1
|
Perkins RS, Singh R, Abell AN, Krum SA, Miranda-Carboni GA. The role of WNT10B in physiology and disease: A 10-year update. Front Cell Dev Biol 2023; 11:1120365. [PMID: 36814601 PMCID: PMC9939717 DOI: 10.3389/fcell.2023.1120365] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/16/2023] [Indexed: 02/09/2023] Open
Abstract
WNT10B, a member of the WNT family of secreted glycoproteins, activates the WNT/β-catenin signaling cascade to control proliferation, stemness, pluripotency, and cell fate decisions. WNT10B plays roles in many tissues, including bone, adipocytes, skin, hair, muscle, placenta, and the immune system. Aberrant WNT10B signaling leads to several diseases, such as osteoporosis, obesity, split-hand/foot malformation (SHFM), fibrosis, dental anomalies, and cancer. We reviewed WNT10B a decade ago, and here we provide a comprehensive update to the field. Novel research on WNT10B has expanded to many more tissues and diseases. WNT10B polymorphisms and mutations correlate with many phenotypes, including bone mineral density, obesity, pig litter size, dog elbow dysplasia, and cow body size. In addition, the field has focused on the regulation of WNT10B using upstream mediators, such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). We also discussed the therapeutic implications of WNT10B regulation. In summary, research conducted during 2012-2022 revealed several new, diverse functions in the role of WNT10B in physiology and disease.
Collapse
Affiliation(s)
- Rachel S. Perkins
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Rishika Singh
- College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Amy N. Abell
- Department of Biological Sciences, University of Memphis, Memphis, TN, United States
| | - Susan A. Krum
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, TN, United States,Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Gustavo A. Miranda-Carboni
- Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, United States,Department of Medicine, Division of Hematology and Oncology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States,*Correspondence: Gustavo A. Miranda-Carboni,
| |
Collapse
|
2
|
Abdin R, Zhang Y, Jimenez JJ. Treatment of Androgenetic Alopecia Using PRP to Target Dysregulated Mechanisms and Pathways. Front Med (Lausanne) 2022; 9:843127. [PMID: 35372424 PMCID: PMC8965895 DOI: 10.3389/fmed.2022.843127] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/14/2022] [Indexed: 11/19/2022] Open
Abstract
Androgenetic alopecia (“AGA”) is the most prevalent type of progressive hair loss, causing tremendous psychological and social stress in patients. However, AGA treatment remains limited in scope. The pathogenesis of androgenetic alopecia is not completely understood but is known to involve a hair follicle miniaturization process in which terminal hair is transformed into thinner, softer vellus-like hair. This process is related to the dysregulation of the Wnt/β-catenin signaling pathway, which causes premature termination of the anagen growth phase in hair follicles. Historically used for wound healing, platelet rich plasma (“PRP”) has recently been at the forefront of potential AGA treatment. PRP is an autologous preparation of plasma that contains a high number of platelets and their associated growth factors such as EGF, IGF-1, and VEGF. These factors are known to individually play important roles in regulating hair follicle growth. However, the clinical effectiveness of PRP is often difficult to characterize and summarize as there are wide variabilities in the PRP preparation and administration protocols with no consensus on which protocol provides the best results. This study follows the previous review from our group in 2018 by Cervantes et al. to analyze and discuss recent clinical trials using PRP for the treatment of AGA. In contrast to our previous publication, we include recent clinical trials that assessed PRP in combination or in direct comparison with standard of care procedures for AGA such as topical minoxidil and/or oral finasteride. Overall, this study aims to provide an in-depth analysis of PRP in the treatment of AGA based on the evaluation of 17 recent clinical trials published between 2018 and October 2021. By closely examining the methodologies of each clinical trial included in our study, we additionally aim to provide an overall consensus on how PRP can be best utilized for the treatment of AGA.
Collapse
Affiliation(s)
- Rama Abdin
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| | - Yusheng Zhang
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Joaquin J Jimenez
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
3
|
Detecting the Mechanism behind the Transition from Fixed Two-Dimensional Patterned Sika Deer ( Cervus nippon) Dermal Papilla Cells to Three-Dimensional Pattern. Int J Mol Sci 2021; 22:ijms22094715. [PMID: 33946876 PMCID: PMC8124381 DOI: 10.3390/ijms22094715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 12/19/2022] Open
Abstract
The hair follicle dermal papilla is critical for hair generation and de novo regeneration. When cultured in vitro, dermal papilla cells from different species demonstrate two distinguishable growth patterns under the conventional culture condition: a self-aggregative three dimensional spheroidal (3D) cell pattern and a two dimensional (2D) monolayer cell pattern, correlating with different hair inducing properties. Whether the loss of self-aggregative behavior relates to species-specific differences or the improper culture condition remains unclear. Can the fixed 2D patterned dermal papilla cells recover the self-aggregative behavior and 3D pattern also remains undetected. Here, we successfully constructed the two growth patterns using sika deer (Cervus nippon) dermal papilla cells and proved it was the culture condition that determined the dermal papilla growth pattern. The two growth patterns could transit mutually as the culture condition was exchanged. The fixed 2D patterned sika deer dermal papilla cells could recover the self-aggregative behavior and transit back to 3D pattern, accompanied by the restoration of hair inducing capability when the culture condition was changed. In addition, the global gene expressions during the transition from 2D pattern to 3D pattern were compared to detect the potential regulating genes and pathways involved in the recovery of 3D pattern and hair inducing capability.
Collapse
|
4
|
de Groot SC, Ulrich MMW, Gho CG, Huisman MA. Back to the Future: From Appendage Development Toward Future Human Hair Follicle Neogenesis. Front Cell Dev Biol 2021; 9:661787. [PMID: 33912569 PMCID: PMC8075059 DOI: 10.3389/fcell.2021.661787] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/18/2021] [Indexed: 11/13/2022] Open
Abstract
Hair disorders such as alopecia and hirsutism often impact the social and psychological well-being of an individual. This also holds true for patients with severe burns who have lost their hair follicles (HFs). HFs stimulate proper wound healing and prevent scar formation; thus, HF research can benefit numerous patients. Although hair development and hair disorders are intensively studied, human HF development has not been fully elucidated. Research on human fetal material is often subject to restrictions, and thus development, disease, and wound healing studies remain largely dependent on time-consuming and costly animal studies. Although animal experiments have yielded considerable and useful information, it is increasingly recognized that significant differences exist between animal and human skin and that it is important to obtain meaningful human models. Human disease specific models could therefore play a key role in future therapy. To this end, hair organoids or hair-bearing skin-on-chip created from the patient’s own cells can be used. To create such a complex 3D structure, knowledge of hair genesis, i.e., the early developmental process, is indispensable. Thus, uncovering the mechanisms underlying how HF progenitor cells within human fetal skin form hair buds and subsequently HFs is of interest. Organoid studies have shown that nearly all organs can be recapitulated as mini-organs by mimicking embryonic conditions and utilizing the relevant morphogens and extracellular matrix (ECM) proteins. Therefore, knowledge of the cellular and ECM proteins in the skin of human fetuses is critical to understand the evolution of epithelial tissues, including skin appendages. This review aims to provide an overview of our current understanding of the cellular changes occurring during human skin and HF development. We further discuss the potential implementation of this knowledge in establishing a human in vitro model of a full skin substitute containing hair follicles and the subsequent translation to clinical use.
Collapse
Affiliation(s)
- Simon C de Groot
- Association of Dutch Burn Centres, Beverwijk, Netherlands.,Hair Science Institute, Maastricht, Netherlands
| | | | - Coen G Gho
- Hair Science Institute, Maastricht, Netherlands
| | - Margriet A Huisman
- Department of Otorhinolaryngology and Head & Neck Surgery, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
5
|
Sun D, Huang Z, Xu J, Wang Y, Chen L, Hou Y, Chi G. HaCaT‑conditioned medium supplemented with the small molecule inhibitors SB431542 and CHIR99021 and the growth factor PDGF‑AA prevents the dedifferentiation of dermal papilla cells in vitro. Mol Med Rep 2021; 23:326. [PMID: 33760132 PMCID: PMC7974413 DOI: 10.3892/mmr.2021.11965] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 12/11/2020] [Indexed: 12/22/2022] Open
Abstract
Hair loss, including alopecia, is a common and distressing problem for men and women, and as a result, there is considerable interest in developing treatments that can prevent or reverse hair loss. Dermal papillae closely interact with epidermal cells and play a key role during hair follicle induction and hair morphogenesis. As dermal papilla cells (DPCs) lose their hair‑inducing ability in monolayer cultures in vitro, it is difficult to obtain de novo hair follicle structures following DPC transplantation in vivo. The present study aimed to explore culture conditions to maintain DPC characteristics using conditioned media (CM) from the supernatant of cultured HaCaT keratinocyte cells supplemented with other components. Initially, it was observed that during passaging of in vitro monolayer DPC cultures, the Wnt/β‑catenin pathway was repressed, while the TGF‑β/Smad pathway was activated, and that HaCaT cells cultivated in 1% fetal bovine serum had higher levels of expression of Wnt3a and Wnt10b compared with normal keratinocytes. Culturing of high‑passage (P7) DPCs in CM from HaCaT cells (HaCaT‑CM) actively stimulated cell proliferation and maintained Sox2 and Versican expression levels. Supplementation of HaCaT‑CM with SB431542 (SB, a TGF‑β receptor inhibitor), CHIR99021, (CHIR, a GSK3α/β inhibitor and activator of Wnt signaling) and platelet‑derived growth factor (PDGF)‑AA further increased the expression levels of Sox2, Versican and alkaline phosphatase (ALP) in P7 DPCs. Three‑dimensional culture of P7 DPCs using hanging drop cultures in HaCaT‑CM supplemented with SB, CHIR and PDGF‑AA resulted in larger cell aggregates and a further significant upregulation of Sox2, ALP and Versican expression levels. Taken together, these findings demonstrated that HaCaT‑CM supplemented with SB, CHIR and PDGF‑AA may preserve the hair‑inducing ability of high‑passage DPCs and may therefore be useful in reconstructing new hair follicles in vivo.
Collapse
Affiliation(s)
- Dongjie Sun
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130000, P.R. China
| | - Zhehao Huang
- Department of Neurosurgery, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Jinying Xu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130000, P.R. China
| | - Yiqing Wang
- Department of Genetics, Basic Medical College of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Lin Chen
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130000, P.R. China
| | - Yi Hou
- Department of Regeneration Medicine, School of Pharmaceutical Science of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Guangfan Chi
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130000, P.R. China
| |
Collapse
|
6
|
Wnt10b promotes hair follicles growth and dermal papilla cells proliferation via Wnt/β-Catenin signaling pathway in Rex rabbits. Biosci Rep 2021; 40:221920. [PMID: 31961392 PMCID: PMC7000364 DOI: 10.1042/bsr20191248] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 01/08/2020] [Accepted: 01/20/2020] [Indexed: 12/17/2022] Open
Abstract
Wnt signaling plays an important role in the growth and development of hair follicles (HFs). Among the signaling molecules, Wnt10b was shown to promote the differentiation of primary skin epithelial cells toward the hair shaft and inner root sheath of the HF cells in mice in vitro. Whisker HFs were isolated from Rex rabbits and cultured in vitro to measure hair shaft growth. Meanwhile, dermal papilla cells (DPCs) were isolated and cultured in vitro. Treatment with AdWnt10b or the Wnt/β-Catenin Pathway inhibitor, XAV939, assessed the DPCs proliferation by CCK-8 assay. And the cell cycle was also analyzed by flow cytometry. We found that Wnt10b could promote elongation of the hair shaft, whereas XAV-939 treatment could eliminated this phenomenon. AdWnt10b treatment promoted the proliferation and induced G1/S transition of DPCs. AdWnt10b stimulation up-regulated β-Catenin protein in DPCs. Inhibition of Wnt/β-Catenin signaling by XAV-939 could decreased the basal and Wnt10b-enhanced proliferation of DPCs. And could also suppress the cell cycle progression in DPCs. In summary, our study demonstrates that Wnt10b could promote HFs growth and proliferation of DPCs via the Wnt/β-Catenin signaling pathway in Rex rabbits.
Collapse
|
7
|
Chen MJ, Xie WY, Pan NX, Wang XQ, Yan HC, Gao CQ. Methionine improves feather follicle development in chick embryos by activating Wnt/β-catenin signaling. Poult Sci 2020; 99:4479-4487. [PMID: 32867991 PMCID: PMC7598098 DOI: 10.1016/j.psj.2020.05.047] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 04/27/2020] [Accepted: 05/22/2020] [Indexed: 01/22/2023] Open
Abstract
This study was conducted to explore the regulatory role of methionine (Met) in feather follicle and feather development during the embryonic period of chicks. A total of 280 fertile eggs (40 eggs/group) were injected with 0, 5, 10, 20 mg of L-Met or DL-Met/per egg on embryonic day 9 (E9), and whole-body feather and skin tissues were collected on E15 and the day of hatching (DOH). The whole-body feather weight was determined to describe the feather growth, and the skin samples were subjected to hematoxylin and eosin staining and Western blotting for the evaluation of feather follicle development and the expressions of Wingless/Int (Wnt)/β-catenin signaling pathway proteins, respectively. The results showed that L- or DL-Met did not affect the embryo weight (P > 0.05), but increased the absolute and relative whole-body feather weights. Specifically, 5 and 10 mg of L-Met and 5, 10, and 20 mg of DL-Met significantly increased the absolute feather weight at E15 (P < 0.05), and 10 mg of L-Met and 5 and 10 mg of DL-Met significantly increased the absolute and relative feather weight on the DOH (P < 0.05). Moreover, a main effect analysis suggested that changes in the embryo and feather weights were related to the Met levels (P < 0.05) but not the Met source (P > 0.05). The levels of L- and DL-Met were quadratically correlated with the absolute and relative feather weights of chicks on the DOH (P < 0.05). Correspondingly, all doses of L- and DL-Met significantly increased the diameter and density of feather follicles on the DOH (P < 0.05), as well as the activity of Wnt/β-catenin on E15 and the DOH (P < 0.05). In conclusion, injection of either L- or DL-Met can improve feather follicle development by activating Wnt/β-catenin signaling, and thereby promoting feather growth; furthermore, no difference in feather growth was found between L- and DL-Met treatments. Our findings might provide a nutritional intervention for regulating feather growth in poultry production.
Collapse
Affiliation(s)
- M J Chen
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China, 510642
| | - W Y Xie
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China, 510642
| | - N X Pan
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China, 510642
| | - X Q Wang
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China, 510642
| | - H C Yan
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China, 510642
| | - C Q Gao
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China, 510642.
| |
Collapse
|
8
|
Zhou Q, Song Y, Zheng Q, Han R, Cheng H. Expression profile analysis of dermal papilla cells mRNA in response to WNT10B treatment. Exp Ther Med 2019; 19:1017-1023. [PMID: 32010264 PMCID: PMC6966109 DOI: 10.3892/etm.2019.8287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 10/10/2019] [Indexed: 02/07/2023] Open
Abstract
Dermal papilla cells (DPCs) are associated with the development of hair follicles (HFs) and the regulation of the hair growth cycle. Previous studies have shown that Wnt family member 10B (WNT10B) plays an important role in the proliferation and survival of DPCs in vitro, and promotes the growth of HFs. However, the underlying mechanisms have not been fully elucidated. The present study evaluated the role of WNT10B in regulating HF morphogenesis by characterizing the differential gene expression profiles between WNT10B-treated DPCs and control DPCs using RNA-sequencing (RNA-seq). A total of 1,073 and 451 genes were upregulated and downregulated, respectively. The RNA-seq data was subsequently validated by reverse-transcription quantitative PCR. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that 442 GO terms and 21 KEGG pathways were significantly enriched. Further functional analysis revealed that WNT10B decreased translation initiation, elongation and termination, and RNA metabolic processes in cultured DPCs compared with controls in vitro. Human signaling networks were compared using pathway analysis, and treatment of DPCs with WNT10B was revealed to downregulate the ribosome biogenesis pathway and decrease protein synthesis in vitro. KEGG pathway analysis showed that WNT10B upregulated the phosphoinositide 3-kinase/protein kinase B signaling pathway. The present study analyzed the expression of mRNA in WNT10B-treated DPCs using next-generation sequencing and uncovered mechanisms regulating the induction of HFs.
Collapse
Affiliation(s)
- Qiang Zhou
- Department of Dermatology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, P.R. China
| | - Yinjing Song
- Department of Dermatology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, P.R. China
| | - Qiaoli Zheng
- Department of Dermatology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, P.R. China
| | - Rui Han
- Department of Dermatology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, P.R. China
| | - Hao Cheng
- Department of Dermatology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, P.R. China
| |
Collapse
|
9
|
Liu Y, Wang L, Li X, Han W, Yang K, Wang H, Zhang Y, Su R, Liu Z, Wang R, Wang Z, Zhao Y, Wang Z, Li J. High-throughput sequencing of hair follicle development-related micrornas in cashmere goat at various fetal periods. Saudi J Biol Sci 2018; 25:1494-1508. [PMID: 30505201 PMCID: PMC6251998 DOI: 10.1016/j.sjbs.2017.12.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 11/30/2017] [Accepted: 12/20/2017] [Indexed: 01/25/2023] Open
Abstract
Inner Mongolia cashmere goat marks a precious gerplasm genetic resource due to its excellent cashmere traits. Therefore, it is of crucial importance to investigate the cashmere development mechanism of cashmere goat and to search for the important cashmere growth-related candidate genes. Fetal skin samples at 10 different periods of cashmere goat were collected in this research. Moreover, high-throughput sequencing was conducted on RNA samples from side skin of cashmere goat fetuses collected at three critical periods of skin hair follicle initiation, growth and development (namely, 45, 55 and 65 days) after balanced mix in line with the previous research results. Meanwhile, 3 samples at corresponding periods were used as the biological duplications. Data regarding microRNA and mRNA expression in skin and hair follicles of cashmere goats at various fetal periods were obtained using the high-throughput sequencing method. The results indicated that microRNAs in the oar-let-7 and oar-miR-200 families in 55 days and 66 days of pregnancy samples had been notably up-regulated relative to those in 45 days of pregnancy samples. This revealed that they might be the critical microRNAs in hair follicle development.
Collapse
Affiliation(s)
- Yang Liu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
- Department of Laboratory, The Affiliated Hospital of Inner Mongolia Medical College, Hohhot 010051, China
| | - Lele Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
- Institute of Animal Husbandry, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China
| | - Xiaoyan Li
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Wenjing Han
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Kun Yang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Honghao Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yanjun Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Rui Su
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Zhihong Liu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Ruijun Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Zhiying Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yanhong Zhao
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Zhixin Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Jinquan Li
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture, Hohhot 010018, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in Inner Mongolia Autonomous Region, Hohhot 010018, China
- Engineering Research Center for Goat Genetics and Breeding, Inner Mongolia Autonomous Region, Hohhot 010018, China
| |
Collapse
|
10
|
Wang J, Miao Y, Huang Y, Lin B, Liu X, Xiao S, Du L, Hu Z, Xing M. Bottom-up Nanoencapsulation from Single Cells to Tunable and Scalable Cellular Spheroids for Hair Follicle Regeneration. Adv Healthc Mater 2018; 7. [PMID: 29227036 DOI: 10.1002/adhm.201700447] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/05/2017] [Indexed: 01/31/2023]
Abstract
Cell surface engineering technology advances cell therapeutics and tissue engineering by accurate micro/nanoscale control in cell-biomaterial ensembles and cell spheroids formation. By tailoring cell surface, microgels can encapsulate cells for versatile uses. However, microgels are coated in a thick layer to house multiple cells together but not a single cell based. Besides, excessive deposition on cell surface is detrimental to cellular functions. Herein, layer-by-layer (LbL) self-assembly to encapsulate single cell using nanogel is reported, owing to its security and tunable thickness at nanoscale, and further forms cell spheroids by physical cross-linking on nanogel-coated cells for delivery. A hair follicle (HF) regeneration model where the dermal papilla cells (DPCs) are given a 3D installation to maintain its ability of HF induction during in vitro culture is studied. Dermal papilla (DP) spheroids are optimized and that LbL-DPCs aggregation is akin to primary DP is demonstrated. The markers ALP, Versican, and NCAM are examined to investigate that high-passaged (P8) DP spheroids can restore the hair induction potential, which are lost in 2D culture. New HFs are regenerated successfully by implantation of DP spheroids in vivo.
Collapse
Affiliation(s)
- Jin Wang
- Department of Plastic and Aesthetic Surgery; Nanfang Hospital of Southern Medical University; Guangzhou Guangdong Province 510515 China
- Department of Mechanical Engineering; University of Manitoba; 75A Chancellors Circle Winnipeg Manitoba R3T 2N2 Canada
| | - Yong Miao
- Department of Plastic and Aesthetic Surgery; Nanfang Hospital of Southern Medical University; Guangzhou Guangdong Province 510515 China
| | - Yong Huang
- Chongqing Academy of Animal Sciences; Chongqing 402460 China
| | - Bojie Lin
- Department of Plastic and Aesthetic Surgery; Nanfang Hospital of Southern Medical University; Guangzhou Guangdong Province 510515 China
- Department of Mechanical Engineering; University of Manitoba; 75A Chancellors Circle Winnipeg Manitoba R3T 2N2 Canada
| | - Xiaomin Liu
- Department of Plastic and Aesthetic Surgery; Nanfang Hospital of Southern Medical University; Guangzhou Guangdong Province 510515 China
| | - Shune Xiao
- Department of Plastic and Aesthetic Surgery; Nanfang Hospital of Southern Medical University; Guangzhou Guangdong Province 510515 China
| | - Lijuan Du
- Department of Plastic and Aesthetic Surgery; Nanfang Hospital of Southern Medical University; Guangzhou Guangdong Province 510515 China
| | - Zhiqi Hu
- Department of Plastic and Aesthetic Surgery; Nanfang Hospital of Southern Medical University; Guangzhou Guangdong Province 510515 China
| | - Malcolm Xing
- Department of Mechanical Engineering; University of Manitoba; 75A Chancellors Circle Winnipeg Manitoba R3T 2N2 Canada
- Children's Hospital Research Institute of Manitoba; 715 McDermot Ave Winnipeg Manitoba R3E3P4 Canada
| |
Collapse
|
11
|
Joo HJ, Jeong KH, Kim JE, Kang H. Various Wavelengths of Light-Emitting Diode Light Regulate the Proliferation of Human Dermal Papilla Cells and Hair Follicles via Wnt/β-Catenin and the Extracellular Signal-Regulated Kinase Pathways. Ann Dermatol 2017; 29:747-754. [PMID: 29200764 PMCID: PMC5705357 DOI: 10.5021/ad.2017.29.6.747] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/22/2017] [Accepted: 04/11/2017] [Indexed: 11/29/2022] Open
Abstract
Background The human dermal papilla cells (hDPCs) play an important role in regulation of hair cycling and growth. Objective The aim of this study was to investigate the effect of different wavelengths of light-emitting diode (LED) irradiation on the proliferation of cultured hDPCs and on the growth of human hair follicles (HFs) in vitro. Methods We examined the effect of LED irradiation on Wnt/β-catenin signaling and mitogen-activated protein kinase (MAPK) pathways in hDPCs. Anagen HFs were cultured with LED irradiation and elongation of each hair shaft was measured. Results The most potent wavelength in promoting the hDPC proliferation is 660 nm and 830 nm promoted hDPC proliferation to a lesser extent than 660 nm. Various wavelengths significantly increased β-catenin, Axin2, Wnt3a, Wnt5a and Wnt10b mRNA expression. LED irradiation significantly increased β-catenin and cyclin D expression, and the phosphorylation of MAPK and extracellular signal-regulated kinase (ERK). HFs irradiated with 415 nm and 660 nm grew longer than control. Conclusion Our result suggests that LED has a potential to stimulate hDPC proliferation via the activation of Wnt/β-catenin signaling and ERK pathway. To our best knowledge, this is the first report which investigated that the effect of various wavelengths of LED on hDPC proliferation and the underlying mechanisms.
Collapse
Affiliation(s)
- Hong Jin Joo
- Department of Dermatology, St. Paul's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Kwan Ho Jeong
- Department of Dermatology, St. Paul's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jung Eun Kim
- Department of Dermatology, St. Paul's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hoon Kang
- Department of Dermatology, St. Paul's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
12
|
Leirós GJ, Ceruti JM, Castellanos ML, Kusinsky AG, Balañá ME. Androgens modify Wnt agonists/antagonists expression balance in dermal papilla cells preventing hair follicle stem cell differentiation in androgenetic alopecia. Mol Cell Endocrinol 2017; 439:26-34. [PMID: 27769713 DOI: 10.1016/j.mce.2016.10.018] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 09/27/2016] [Accepted: 10/17/2016] [Indexed: 12/17/2022]
Abstract
In androgenetic alopecia, androgens impair dermal papilla-induced hair follicle stem cell (HFSC) differentiation inhibiting Wnt signaling. Wnt agonists/antagonists balance was analyzed after dihydrotestosterone (DHT) stimulation in androgen-sensitive dermal papilla cells (DPC) cultured as spheroids or monolayer. In both culture conditions, DHT stimulation downregulated Wnt5a and Wnt10b mRNA while the Wnt antagonist Dkk-1 was upregulated. Notably, tissue architecture of DPC-spheroids lowers Dkk-1 and enhances Wnt agonists' basal expression; probably contributing to DPC inductivity. The role of Wnt agonists/antagonists as mediators of androgen inhibition of DPC-induced HFSC differentiation was evaluated. Inductive DPC-conditioned medium supplemented with DKK-1 impaired HFSC differentiation mimicking androgens' action. This effect was associated with inactivation of Wnt/β-catenin pathway in differentiating HFSC by both DPC-conditioned media. Moreover, addition of WNT10b to DPC-medium conditioned with DHT, overcame androgen inhibition of HFSC differentiation. Our results identify DKK1 and WNT10b as paracrine factors which modulate the HFSC differentiation inhibition involved in androgen-driven balding.
Collapse
Affiliation(s)
- Gustavo José Leirós
- Instituto de Ciencia y Tecnología Dr. César Milstein, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Saladillo 2468, C1440FFX, Ciudad de Buenos Aires, Argentina
| | - Julieta María Ceruti
- Instituto de Ciencia y Tecnología Dr. César Milstein, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Saladillo 2468, C1440FFX, Ciudad de Buenos Aires, Argentina
| | - María Lía Castellanos
- Instituto de Ciencia y Tecnología Dr. César Milstein, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Saladillo 2468, C1440FFX, Ciudad de Buenos Aires, Argentina
| | - Ana Gabriela Kusinsky
- Instituto de Ciencia y Tecnología Dr. César Milstein, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Saladillo 2468, C1440FFX, Ciudad de Buenos Aires, Argentina
| | - María Eugenia Balañá
- Instituto de Ciencia y Tecnología Dr. César Milstein, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Saladillo 2468, C1440FFX, Ciudad de Buenos Aires, Argentina.
| |
Collapse
|
13
|
Kim YS, Jeong KH, Kim JE, Woo YJ, Kim BJ, Kang H. Repeated Microneedle Stimulation Induces Enhanced Hair Growth in a Murine Model. Ann Dermatol 2016; 28:586-592. [PMID: 27746638 PMCID: PMC5064188 DOI: 10.5021/ad.2016.28.5.586] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 12/22/2015] [Accepted: 01/11/2016] [Indexed: 11/23/2022] Open
Abstract
Background Microneedle is a method that creates transdermal microchannels across the stratum corneum barrier layer of skin. No previous study showed a therapeutic effect of microneedle itself on hair growth by wounding. Objective The aim of this study is to investigate the effect of repeated microwound formed by microneedle on hair growth and hair growth-related genes in a murine model. Methods A disk microneedle roller was applied to each group of mice five times a week for three weeks. First, to identify the optimal length and cycle, microneedles of lengths of 0.15 mm, 0.25 mm, 0.5 mm, and 1 mm and cycles of 3, 6, 10, and 13 cycles were applied. Second, the effect of hair growth and hair-growth-related genes such as Wnt3a, β-catenin, vascular endothelial growth factor (VEGF), and Wnt10b was observed using optimized microneedle. Outcomes were observed using visual inspection, real-time polymerase chain reaction, and immunohistochemistry. Results We found that the optimal length and cycle of microneedle treatment on hair growth was 0.25 mm/10 cycles and 0.5 mm/10 cycles. Repeated microneedle stimulation promoted hair growth, and it also induced the enhanced expression of Wnt3a, β-catenin, VEGF, and Wnt10b. Conclusion Our study provides evidence that microneedle stimulation can induce hair growth via activation of the Wnt/β-catenin pathway and VEGF. Combined with the drug delivery effect, we believe that microneedle stimulation could lead to new approaches for alopecia.
Collapse
Affiliation(s)
- Yoon Seob Kim
- Department of Dermatology, St. Paul's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Kwan Ho Jeong
- Department of Dermatology, St. Paul's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jung Eun Kim
- Department of Dermatology, St. Paul's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Young Jun Woo
- Department of Dermatology, St. Paul's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Beom Joon Kim
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Hoon Kang
- Department of Dermatology, St. Paul's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
14
|
Wang X, Wang X, Liu J, Cai T, Guo L, Wang S, Wang J, Cao Y, Ge J, Jiang Y, Tredget EE, Cao M, Wu Y. Hair Follicle and Sebaceous Gland De Novo Regeneration With Cultured Epidermal Stem Cells and Skin-Derived Precursors. Stem Cells Transl Med 2016; 5:1695-1706. [PMID: 27458264 DOI: 10.5966/sctm.2015-0397] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 05/12/2016] [Indexed: 12/17/2022] Open
Abstract
: Stem cell-based organ regeneration is purported to enable the replacement of impaired organs in the foreseeable future. Here, we demonstrated that a combination of cultured epidermal stem cells (Epi-SCs) derived from the epidermis and skin-derived precursors (SKPs) was capable of reconstituting functional hair follicles and sebaceous glands (SG). When Epi-SCs and SKPs were mixed in a hydrogel and implanted into an excisional wound in nude mice, the Epi-SCs formed de novo epidermis along with hair follicles, and SKPs contributed to dermal papilla in the neogenic hair follicles. Notably, a combination of culture-expanded Epi-SCs and SKPs derived from the adult human scalp were sufficient to generate hair follicles and hair. Bone morphogenetic protein 4, but not Wnts, sustained the expression of alkaline phosphatase in SKPs in vitro and the hair follicle-inductive property in vivo when SKPs were engrafted with neonatal epidermal cells into excisional wounds. In addition, Epi-SCs were capable of differentiating into sebocytes and formed de novo SGs, which excreted lipids as do normal SGs. Thus our results indicate that cultured Epi-SCs and SKPs are sufficient to generate de novo hair follicles and SGs, implying great potential to develop novel bioengineered skin substitutes with appendage genesis capacity. SIGNIFICANCE In postpartum humans, skin appendages lost in injury are not regenerated, despite the considerable achievement made in skin bioengineering. In this study, transplantation of a combination of culture-expanded epidermal stem cells and skin-derived progenitors from mice and adult humans led to de novo regeneration of functional hair follicles and sebaceous glands. The data provide transferable knowledge for the development of novel bioengineered skin substitutes with epidermal appendage regeneration capacity.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- School of Life Sciences, Tsinghua University, Beijing, People's Republic of China
- Shenzhen Key Laboratory of Health Sciences and Technology, Graduate School at Shenzhen, Tsinghua University, Beijing, People's Republic of China
| | - Xusheng Wang
- School of Life Sciences, Tsinghua University, Beijing, People's Republic of China
- Shenzhen Key Laboratory of Health Sciences and Technology, Graduate School at Shenzhen, Tsinghua University, Beijing, People's Republic of China
| | - Jianjun Liu
- Medical Key Laboratory of Health Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, People's Republic of China
| | - Ting Cai
- School of Life Sciences, Tsinghua University, Beijing, People's Republic of China
- Shenzhen Key Laboratory of Health Sciences and Technology, Graduate School at Shenzhen, Tsinghua University, Beijing, People's Republic of China
| | - Ling Guo
- Shenzhen Key Laboratory of Health Sciences and Technology, Graduate School at Shenzhen, Tsinghua University, Beijing, People's Republic of China
| | - Shujuan Wang
- State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology, Graduate School at Shenzhen, Tsinghua University, Beijing, People's Republic of China
| | - Jinmei Wang
- Shenzhen Key Laboratory of Health Sciences and Technology, Graduate School at Shenzhen, Tsinghua University, Beijing, People's Republic of China
| | - Yanpei Cao
- Clinical Research Center, University College Dublin, Belfield, Dublin, Ireland
| | - Jianfeng Ge
- School of Life Sciences, Tsinghua University, Beijing, People's Republic of China
- Shenzhen Key Laboratory of Health Sciences and Technology, Graduate School at Shenzhen, Tsinghua University, Beijing, People's Republic of China
| | - Yuyang Jiang
- State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology, Graduate School at Shenzhen, Tsinghua University, Beijing, People's Republic of China
| | - Edward E Tredget
- Wound Healing Research Group, Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Mengjun Cao
- Shenzhen Fuhua Aesthetic Hospital, Shenzhen, People's Republic of China
| | - Yaojiong Wu
- Shenzhen Key Laboratory of Health Sciences and Technology, Graduate School at Shenzhen, Tsinghua University, Beijing, People's Republic of China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Beijing, People's Republic of China
| |
Collapse
|
15
|
Cheong A, Zhang X, Cheung YY, Tang WY, Chen J, Ye SH, Medvedovic M, Leung YK, Prins GS, Ho SM. DNA methylome changes by estradiol benzoate and bisphenol A links early-life environmental exposures to prostate cancer risk. Epigenetics 2016; 11:674-689. [PMID: 27415467 PMCID: PMC5048723 DOI: 10.1080/15592294.2016.1208891] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Developmental exposure to endocrine-disrupting chemicals (EDCs), 17β-estradiol-3-benzoate (EB) and bisphenol A (BPA), increases susceptibility to prostate cancer (PCa) in rodent models. Here, we used the methylated-CpG island recovery assay (MIRA)-assisted genomic tiling and CpG island arrays to identify treatment-associated methylome changes in the postnatal day (PND)90 dorsal prostate tissues of Sprague-Dawley rats neonatally (PND1, 3, and 5) treated with 25 µg/pup or 2,500 µg EB/kg body weight (BW) or 0.1 µg BPA/pup or 10 µg BPA/kg BW. We identified 111 EB-associated and 86 BPA-associated genes, with 20 in common, that have significant differentially methylated regions. Pathway analysis revealed cancer as the top common disease pathway. Bisulfite sequencing validated the differential methylation patterns observed by array analysis in 15 identified candidate genes. The methylation status of 7 (Pitx3, Wnt10b, Paqr4, Sox2, Chst14, Tpd52, Creb3l4) of these 15 genes exhibited an inverse correlation with gene expression in tissue samples. Cell-based assays, using 5-aza-cytidine-treated normal (NbE-1) and cancerous (AIT) rat prostate cells, added evidence of DNA methylation-mediated gene expression of 6 genes (exception: Paqr4). Functional connectivity of these genes was linked to embryonic stem cell pluripotency. Furthermore, clustering analyses using the dataset from The Cancer Genome Atlas revealed that expression of this set of 7 genes was associated with recurrence-free survival of PCa patients. In conclusion, our study reveals that gene-specific promoter methylation changes, resulting from early-life EDC exposure in the rat, may serve as predictive epigenetic biomarkers of PCa recurrence, and raises the possibility that such exposure may impact human disease.
Collapse
Affiliation(s)
- Ana Cheong
- a Department of Environmental Health , University of Cincinnati College of Medicine , Cincinnati , OH , USA.,b Center for Environmental Genetics, University of Cincinnati College of Medicine , Cincinnati , OH , USA
| | - Xiang Zhang
- a Department of Environmental Health , University of Cincinnati College of Medicine , Cincinnati , OH , USA.,b Center for Environmental Genetics, University of Cincinnati College of Medicine , Cincinnati , OH , USA
| | - Yuk-Yin Cheung
- a Department of Environmental Health , University of Cincinnati College of Medicine , Cincinnati , OH , USA
| | - Wan-Yee Tang
- a Department of Environmental Health , University of Cincinnati College of Medicine , Cincinnati , OH , USA.,b Center for Environmental Genetics, University of Cincinnati College of Medicine , Cincinnati , OH , USA
| | - Jing Chen
- a Department of Environmental Health , University of Cincinnati College of Medicine , Cincinnati , OH , USA
| | - Shu-Hua Ye
- c Department of Urology , College of Medicine, University of Illinois at Chicago , Chicago , IL , USA
| | - Mario Medvedovic
- a Department of Environmental Health , University of Cincinnati College of Medicine , Cincinnati , OH , USA.,b Center for Environmental Genetics, University of Cincinnati College of Medicine , Cincinnati , OH , USA.,d Cincinnati Cancer Center , Cincinnati , OH , USA
| | - Yuet-Kin Leung
- a Department of Environmental Health , University of Cincinnati College of Medicine , Cincinnati , OH , USA.,b Center for Environmental Genetics, University of Cincinnati College of Medicine , Cincinnati , OH , USA.,d Cincinnati Cancer Center , Cincinnati , OH , USA
| | - Gail S Prins
- c Department of Urology , College of Medicine, University of Illinois at Chicago , Chicago , IL , USA.,e University of Illinois Cancer Center , Chicago , IL , USA
| | - Shuk-Mei Ho
- a Department of Environmental Health , University of Cincinnati College of Medicine , Cincinnati , OH , USA.,b Center for Environmental Genetics, University of Cincinnati College of Medicine , Cincinnati , OH , USA.,d Cincinnati Cancer Center , Cincinnati , OH , USA.,f Cincinnati Veteran Affairs Hospital Medical Center , Cincinnati , OH , USA
| |
Collapse
|
16
|
Takagi R, Ishimaru J, Sugawara A, Toyoshima KE, Ishida K, Ogawa M, Sakakibara K, Asakawa K, Kashiwakura A, Oshima M, Minamide R, Sato A, Yoshitake T, Takeda A, Egusa H, Tsuji T. Bioengineering a 3D integumentary organ system from iPS cells using an in vivo transplantation model. SCIENCE ADVANCES 2016; 2:e1500887. [PMID: 27051874 PMCID: PMC4820374 DOI: 10.1126/sciadv.1500887] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 02/29/2016] [Indexed: 05/05/2023]
Abstract
The integumentary organ system is a complex system that plays important roles in waterproofing, cushioning, protecting deeper tissues, excreting waste, and thermoregulation. We developed a novel in vivo transplantation model designated as a clustering-dependent embryoid body transplantation method and generated a bioengineered three-dimensional (3D) integumentary organ system, including appendage organs such as hair follicles and sebaceous glands, from induced pluripotent stem cells. This bioengineered 3D integumentary organ system was fully functional following transplantation into nude mice and could be properly connected to surrounding host tissues, such as the epidermis, arrector pili muscles, and nerve fibers, without tumorigenesis. The bioengineered hair follicles in the 3D integumentary organ system also showed proper hair eruption and hair cycles, including the rearrangement of follicular stem cells and their niches. Potential applications of the 3D integumentary organ system include an in vitro assay system, an animal model alternative, and a bioengineered organ replacement therapy.
Collapse
Affiliation(s)
- Ryoji Takagi
- Department of Biological Science and Technology, Graduate School of Industrial Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Junko Ishimaru
- Department of Biological Science and Technology, Graduate School of Industrial Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Ayaka Sugawara
- Department of Biological Science and Technology, Graduate School of Industrial Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Koh-ei Toyoshima
- Laboratory for Organ Regeneration, RIKEN Center for Developmental Biology, Kobe, Hyogo 650-0047, Japan
- Organ Technologies Inc., Minato-ku, Tokyo 105-0001, Japan
- Department of Regenerative Medicine, Plastic and Reconstructive Surgery, Kitasato University of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| | - Kentaro Ishida
- Research Institute for Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Miho Ogawa
- Laboratory for Organ Regeneration, RIKEN Center for Developmental Biology, Kobe, Hyogo 650-0047, Japan
- Organ Technologies Inc., Minato-ku, Tokyo 105-0001, Japan
- Department of Regenerative Medicine, Plastic and Reconstructive Surgery, Kitasato University of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| | - Kei Sakakibara
- Department of Biological Science and Technology, Graduate School of Industrial Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Kyosuke Asakawa
- Laboratory for Organ Regeneration, RIKEN Center for Developmental Biology, Kobe, Hyogo 650-0047, Japan
| | - Akitoshi Kashiwakura
- Department of Biological Science and Technology, Graduate School of Industrial Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Masamitsu Oshima
- Research Institute for Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Ryohei Minamide
- Laboratory for Organ Regeneration, RIKEN Center for Developmental Biology, Kobe, Hyogo 650-0047, Japan
| | - Akio Sato
- Department of Regenerative Medicine, Plastic and Reconstructive Surgery, Kitasato University of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| | - Toshihiro Yoshitake
- Department of Regenerative Medicine, Plastic and Reconstructive Surgery, Kitasato University of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| | - Akira Takeda
- Department of Regenerative Medicine, Plastic and Reconstructive Surgery, Kitasato University of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| | - Hiroshi Egusa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi 980-8575, Japan
| | - Takashi Tsuji
- Laboratory for Organ Regeneration, RIKEN Center for Developmental Biology, Kobe, Hyogo 650-0047, Japan
- Organ Technologies Inc., Minato-ku, Tokyo 105-0001, Japan
- Research Institute for Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
- Corresponding author. E-mail:
| |
Collapse
|
17
|
Lin B, Miao Y, Wang J, Fan Z, Du L, Su Y, Liu B, Hu Z, Xing M. Surface Tension Guided Hanging-Drop: Producing Controllable 3D Spheroid of High-Passaged Human Dermal Papilla Cells and Forming Inductive Microtissues for Hair-Follicle Regeneration. ACS APPLIED MATERIALS & INTERFACES 2016; 8:5906-16. [PMID: 26886167 DOI: 10.1021/acsami.6b00202] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Human dermal papilla (DP) cells have been studied extensively when grown in the conventional monolayer. However, because of great deviation from the real in vivo three-dimensional (3D) environment, these two-dimensional (2D) grown cells tend to lose the hair-inducible capability during passaging. Hence, these 2D caused concerns have motivated the development of novel 3D culture techniques to produce cellular microtissues with suitable mimics. The hanging-drop approach is based on surface tension-based technique and the interaction between surface tension and gravity field that makes a convergence of liquid drops. This study used this technique in a converged drop to form cellular spheroids of dermal papilla cells. It leads to a controllable 3Dspheroid model for scalable fabrication of inductive DP microtissues. The optimal conditions for culturing high-passaged (P8) DP spheroids were determined first. Then, the morphological, histological and functional studies were performed. In addition, expressions of hair-inductive markers including alkaline phosphatase, α-smooth muscle actin and neural cell adhesion molecule were also analyzed by quantitative RT-PCR, immunostaining and immunoblotting. Finally, P8-DP microtissues were coimplanted with newborn mouse epidermal cells (EPCs) into nude mice. Our results indicated that the formation of 3D microtissues not only endowed P8-DP microtissues many similarities to primary DP, but also confer these microtissues an enhanced ability to induce hair-follicle (HF) neogenesis in vivo. This model provides a potential to elucidate the native biology of human DP, and also shows the promising for the controllable and scalable production of inductive DP cells applied in future follicle regeneration.
Collapse
Affiliation(s)
- Bojie Lin
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University , 1838 North Guangzhou Avenue, Guangzhou, Guangdong 510515, China
- Department of Mechanical Engineering and Department of Biomedical & Medical Genetics, University of Manitoba , 75A Chancellors Circle, Winnipeg, Manitoba R3T 2N2, Canada
- Children's Hospital Research Institute of Manitoba , 715 McDermot Avenue, Winnipeg, Manitoba R3E 3P4, Canada
| | - Yong Miao
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University , 1838 North Guangzhou Avenue, Guangzhou, Guangdong 510515, China
| | - Jin Wang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University , 1838 North Guangzhou Avenue, Guangzhou, Guangdong 510515, China
| | - Zhexiang Fan
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University , 1838 North Guangzhou Avenue, Guangzhou, Guangdong 510515, China
| | - Lijuan Du
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University , 1838 North Guangzhou Avenue, Guangzhou, Guangdong 510515, China
| | - Yongsheng Su
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University , 1838 North Guangzhou Avenue, Guangzhou, Guangdong 510515, China
| | - Bingcheng Liu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University , 1838 North Guangzhou Avenue, Guangzhou, Guangdong 510515, China
| | - Zhiqi Hu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University , 1838 North Guangzhou Avenue, Guangzhou, Guangdong 510515, China
| | - Malcolm Xing
- Department of Mechanical Engineering and Department of Biomedical & Medical Genetics, University of Manitoba , 75A Chancellors Circle, Winnipeg, Manitoba R3T 2N2, Canada
- Children's Hospital Research Institute of Manitoba , 715 McDermot Avenue, Winnipeg, Manitoba R3E 3P4, Canada
| |
Collapse
|
18
|
Calderon-Gierszal EL, Prins GS. Directed Differentiation of Human Embryonic Stem Cells into Prostate Organoids In Vitro and its Perturbation by Low-Dose Bisphenol A Exposure. PLoS One 2015. [PMID: 26222054 PMCID: PMC4519179 DOI: 10.1371/journal.pone.0133238] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Studies using rodent and adult human prostate stem-progenitor cell models suggest that developmental exposure to the endocrine disruptor Bisphenol-A (BPA) can predispose to prostate carcinogenesis with aging. Unknown at present is whether the embryonic human prostate is equally susceptible to BPA during its natural developmental window. To address this unmet need, we herein report the construction of a pioneer in vitro human prostate developmental model to study the effects of BPA. The directed differentiation of human embryonic stem cells (hESC) into prostatic organoids in a spatial system was accomplished with precise temporal control of growth factors and steroids. Activin-induced definitive endoderm was driven to prostate specification by combined exposure to WNT10B and FGF10. Matrigel culture for 20–30 days in medium containing R-Spondin-1, Noggin, EGF, retinoic acid and testosterone was sufficient for mature prostate organoid development. Immunofluorescence and gene expression analysis confirmed that organoids exhibited cytodifferentiation and functional properties of the human prostate. Exposure to 1 nM or 10 nM BPA throughout differentiation culture disturbed early morphogenesis in a dose-dependent manner with 1 nM BPA increasing and 10 nM BPA reducing the number of branched structures formed. While differentiation of branched structures to mature organoids seemed largely unaffected by BPA exposure, the stem-like cell population increased, appearing as focal stem cell nests that have not properly entered lineage commitment rather than the rare isolated stem cells found in normally differentiated structures. These findings provide the first direct evidence that low-dose BPA exposure targets hESC and perturbs morphogenesis as the embryonic cells differentiate towards human prostate organoids, suggesting that the developing human prostate may be susceptible to disruption by in utero BPA exposures.
Collapse
Affiliation(s)
- Esther L. Calderon-Gierszal
- Departments of Urology and Physiology & Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Gail S. Prins
- Departments of Urology and Physiology & Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
19
|
Niemann C, Schneider MR. Hair type-specific function of canonical Wnt activity in adult mouse skin. Exp Dermatol 2015; 23:881-3. [PMID: 25039641 DOI: 10.1111/exd.12509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2014] [Indexed: 12/19/2022]
Abstract
Wnt/β-catenin signalling is a key regulator of hair follicle (HF) morphogenesis and life-long HF regeneration. In a recently published issue of Experimental Dermatology, Lei et al. report that sustained WNT10B supply and pathway activation in regenerating mouse HF increased the width of hair bulbs, hair shafts and the dermal papilla (DP), and enlarged the CD34(+) HF bulge cell compartment. Notably, WNT10B affected primarily zigzag HFs, while size and morphology of other HF types remained largely unaffected. Thus, these findings raise a number of questions regarding a HF type-specific function of Wnt/β-catenin and on the role of the WNT-stimulated DP in this process.
Collapse
Affiliation(s)
- Catherin Niemann
- Medical Faculty, Center for Biochemistry, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | | |
Collapse
|
20
|
Dong L, Hao H, Liu J, Tong C, Ti D, Chen D, Chen L, Li M, Liu H, Fu X, Han W. Wnt1a maintains characteristics of dermal papilla cells that induce mouse hair regeneration in a 3D preculture system. J Tissue Eng Regen Med 2015; 11:1479-1489. [PMID: 26118627 DOI: 10.1002/term.2046] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 03/02/2015] [Accepted: 04/29/2015] [Indexed: 11/09/2022]
Abstract
Hair follicle morphogenesis and regeneration depend on intensive but well-orchestrated interactions between epithelial and mesenchymal components. Therefore, an alternative strategy to reproduce the process of epithelial-mesenchymal interaction in vitro could use a 3D system containing appropriate cell populations. The 3D air-liquid culture system for reproducibly generating hair follicles from dissociated epithelial and dermal papilla (DP) cells combined with a collagen-chitosan scaffold is described in this study. Wnt-CM was prepared from the supernatant of Wnt1a-expressing bone marrow mesenchymal stem cells (BM-MSCs) that maintain the hair-inducing gene expression of DP cells. The collagen-chitosan scaffold cells (CCS cells) were constructed using a two-step method by inoculating the Wnt-CM-treated DP cells and epidermal (EP) cells into the CCS. The cells in the air-liquid culture formed dermal condensates and a proliferative cell layer in vitro. The CCS cells were able to induce hair regeneration in nude mice. The results demonstrate that Wnt-CM can maintain the hair induction ability of DP cells in expansion cultures, and this approach can be used for large-scale preparation of CCS cells in vitro to treat hair loss. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Liang Dong
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Haojie Hao
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Jiejie Liu
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Chuan Tong
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Dongdong Ti
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Deyun Chen
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Li Chen
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Meirong Li
- Central Laboratory, Hainan Branch, Chinese PLA General Hospital, Sanya, People's Republic of China
| | - Huiling Liu
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Xiaobing Fu
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Weidong Han
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing, People's Republic of China
| |
Collapse
|
21
|
Abstract
The epidermis and associated appendages of the skin represent a multi-lineage tissue that is maintained by perpetual rounds of renewal. During homeostasis, turnover of epidermal lineages is achieved by input from regionalized keratinocytes stem or progenitor populations with little overlap from neighboring niches. Over the last decade, molecular markers selectively expressed by a number of these stem or progenitor pools have been identified, allowing for the isolation and functional assessment of stem cells and genetic lineage tracing analysis within intact skin. These advancements have led to many fundamental observations about epidermal stem cell function such as the identification of their progeny, their role in maintenance of skin homeostasis, or their contribution to wound healing. In this chapter, we provide a methodology to identify and isolate epidermal stem cells and to assess their functional role in their respective niche. Furthermore, recent evidence has shown that the microenvironment also plays a crucial role in stem cell function. Indeed, epidermal cells are under the influence of surrounding fibroblasts, adipocytes, and sensory neurons that provide extrinsic signals and mechanical cues to the niche and contribute to skin morphogenesis and homeostasis. A better understanding of these microenvironmental cues will help engineer in vitro experimental models with more relevance to in vivo skin biology. New approaches to address and study these environmental cues in vitro will also be addressed.
Collapse
Affiliation(s)
- Yanne S Doucet
- Department of Dermatology, College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | | |
Collapse
|
22
|
Ouji Y, Ishizaka S, Nakamura-Uchiyama F, Okuzaki D, Yoshikawa M. Partial maintenance and long-term expansion of murine skin epithelial stem cells by Wnt-3a in vitro. J Invest Dermatol 2014; 135:1598-1608. [PMID: 25437427 DOI: 10.1038/jid.2014.510] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Revised: 11/13/2014] [Accepted: 11/19/2014] [Indexed: 01/02/2023]
Abstract
CD49f(+)CD34(+) cells, a skin epithelial stem cell (EpSC)-rich population, were prepared from adult mouse skin and cultured in the presence of Wnt-3a without feeder cells. CD34 expression was retained in about 10% of the cells, which had proliferated about 1,000-fold by day 10, although completely lost by day 14. CD49f(+)CD34(+) cells sorted on day 10 retained canonical Wnt-responsiveness, proliferated markedly in the presence of Wnt-3a, maintained undifferentiated epithelial cell marker expression, and promoted hair follicle development in vivo. Those were subjected to a second 10-day culture with Wnt-3a and sorted, and then the same procedures were repeated a total of 15 times. CD49f(+)CD34(+) cells obtained from each of those cultures retained the same EpSC characteristics as the original cells. CD34(+) and CD34(-) cells were found to produce Wnt-3a and Wnt/β-catenin inhibitors, respectively. CD34(+) cells resided as small cellular clusters surrounded by a large amount of CD34(-) cells. Furthermore, we found that exogenous Wnt-3a delayed the conversion of CD34(+) cells to CD34(-) cells and induced CD34(-) cells to suppress the production of Wnt/β-catenin inhibitors, likely leading to generation of a microenvironment favorable for maintaining EpSCs. Our results suggest the possibility of partial long-term maintenance of EpSCs in vitro by Wnt-3a.
Collapse
Affiliation(s)
- Yukiteru Ouji
- Department of Pathogen, Infection and Immunity, Nara Medical University, Kashihara, Japan; Program in Tissue Engineering, Department of Parasitology, Nara Medical University, Kashihara, Japan.
| | - Shigeaki Ishizaka
- Program in Tissue Engineering, Department of Parasitology, Nara Medical University, Kashihara, Japan
| | | | - Daisuke Okuzaki
- DNA-chip Development Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Masahide Yoshikawa
- Department of Pathogen, Infection and Immunity, Nara Medical University, Kashihara, Japan; Program in Tissue Engineering, Department of Parasitology, Nara Medical University, Kashihara, Japan.
| |
Collapse
|
23
|
Microenvironmental reprogramming by three-dimensional culture enables dermal papilla cells to induce de novo human hair-follicle growth. Proc Natl Acad Sci U S A 2013; 110:19679-88. [PMID: 24145441 DOI: 10.1073/pnas.1309970110] [Citation(s) in RCA: 249] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
De novo organ regeneration has been observed in several lower organisms, as well as rodents; however, demonstrating these regenerative properties in human cells and tissues has been challenging. In the hair follicle, rodent hair follicle-derived dermal cells can interact with local epithelia and induce de novo hair follicles in a variety of hairless recipient skin sites. However, multiple attempts to recapitulate this process in humans using human dermal papilla cells in human skin have failed, suggesting that human dermal papilla cells lose key inductive properties upon culture. Here, we performed global gene expression analysis of human dermal papilla cells in culture and discovered very rapid and profound molecular signature changes linking their transition from a 3D to a 2D environment with early loss of their hair-inducing capacity. We demonstrate that the intact dermal papilla transcriptional signature can be partially restored by growth of papilla cells in 3D spheroid cultures. This signature change translates to a partial restoration of inductive capability, and we show that human dermal papilla cells, when grown as spheroids, are capable of inducing de novo hair follicles in human skin.
Collapse
|