited mutations of the Mn transporter gene SLC30A10. This review will provide a detailed discussion about the aforementioned studies, followed by a comparison with their rodent analogs and idiopathic parkinsonism. Together, these findings in combination with a limited knowledge about the underlying neuropathology of Mn-induced parkinsonism strongly support the need for a more complete understanding of the neurotoxic effects of Mn on basal ganglia function to uncover the appropriate cellular and molecular therapeutic targets for this disorder.
Collapse
Affiliation(s)
- Tomás R Guilarte
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032
| | - Kalynda K Gonzales
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032
| |
Collapse
|
21
|
Abstract
Exposure to manganese (Mn) causes clinical signs and symptoms resembling, but not identical to, Parkinson's disease. Since our last review on this subject in 2004, the past decade has been a thriving period in the history of Mn research. This report provides a comprehensive review on new knowledge gained in the Mn research field. Emerging data suggest that beyond traditionally recognized occupational manganism, Mn exposures and the ensuing toxicities occur in a variety of environmental settings, nutritional sources, contaminated foods, infant formulas, and water, soil, and air with natural or man-made contaminations. Upon fast absorption into the body via oral and inhalation exposures, Mn has a relatively short half-life in blood, yet fairly long half-lives in tissues. Recent data suggest Mn accumulates substantially in bone, with a half-life of about 8-9 years expected in human bones. Mn toxicity has been associated with dopaminergic dysfunction by recent neurochemical analyses and synchrotron X-ray fluorescent imaging studies. Evidence from humans indicates that individual factors such as age, gender, ethnicity, genetics, and pre-existing medical conditions can have profound impacts on Mn toxicities. In addition to body fluid-based biomarkers, new approaches in searching biomarkers of Mn exposure include Mn levels in toenails, non-invasive measurement of Mn in bone, and functional alteration assessments. Comments and recommendations are also provided with regard to the diagnosis of Mn intoxication and clinical intervention. Finally, several hot and promising research areas in the next decade are discussed.
Collapse
Affiliation(s)
- Stefanie L. O’Neal
- School of Health Sciences, Purdue University, 550 Stadium Mall Drive, Room 1173, West Lafayette, IN 47907, USA
| | - Wei Zheng
- School of Health Sciences, Purdue University, 550 Stadium Mall Drive, Room 1173, West Lafayette, IN 47907, USA
| |
Collapse
|
22
|
Bates CA, Fu S, Ysselstein D, Rochet JC, Zheng W. Expression and Transport of α-Synuclein at the Blood-Cerebrospinal Fluid Barrier and Effects of Manganese Exposure. ADMET AND DMPK 2015; 3:15-33. [PMID: 26640596 PMCID: PMC4669215 DOI: 10.5599/admet.3.1.159] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The choroid plexus maintains the homeostasis of critical molecules in the brain by regulating their transport between the blood and cerebrospinal fluid (CSF). The current study was designed to investigate the potential role of the blood-CSF barrier (BCSFB) in α-synuclein (a-Syn) transport in the brain as affected by exposure to manganese (Mn), the toxic metal implicated in Parkinsonian disorders. Immunohistochemistry was used to identify intracellular a-Syn expression at the BCSFB. Quantitative real-time PCR was used to quantify the change in a-Syn mRNA expression following Mn treatments at the BCSFB in vitro. ELISA was used to quantify a-Syn levels following in vivo and in vitro treatments of Mn, copper (Cu), and/or external a-Syn. Thioflavin-T assay was used to investigate a-Syn aggregation after incubating with Mn and/or Cu in vitro. A two-chamber Transwell system was used to study a-Syn transport by BCSFB monolayer. Data revealed the expression of endogenous a-Syn in rat choroid plexus tissue and immortalized choroidal epithelial Z310 cells. The cultured primary choroidal epithelia from rats showed the ability to take up a-Syn from extracellular medium and transport a-Syn across the cellular monolayer from the donor to receiver chamber. Exposure of cells with Mn induced intracellular a-Syn accumulation without causing any significant changes in a-Syn mRNA expression. A significant increase in a-Syn aggregation in a cell-free system was observed with the presence of Mn. Moreover, Mn exposure resulted in a significant uptake of a-Syn by primary cells. These data indicate that the BCSFB expresses a-Syn endogenously and is capable of transporting a-Syn across the BCSFB monolayer; Mn exposure apparently increases a-Syn accumulation in the BCSFB by facilitating its uptake and intracellular aggregation.
Collapse
Affiliation(s)
| | - Sherleen Fu
- School of Health Sciences, Purdue University, West Lafayette, IN 47907
| | - Daniel Ysselstein
- Department of Molecular Pharmacology and Medicinal Chemistry, Purdue University, West Lafayette, IN 47907
| | - Jean-Christophe Rochet
- Department of Molecular Pharmacology and Medicinal Chemistry, Purdue University, West Lafayette, IN 47907
| | - Wei Zheng
- School of Health Sciences, Purdue University, West Lafayette, IN 47907
| |
Collapse
|
23
|
Seo YA, Wessling-Resnick M. Ferroportin deficiency impairs manganese metabolism in flatiron mice. FASEB J 2015; 29:2726-33. [PMID: 25782988 DOI: 10.1096/fj.14-262592] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 02/27/2015] [Indexed: 02/07/2023]
Abstract
We examined the physiologic role of ferroportin (Fpn) in manganese (Mn) export using flatiron (ffe/+) mice, a genetic model of Fpn deficiency. Blood (0.0123 vs. 0.0107 mg/kg; P = 0.0003), hepatic (1.06 vs. 0.96 mg/kg; P = 0.0125), and bile Mn levels (79 vs. 38 mg/kg; P = 0.0204) were reduced in ffe/+ mice compared to +/+ controls. Erythrocyte Mn-superoxide dismutase was also reduced at 6 (0.154 vs. 0.096, P = 0.0101), 9 (0.131 vs. 0.089, P = 0.0162), and 16 weeks of age (0.170 vs. 0.090 units/mg protein/min; P < 0.0001). (54)Mn uptake after intragastric gavage was markedly reduced in ffe/+ mice (0.0187 vs. 0.0066% dose; P = 0.0243), while clearance of injected isotope was similar in ffe/+ and +/+ mice. These values were compared to intestinal absorption of (59)Fe, which was significantly reduced in ffe/+ mice (8.751 vs. 3.978% dose; P = 0.0458). The influence of the ffe mutation was examined in dopaminergic SH-SY5Y cells and human embryonic HEK293T cells. While expression of wild-type Fpn reversed Mn-induced cytotoxicity, ffe mutant H32R failed to confer protection. These combined results demonstrate that Fpn plays a central role in Mn transport and that flatiron mice provide an excellent genetic model to explore the role of this exporter in Mn homeostasis. -
Collapse
Affiliation(s)
- Young Ah Seo
- Departments of Genetics and Complex Diseases and Nutrition, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Marianne Wessling-Resnick
- Departments of Genetics and Complex Diseases and Nutrition, Harvard School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
24
|
Wang T, Li X, Yang D, Zhang H, Zhao P, Fu J, Yao B, Zhou Z. ER stress and ER stress-mediated apoptosis are involved in manganese-induced neurotoxicity in the rat striatum in vivo. Neurotoxicology 2015; 48:109-19. [PMID: 25732873 DOI: 10.1016/j.neuro.2015.02.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 01/14/2015] [Accepted: 02/20/2015] [Indexed: 11/28/2022]
Abstract
Manganese (Mn) is an essential trace element found in many enzymes, however, excessive Mn-exposure can result in manganism which is similar to Parkinson's movement disorder. The mechanisms of manganism are not well-known. The present in vivo study was carried out to determine whether endoplasmic reticulum stress (ER stress) and ER stress-mediated apoptosis are involved in manganese-induced neurotoxicity. Sixty-four SD rats were randomly divided into four groups and were administered intraperitoneally with normal saline (NS, as control) or MnCl₂ (7.5, 15 and 30 mg/kg body weight, respectively) for 4 weeks. We found that MnCl₂ dose-dependently accumulate in striatal. HE staining and TUNEL assay results indicated that MnCl₂ induced striatal neurocytes apoptosis in both male and female rats. The alterations of ultrastructures showed that MnCl₂ resulted in chromatin condensation, mitochondria and ER tumefaction in rat striatal neurocytes. Furthermore, MnCl₂ increased the expressions of p-IRE-1, ATF-6α, PERK, GRP78, Sigma-1R, CHOP, Bim, Bax, caspase-12 and caspase-3, and decreased the expression of Bcl-2 in rat striatal neurocytes. In conclusion, MnCl₂ could induce ER stress and ER stress-mediated apoptosis in rat striatal neurocytes, which might be one of the important mechanisms of Mn-induced neurotoxicity.
Collapse
Affiliation(s)
- Ting Wang
- Department of Toxicology, School of Public Health, Peking University Health Science Center, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University Health Science Center, Beijing 100191, PR China; The seventh people hospital of Zhengzhou, Zhengzhou Henan 450000, China
| | - Xuehui Li
- Department of Toxicology, School of Public Health, Peking University Health Science Center, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University Health Science Center, Beijing 100191, PR China
| | - Dongxu Yang
- Department of Toxicology, School of Public Health, Peking University Health Science Center, Beijing 100191, PR China
| | - Hongtao Zhang
- Department of Toxicology, School of Public Health, Peking University Health Science Center, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University Health Science Center, Beijing 100191, PR China
| | - Peng Zhao
- Department of Toxicology, School of Public Health, Peking University Health Science Center, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University Health Science Center, Beijing 100191, PR China
| | - Juanling Fu
- Department of Toxicology, School of Public Health, Peking University Health Science Center, Beijing 100191, PR China
| | - Biyun Yao
- Department of Toxicology, School of Public Health, Peking University Health Science Center, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University Health Science Center, Beijing 100191, PR China.
| | - Zongcan Zhou
- Department of Toxicology, School of Public Health, Peking University Health Science Center, Beijing 100191, PR China.
| |
Collapse
|
25
|
Kim G, Lee HS, Seok Bang J, Kim B, Ko D, Yang M. A current review for biological monitoring of manganese with exposure, susceptibility, and response biomarkers. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2015; 33:229-54. [PMID: 26023759 DOI: 10.1080/10590501.2015.1030530] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
People can be easily exposed to manganese (Mn), the twelfth most abundant element, through various exposure routes. However, overexposure to Mn causes manganism, a motor syndrome similar to Parkinson disease, via interference of the several neurotransmitter systems, particularly the dopaminergic system in areas. At cellular levels, Mn preferentially accumulates in mitochondria and increases the generation of reactive oxygen species, which changes expression and activity of manganoproteins. Many studies have provided invaluable insights into the causes, effects, and mechanisms of the Mn-induced neurotoxicity. To regulate Mn exposure, many countries have performed biological monitoring of Mn with three major biomarkers: exposure, susceptibility, and response biomarkers. In this study, we review current statuses of Mn exposure via various exposure routes including food, high susceptible population, effects of genetic polymorphisms of metabolic enzymes or transporters (CYP2D6, PARK9, SLC30A10, etc.), alterations of the Mn-responsive proteins (i.e., glutamine synthetase, Mn-SOD, metallothioneins, and divalent metal trnsporter1), and epigenetic changes due to the Mn exposure. To minimize the effects of Mn exposure, further biological monitoring of Mn should be done with more sensitive and selective biomarkers.
Collapse
Affiliation(s)
- Gyuri Kim
- a Research Center for Cell Fate Control, Department of Toxicology, College of Pharmacy, Sookmyung Women's University , Seoul , Republic of Korea
| | | | | | | | | | | |
Collapse
|
26
|
Chen P, Chakraborty S, Peres TV, Bowman AB, Aschner M. Manganese-induced Neurotoxicity: From C. elegans to Humans. Toxicol Res (Camb) 2014; 4:191-202. [PMID: 25893090 DOI: 10.1039/c4tx00127c] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Manganese (Mn) is one of the most abundant metals on the earth. It is required for normal cellular activities, but overexposure leads to toxicity. Neurons are more susceptible to Mn-induced toxicity than other cells, and accumulation of Mn in the brain results in Manganism that presents with Parkinson's disease (PD)-like symptoms. In the last decade, a number of Mn transporters have been identified, which improves our understanding of Mn transport in and out of cells. However, the mechanism of Mn-induced neurotoxicity is only partially uncovered, with further research needed to explore the whole picture of Mn-induced toxicity. In this review, we will address recent progress in Mn-induced neurotoxicity from C. elegans to humans, and explore future directions that will help understand the mechanisms of its neurotoxicity.
Collapse
Affiliation(s)
- Pan Chen
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sudipta Chakraborty
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Tanara V Peres
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA ; Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Aaron B Bowman
- Department of Neurology, Vanderbilt University Medical Center, Nashville TN, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
27
|
Brommage R, Liu J, Hansen GM, Kirkpatrick LL, Potter DG, Sands AT, Zambrowicz B, Powell DR, Vogel P. High-throughput screening of mouse gene knockouts identifies established and novel skeletal phenotypes. Bone Res 2014; 2:14034. [PMID: 26273529 PMCID: PMC4472125 DOI: 10.1038/boneres.2014.34] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 07/29/2014] [Accepted: 07/31/2014] [Indexed: 12/13/2022] Open
Abstract
Screening gene function in vivo is a powerful approach to discover novel drug targets. We present high-throughput screening (HTS) data for 3 762 distinct global gene knockout (KO) mouse lines with viable adult homozygous mice generated using either gene-trap or homologous recombination technologies. Bone mass was determined from DEXA scans of male and female mice at 14 weeks of age and by microCT analyses of bones from male mice at 16 weeks of age. Wild-type (WT) cagemates/littermates were examined for each gene KO. Lethality was observed in an additional 850 KO lines. Since primary HTS are susceptible to false positive findings, additional cohorts of mice from KO lines with intriguing HTS bone data were examined. Aging, ovariectomy, histomorphometry and bone strength studies were performed and possible non-skeletal phenotypes were explored. Together, these screens identified multiple genes affecting bone mass: 23 previously reported genes (Calcr, Cebpb, Crtap, Dcstamp, Dkk1, Duoxa2, Enpp1, Fgf23, Kiss1/Kiss1r, Kl (Klotho), Lrp5, Mstn, Neo1, Npr2, Ostm1, Postn, Sfrp4, Slc30a5, Slc39a13, Sost, Sumf1, Src, Wnt10b), five novel genes extensively characterized (Cldn18, Fam20c, Lrrk1, Sgpl1, Wnt16), five novel genes with preliminary characterization (Agpat2, Rassf5, Slc10a7, Slc26a7, Slc30a10) and three novel undisclosed genes coding for potential osteoporosis drug targets.
Collapse
Affiliation(s)
| | - Jeff Liu
- Lexicon Pharmaceuticals , The Woodlands, TX, USA
| | | | | | | | | | | | | | - Peter Vogel
- Lexicon Pharmaceuticals , The Woodlands, TX, USA
| |
Collapse
|
28
|
Correlation between the biochemical pathways altered by mutated parkinson-related genes and chronic exposure to manganese. Neurotoxicology 2014; 44:314-25. [DOI: 10.1016/j.neuro.2014.08.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/11/2014] [Accepted: 08/11/2014] [Indexed: 01/02/2023]
|
29
|
O'Neal SL, Hong L, Fu S, Jiang W, Jones A, Nie LH, Zheng W. Manganese accumulation in bone following chronic exposure in rats: steady-state concentration and half-life in bone. Toxicol Lett 2014; 229:93-100. [PMID: 24930841 DOI: 10.1016/j.toxlet.2014.06.019] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 06/09/2014] [Accepted: 06/10/2014] [Indexed: 10/25/2022]
Abstract
Literature data indicate that bone is a major storage organ for manganese (Mn), accounting for 43% of total body Mn. However, the kinetic nature of Mn in bone, especially the half-life (t(1/2)), remained unknown. This study was designed to understand the time-dependence of Mn distribution in rat bone after chronic oral exposure. Adult male rats received 50 mg Mn/kg (as MnCl2) by oral gavage, 5 days per week, for up to 10 weeks. Animals were sacrificed every 2 weeks during Mn administration for the uptake study, and on day 1, week 2, 4, 8, or 12 after the cessation at 6-week Mn exposure for the t(1/2) study. Mn concentrations in bone (MnBn) were determined by AAS analysis. By the end of 6-week's treatment, MnBn appeared to reach the steady state (T(ss)) level, about 2-3.2 fold higher than MnBn at day 0. Kinetic calculation revealed t(1/2)s of Mn in femur, tibia, and humerus bone of 77 (r=0.978), 263 (r=0.988), and 429 (r=0.994) days, respectively; the average t(1/2) in rat skeleton was about 143 days, equivalent to 8.5 years in human bone. Moreover, MnBn were correlated with Mn levels in striatum, hippocampus, and CSF. These data support MnBn to be a useful biomarker of Mn exposure.
Collapse
Affiliation(s)
- Stefanie L O'Neal
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Lan Hong
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Sherleen Fu
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Wendy Jiang
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Alexander Jones
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Linda H Nie
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Wei Zheng
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
30
|
van Veen S, Sørensen DM, Holemans T, Holen HW, Palmgren MG, Vangheluwe P. Cellular function and pathological role of ATP13A2 and related P-type transport ATPases in Parkinson's disease and other neurological disorders. Front Mol Neurosci 2014; 7:48. [PMID: 24904274 PMCID: PMC4033846 DOI: 10.3389/fnmol.2014.00048] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 05/05/2014] [Indexed: 12/14/2022] Open
Abstract
Mutations in ATP13A2 lead to Kufor-Rakeb syndrome, a parkinsonism with dementia. ATP13A2 belongs to the P-type transport ATPases, a large family of primary active transporters that exert vital cellular functions. However, the cellular function and transported substrate of ATP13A2 remain unknown. To discuss the role of ATP13A2 in neurodegeneration, we first provide a short description of the architecture and transport mechanism of P-type transport ATPases. Then, we briefly highlight key P-type ATPases involved in neuronal disorders such as the copper transporters ATP7A (Menkes disease), ATP7B (Wilson disease), the Na(+)/K(+)-ATPases ATP1A2 (familial hemiplegic migraine) and ATP1A3 (rapid-onset dystonia parkinsonism). Finally, we review the recent literature of ATP13A2 and discuss ATP13A2's putative cellular function in the light of what is known concerning the functions of other, better-studied P-type ATPases. We critically review the available data concerning the role of ATP13A2 in heavy metal transport and propose a possible alternative hypothesis that ATP13A2 might be a flippase. As a flippase, ATP13A2 may transport an organic molecule, such as a lipid or a peptide, from one membrane leaflet to the other. A flippase might control local lipid dynamics during vesicle formation and membrane fusion events.
Collapse
Affiliation(s)
- Sarah van Veen
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven Leuven, Belgium
| | - Danny M Sørensen
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven Leuven, Belgium
| | - Tine Holemans
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven Leuven, Belgium
| | - Henrik W Holen
- Department of Plant and Environmental Sciences, Centre for Membrane Pumps in Cells and Disease - PUMPkin, University of Copenhagen Frederiksberg, Denmark
| | - Michael G Palmgren
- Department of Plant and Environmental Sciences, Centre for Membrane Pumps in Cells and Disease - PUMPkin, University of Copenhagen Frederiksberg, Denmark
| | - Peter Vangheluwe
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven Leuven, Belgium
| |
Collapse
|
31
|
|
32
|
Bosomworth HJ, Adlard PA, Ford D, Valentine RA. Altered expression of ZnT10 in Alzheimer's disease brain. PLoS One 2013; 8:e65475. [PMID: 23741496 PMCID: PMC3669266 DOI: 10.1371/journal.pone.0065475] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 04/26/2013] [Indexed: 11/18/2022] Open
Abstract
There is an increasing body of evidence suggesting that metal homeostasis is dysregulated in the pathology of Alzheimer's disease (AD). Although expression levels of several transporters belonging the SLC30 family, which comprises predominantly zinc transporters, have been studied in the AD brain, SLC30A10 (ZnT10) has not been studied in this context. To determine if dysregulated expression of ZnT10, which may transport both Zn and Mn, could be a factor that contributes to AD, we investigated if there were differences in ZnT10 mRNA levels in specimens of frontal cortex from AD patients and controls and also if brain tissue from the APP/PS1 transgenic (Tg) mouse model showed abnormal levels of ZnT10 mRNA expression. Our results show that ZnT10 is significantly (P<0.01) decreased in the frontal cortex in AD. Furthermore, we observed a significant decrease in ZnT10 mRNA levels in the APP/PS1-Tg mice compared with wild-type controls (P<0.01). Our results suggest that this dysregulation in ZnT10 could further contribute to disease progression.
Collapse
Affiliation(s)
- Helen J. Bosomworth
- Human Nutrition Research Centre, Newcastle University, Newcastle upon Tyne, United Kingdom
- School of Dental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Paul A. Adlard
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia
| | - Dianne Ford
- Human Nutrition Research Centre, Newcastle University, Newcastle upon Tyne, United Kingdom
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Ruth A. Valentine
- Human Nutrition Research Centre, Newcastle University, Newcastle upon Tyne, United Kingdom
- School of Dental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
33
|
Abstract
Manganese is an important metal for human health, being absolutely necessary for development, metabolism, and the antioxidant system. Nevertheless, excessive exposure or intake may lead to a condition known as manganism, a neurodegenerative disorder that causes dopaminergic neuronal death and parkinsonian-like symptoms. Hence, Mn has a paradoxal effect in animals, a Janus-faced metal. Extensive work has been carried out to understand Mn-induced neurotoxicity and to find an effective treatment. This review focuses on the requirement for Mn in human health as well as the diseases associated with excessive exposure to this metal.
Collapse
Affiliation(s)
- Daiana Silva Avila
- Biochemistry Graduation Program, Universidade Federal do Pampa, Uruguaiana, Rio Grande do Sul, Brazil,
| | | | | |
Collapse
|