1
|
Xuan Z, Gurevich L, Christiansen JDC, Zachar V, Pennisi CP. Stable hydrogel adhesion to polydimethylsiloxane enables cyclic mechanical stimulation of 3D-bioprinted smooth muscle constructs. Biotechnol Bioeng 2023; 120:3396-3408. [PMID: 37526327 DOI: 10.1002/bit.28516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/05/2023] [Accepted: 07/11/2023] [Indexed: 08/02/2023]
Abstract
During normal urination, smooth muscle cells (SMCs) in the lower urinary tract (LUT) are exposed to mechanical signals that have a critical impact on tissue structure and function. Nevertheless, the mechanisms underlying the maintenance of the contractile phenotype of SMCs remain poorly understood. This is due, in part, to a lack of studies that have examined the effects of mechanical loading using three-dimensional (3D) models. In this study, surface modifications of polydimethylsiloxane (PDMS) membrane were evaluated to investigate the effects of cyclic mechanical stimulation on SMC maturation in 3D constructs. Commercially available cell stretching plates were modified with amino or methacrylate groups to promote adhesion of 3D constructs fabricated by bioprinting. After 6 days of stimulation, the effects of mechanical stimulation on the expression of contractile markers at the mRNA and protein levels were analyzed. Methacrylate-modified surfaces supported stable adhesion of the 3D constructs to the membrane and facilitated cyclic mechanical stimulation, which significantly increased the expression of contractile markers at the mRNA and protein levels. These effects were found to be mediated by activation of the p38 MAPK pathway, as inhibition of this pathway abolished the effects of stimulation in a dose-dependent manner. These results provide valuable insights into the role of mechanical signaling in maintaining the contractile phenotype of bladder SMCs, which has important implications for the development of future treatments for LUT diseases.
Collapse
Affiliation(s)
- Zongzhe Xuan
- Regenerative Medicine Group, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Leonid Gurevich
- Department of Materials and Production, Aalborg University, Aalborg, Denmark
| | | | - Vladimir Zachar
- Regenerative Medicine Group, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Cristian Pablo Pennisi
- Regenerative Medicine Group, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
2
|
Chae S, Kim J, Yi HG, Cho DW. 3D Bioprinting of an In Vitro Model of a Biomimetic Urinary Bladder with a Contract-Release System. MICROMACHINES 2022; 13:277. [PMID: 35208401 PMCID: PMC8877589 DOI: 10.3390/mi13020277] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 01/01/2023]
Abstract
The development of curative therapy for bladder dysfunction is usually hampered owing to the lack of reliable ex vivo human models that can mimic the complexity of the human bladder. To overcome this issue, 3D in vitro model systems offering unique opportunities to engineer realistic human tissues/organs have been developed. However, existing in vitro models still cannot entirely reflect the key structural and physiological characteristics of the native human bladder. In this study, we propose an in vitro model of the urinary bladder that can create 3D biomimetic tissue structures and dynamic microenvironments to replicate the smooth muscle functions of an actual human urinary bladder. In other words, the proposed biomimetic model system, developed using a 3D bioprinting approach, can recreate the physiological motion of the urinary bladder by incorporating decellularized extracellular matrix from the bladder tissue and introducing cyclic mechanical stimuli. The results showed that the developed bladder tissue models exhibited high cell viability and proliferation rate and promoted myogenic differentiation potential given dynamic mechanical cues. We envision the developed in vitro bladder mimicry model can serve as a research platform for fundamental studies on human disease modeling and pharmaceutical testing.
Collapse
Affiliation(s)
- Suhun Chae
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea; (S.C.); (J.K.)
| | - Jaewook Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea; (S.C.); (J.K.)
| | - Hee-Gyeong Yi
- Department of Rural and Biosystems Engineering, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea
| | - Dong-Woo Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea; (S.C.); (J.K.)
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
3
|
Osthole down-regulates miR-30a and promotes autophagy to protect rats against myocardial ischemia/reperfusion injury. TURK GOGUS KALP DAMAR CERRAHISI DERGISI-TURKISH JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY 2020; 27:178-184. [PMID: 32082850 DOI: 10.5606/tgkdc.dergisi.2019.17294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/10/2018] [Indexed: 11/21/2022]
Abstract
Background This study aims to investigate the changes in miR-30a expression and myocardial autophagy following osthole treatment in a myocardial ischemia/reperfusion injury model. Methods Thirty male Wistar rats (weighing 170 to 220 g, aged 8 weeks) were randomly divided into three groups as control (sham) group, ischemia/reperfusion (model) group, and ischemia/ reperfusion + osthole post-treatment (osthole) group. Masson"s trichrome staining was used to detect myocardial collagen changes. Apoptotic cardiomyocytes in the ischemic area were labeled in situ by terminal deoxynucleotidyl transferase-mediated dUTP (2'-deoxyuridine 5'-triphosphate) nick end labeling assay. Levels of autophagy markers light chain 3 beta (LC3b) and Beclin-1 in myocardial tissue were detected by western blotting. Expression of miR-30a was detected by quantitative reverse transcriptionpolymerase chain reaction. Results Compared with the sham group, ischemia/reperfusion significantly increased collagen contents. Osthole significantly inhibited the ischemia/reperfusion-increased collagen contents. Osthole inhibited the ischemia/reperfusion-increased myocardial fibrosis, myocardial swelling, necrosis, and myocardial atrophy. Osthole also significantly inhibited the ischemia/reperfusionincreased apoptosis of myocardial cells. Moreover, the conversion of LC3b-I to LC3b-II and the Beclin-1 expression were significantly inhibited by ischemia/reperfusion. Osthole treatment significantly increased the conversion of LC3b-I to LC3b-II and Beclin-1 expression in ischemia/reperfusion rats. Finally, the expression of miR-30a was significantly increased in ischemia/reperfusion rats, while Osthole suppressed the expression of miR-30a. Conclusion Osthole promoted autophagy, thereby alleviating myocardial ischemia/reperfusion injury. Osthole protects the myocardium during autophagy by down-regulating miR-30a expression.
Collapse
|
4
|
Yu Y, Liu S, Wu X, Yu Z, Xu Y, Zhao W, Zavodnik I, Zheng J, Li C, Zhao H. Mechanism of Stiff Substrates up-Regulate Cultured Neuronal Network Activity. ACS Biomater Sci Eng 2019; 5:3475-3482. [PMID: 33405731 DOI: 10.1021/acsbiomaterials.9b00225] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Our previous work provided compelling evidence showing that substrate stiffness is crucial for regulating synaptic connectivity and excitatory synaptic transmission among neurons in the neuronal network. However, the underlying mechanisms remain elusive. In our study, polydimethylsiloxane (PDMS) substrates with different stiffness have been fabricated to investigate the mechanisms by which the substrate stiffness upregulates the formation and activity of the cultured neuronal network. Here we report that stiff substrate increased both the number of synapses and the efficacy of excitatory synaptic transmission. More colocalization of synaptotagmin and PSD-95 was observed in the neuronal network on stiff substrate, which indicated the synapse number has increased. We also found that the increased synapse number was mediated by Hevin and SPARC that are secreted from astrocyte. The increased efficacy of excitatory synaptic transmission induced by stiff substrate was explored in three aspects. First, stiff substrate enhanced the presynaptic activity through increasing the vesicular release probability (Pr) of neurotransmitters as well as the calcium influx. Second, stiff substrate reduced voltage-dependent Mg2+ blockade to N-methyl-d-aspartate receptor (NMDAR) channels, which led to higher postsynaptic activity. Third, our work suggested that the increased excitatory synaptic transmission in the neural network on stiff substrate involved the upregulated synaptic glutamate concentration. Taken together, these findings may provide a molecular mechanism underlying substrate stiffness regulation of excitatory synaptic transmission in the cultured neural network.
Collapse
Affiliation(s)
- Yang Yu
- Institute of Biomechanics and Medical Engineering, School of Aerospace Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Sisi Liu
- Institute of Biomechanics and Medical Engineering, School of Aerospace Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Xiaoan Wu
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, Florida 33136, United States
| | - Zhang Yu
- Institute of Biomechanics and Medical Engineering, School of Aerospace Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Yishi Xu
- Beijing No. 4 High School, Beijing 100034, People's Republic of China
| | - Weijiang Zhao
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong 515041, People's Republic of China
| | - Ilya Zavodnik
- Department of Biochemistry, Yanka Kupala State University Grodno, Blvd Len Kom 50, Grodno 230030, Belarus
| | - Jinping Zheng
- Department of Physiology, Changzhi Medical College, Changzhi 046000, People's Republic of China
| | - Chen Li
- Department of Physiology, Changzhi Medical College, Changzhi 046000, People's Republic of China
| | - Hucheng Zhao
- Institute of Biomechanics and Medical Engineering, School of Aerospace Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
5
|
Lai J, Ai J, Luo D, Jin T, Liao B, Zhou L, Feng S, Jin X, Li H, Wang K. β-Adrenoceptor signaling regulates proliferation and contraction of human bladder smooth muscle cells under pathological hydrostatic pressure. J Cell Biochem 2019; 120:17872-17886. [PMID: 31161623 DOI: 10.1002/jcb.29056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/26/2019] [Accepted: 04/30/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND Partial bladder outlet obstruction (PBOO) promotes bladder detrusor hyperplasia, increases bladder pressure, and decreases bladder compliance. To extensively explore its underlying mechanism, our study aimed to investigate the effect of pathological hydrostatic pressure on human bladder smooth muscle cell (hBSMC) proliferation and contraction through β-adrenoceptor (ADRB) signaling in vitro. METHODS hBSMCs were subjected to pathological hydrostatic pressure (100 cm H2 O) to investigate the effect of ADRBs on the proliferation and contraction of hBSMCs treated with its agonists and/or antagonists. RESULTS Firstly, exposure to 100 cm H2 O hydrostatic pressure significantly upregulated the expression of α-smooth muscle actin (α-SMA) in hBSMCs at 6 hours, and promoted cell proliferation at 24 hours. When subjected to hydrostatic pressure alone, hBSMCs treated with ADRB2 and ADRB3 agonists for 6 hours inhibited α-SMA expression compared with untreated cells. By contrast, hBSMCs treated with ADRB2 agonists for 24 hours suppressed cell proliferation compared with untreated cells. The two classical pathways of ADRB, protein kinase A (PKA), and exchange factor directly activated by cAMP (EPAC) inhibited the contraction of hBSMCs under hydrostatic pressure via regulating mothers against decapentaplegic homolog 2 (SMAD2) activity. The proliferation of hBSMCs was mainly regulated by the EPAC pathway through extracellular signal-regulated kinase 1/2 (ERK1/2) activity. CONCLUSION The contraction of hBSMCs under hydrostatic pressure was regulated by ADRB2 and ADRB3 via the PKA/EPAC-SMAD2 pathway, and the proliferation of hBSMCs was regulated by ADRB2 via the EPAC-ERK1/2 pathway. Compared with ADRB3, ADRB2 played a predominant role under pathological hydrostatic pressure. These findings markedly uncovered the underlying mechanism of ADRBs in PBOO and provided new insights into the efficient treatment of patients with PBOO.
Collapse
Affiliation(s)
- Junyu Lai
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jianzhong Ai
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Deyi Luo
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tao Jin
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Banghua Liao
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Liang Zhou
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shijian Feng
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xi Jin
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hong Li
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kunjie Wang
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Yang S, Dong F, Li D, Sun H, Wu B, Sun T, Wang Y, Shen P, Ji F, Zhou D. Persistent distention of colon damages interstitial cells of Cajal through Ca 2+ -ERK-AP-1-miR-34c-SCF deregulation. J Cell Mol Med 2017; 21:1881-1892. [PMID: 28580775 PMCID: PMC5571545 DOI: 10.1111/jcmm.13108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 01/02/2017] [Indexed: 12/30/2022] Open
Abstract
Gastrointestinal motility disorders (GMDs) are attributed to loss of interstitial cells of Cajal (ICC), whose survival and function are deeply dependent on the activation of KIT/SCF signalling. Based on the facts that gastrointestinal distention is common in GMD patients and SCF produced by smooth muscle cells (SMCs) is usually decreased before ICC loss, we considered a possible contribution of persistent gastrointestinal distention/stretch to SCF deficiency. In this study, chronic colonic distention mouse model, diabetic gastrointestinal paresis mouse model, cultured mouse colonic SMCs and colon specimens from Hirschsprung's disease patients were used. The results showed that SCF was clearly decreased in distent colon of mice and patients, and microRNA array and real-time PCR indicated a concomitant increase of miR-34c in distent colon. A negative regulation of miR-34c on SCF expression was confirmed by luciferase reporter assays together with knock-down and overexpression of miR-34c in cultured colonic SMCs. Using EMSA and ChIP assays, we further consolidated that in response to persistent stretch, the transcription factor AP-1/c-Jun was highly activated in colonic SMCs and significantly promoted miR-34c transcription by binding to miR-34c promoter. Knock-down or overexpression of AP-1/c-Jun in cultured colonic SMCs leads to down- or up-regulation of miR-34c, respectively. In addition, the activation of AP-1/c-Jun was through ERK1/2 signalling provoked by Ca2+ overload in colonic SMCs that were subject to persistent stretch. In conclusion, our data demonstrated that persistent distention/stretch on colonic SMCs could suppress SCF production probably through Ca2+ -ERK-AP-1-miR-34c deregulation, resulting in ICC loss or impairment and GMD progress.
Collapse
Affiliation(s)
- Shu Yang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing, China
| | - Fang Dong
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Dandan Li
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing, China
| | - Haimei Sun
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing, China
| | - Bo Wu
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing, China
| | - Tingyi Sun
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing, China
| | - Yaxi Wang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ping Shen
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Fengqing Ji
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing, China
| | - Deshan Zhou
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing, China
| |
Collapse
|
7
|
Hua W, Zhang M, Wang Y, Yu L, Zhao T, Qiu X, Wang L. Mechanical stretch regulates microRNA expression profile via NF-κB activation in C2C12 myoblasts. Mol Med Rep 2016; 14:5084-5092. [PMID: 27840929 PMCID: PMC5355701 DOI: 10.3892/mmr.2016.5907] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 09/23/2016] [Indexed: 11/06/2022] Open
Abstract
MicroRNAs (miRNAs/miRs) and nuclear factor (NF)-κB activation are involved in mechanical stretch-induced skeletal muscle regeneration. However, there are a small number of miRNAs that have been reported to be associated with NF‑κB activation during mechanical stretch-induced myogenesis. In the present study, C2C12 myoblasts underwent cyclic mechanical stretch in vitro, to explore the relationship between miRNA expression and NF‑κB activation during stretch-mediated myoblast proliferation. The results revealed that 10% deformation, 0.125 Hz cyclic mechanical stretch could promote myoblast proliferation. The miRNA expression profile was subsequently altered; miR‑500, ‑1934, ‑31, ‑378, ‑331 and ‑5097 were downregulated, whereas miR‑1941 was upregulated. These miRNAs were all involved in stretch‑mediated myoblast proliferation. Notably, the expression of these miRNAs was reversed following treatment of 0.125 Hz mechanically stretched C2C12 cells with NF‑κB inhibitors, which was accompanied by C2C12 cell growth suppression. Therefore, the present study is the first, to the best of our knowledge, to demonstrate that the NF‑κB‑dependent miRNA profile is associated with mechanical stretch-induced myoblast proliferation.
Collapse
Affiliation(s)
- Wenxi Hua
- Department of Anatomy, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou, Guangdong 510515, P.R. China
| | - Mahui Zhang
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yongkui Wang
- Department of Anatomy, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou, Guangdong 510515, P.R. China
| | - Lei Yu
- Department of Anatomy, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou, Guangdong 510515, P.R. China
| | - Tingting Zhao
- Department of Anatomy, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou, Guangdong 510515, P.R. China
| | - Xiaozhong Qiu
- Department of Anatomy, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou, Guangdong 510515, P.R. China
| | - Leyu Wang
- Department of Anatomy, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
8
|
Dong F, Yang S, Sun H, Yan J, Guo X, Li D, Zhou D. Persistent mechanical stretch-induced calcium overload and MAPK signal activation contributed to SCF reduction in colonic smooth muscle in vivo and in vitro. J Recept Signal Transduct Res 2016; 37:141-148. [PMID: 27400729 DOI: 10.1080/10799893.2016.1203939] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Gastrointestinal (GI) distention is a common pathological characteristic in most GI motility disorders (GMDs), however, their detail mechanism remains unknown. In this study, we focused on Ca2+ overload of smooth muscle, which is an early intracellular reaction to stretch, and its downstream MAPK signaling and also reduction of SCF in vivo and in vitro. We successfully established colonic dilation mouse model by keeping incomplete colon obstruction for 8 days. The results showed that persistent colonic dilation clearly induced Ca2+ overload and activated all the three MAPK family members including JNK, ERK and p38 in smooth muscle tissues. Similar results were obtained from dilated colon of patients with Hirschsprung's disease and stretched primary mouse colonic smooth muscle cells (SMCs). Furthermore, we demonstrated that persistent stretch-induced Ca2+ overload was originated from extracellular Ca2+ influx and endoplasmic reticulum (ER) Ca2+ release identified by treating with different Ca2+ channel blockers, and was responsible for the persistent activation of MAPK signaling and SCF reduction in colonic SMCs. Our results suggested that Ca2+ overload caused by smooth muscle stretch led to persistent activation of MAPK signaling which might contribute to the decrease of SCF and development of the GMDs.
Collapse
Affiliation(s)
- Fang Dong
- a Department of Histology and Embryology, School of Basic Medical Sciences , Capital Medical University , Beijing , P. R. China
| | - Shu Yang
- a Department of Histology and Embryology, School of Basic Medical Sciences , Capital Medical University , Beijing , P. R. China.,b Beijing Key Laboratory of Cancer Invasion and Metastasis Research , Beijing , P. R. China
| | - Haimei Sun
- a Department of Histology and Embryology, School of Basic Medical Sciences , Capital Medical University , Beijing , P. R. China.,b Beijing Key Laboratory of Cancer Invasion and Metastasis Research , Beijing , P. R. China
| | - Jihong Yan
- a Department of Histology and Embryology, School of Basic Medical Sciences , Capital Medical University , Beijing , P. R. China
| | - Xiaoxia Guo
- c Experimental Teaching Center of Preclinical Medicine , Capital Medical University , Beijing , P. R. China
| | - Dandan Li
- a Department of Histology and Embryology, School of Basic Medical Sciences , Capital Medical University , Beijing , P. R. China
| | - Deshan Zhou
- a Department of Histology and Embryology, School of Basic Medical Sciences , Capital Medical University , Beijing , P. R. China.,b Beijing Key Laboratory of Cancer Invasion and Metastasis Research , Beijing , P. R. China
| |
Collapse
|
9
|
Ito S, Ozawa K, Zhao J, Kyotani Y, Nagayama K, Yoshizumi M. Olmesartan inhibits cultured rat aortic smooth muscle cell death induced by cyclic mechanical stretch through the inhibition of the c-Jun N-terminal kinase and p38 signaling pathways. J Pharmacol Sci 2015; 127:69-74. [DOI: 10.1016/j.jphs.2014.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 09/24/2014] [Accepted: 09/29/2014] [Indexed: 11/30/2022] Open
|