1
|
Yagi H, Takagi K, Kato K. Exploring domain architectures of human glycosyltransferases: Highlighting the functional diversity of non-catalytic add-on domains. Biochim Biophys Acta Gen Subj 2024; 1868:130687. [PMID: 39097174 DOI: 10.1016/j.bbagen.2024.130687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/17/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024]
Abstract
Human glycosyltransferases (GTs) play crucial roles in glycan biosynthesis, exhibiting diverse domain architectures. This study explores the functional diversity of "add-on" domains within human GTs, using data from the AlphaFold Protein Structure Database. Among 215 annotated human GTs, 74 contain one or more add-on domains in addition to their catalytic domain. These domains include lectin folds, fibronectin type III, and thioredoxin-like domains and contribute to substrate specificity, oligomerization, and consequent enzymatic activity. Notably, certain GTs possess dual enzymatic functions due to catalytic add-on domains. The analysis highlights the importance of add-on domains in enzyme functionality and disease implications, such as congenital disorders of glycosylation. This comprehensive overview enhances our understanding of GT domain organization, providing insights into glycosylation mechanisms and potential therapeutic targets.
Collapse
Affiliation(s)
- Hirokazu Yagi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Japan; Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Japan
| | - Katsuki Takagi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Japan; Institute for Molecular Science, National Institutes of Natural Sciences, Japan
| | - Koichi Kato
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Japan; Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Japan; Institute for Molecular Science, National Institutes of Natural Sciences, Japan.
| |
Collapse
|
2
|
Jia X, Zhang H, Qin H, Li K, Liu X, Wang W, Ye M, Yin H. Protein O-GlcNAcylation impairment caused by N-acetylglucosamine phosphate mutase deficiency leads to growth variations in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:613-635. [PMID: 36799458 DOI: 10.1111/tpj.16156] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 05/10/2023]
Abstract
As an essential enzyme in the uridine diphosphate (UDP)-GlcNAc biosynthesis pathway, the significant role of N-acetylglucosamine phosphate mutase (AGM) remains unknown in plants. In the present study, a functional plant AGM (AtAGM) was identified from Arabidopsis thaliana. AtAGM catalyzes the isomerization of GlcNAc-1-P and GlcNAc-6-P, and has broad catalytic activity on different phosphohexoses. UDP-GlcNAc contents were significantly decreased in AtAGM T-DNA insertional mutants, which caused temperature-dependent growth defects in seedlings and vigorous growth in adult plants. Further analysis revealed that protein O-GlcNAcylation but not N-glycosylation was dramatically impaired in Atagm mutants due to UDP-GlcNAc shortage. Combined with the results from O-GlcNAcylation or N-glycosylation deficient mutants, and O-GlcNAcase inhibitor all suggested that protein O-GlcNAcylation impairment mainly leads to the phenotypic variations of Atagm plants. In conclusion, based on the essential role in UDP-GlcNAc biosynthesis, AtAGM is important for plant growth mainly via protein O-GlcNAcylation-level regulation.
Collapse
Affiliation(s)
- Xiaochen Jia
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Hongyan Zhang
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Hongqiang Qin
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Kuikui Li
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Xiaoyan Liu
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Wenxia Wang
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Mingliang Ye
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Heng Yin
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| |
Collapse
|
3
|
Hu W, Zhang G, Zhou Y, Xia J, Zhang P, Xiao W, Xue M, Lu Z, Yang S. Recent development of analytical methods for disease-specific protein O-GlcNAcylation. RSC Adv 2022; 13:264-280. [PMID: 36605671 PMCID: PMC9768672 DOI: 10.1039/d2ra07184c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
The enzymatic modification of protein serine or threonine residues by N-acetylglucosamine, namely O-GlcNAcylation, is a ubiquitous post-translational modification that frequently occurs in the nucleus and cytoplasm. O-GlcNAcylation is dynamically regulated by two enzymes, O-GlcNAc transferase and O-GlcNAcase, and regulates nearly all cellular processes in epigenetics, transcription, translation, cell division, metabolism, signal transduction and stress. Aberrant O-GlcNAcylation has been shown in a variety of diseases, including diabetes, neurodegenerative diseases and cancers. Deciphering O-GlcNAcylation remains a challenge due to its low abundance, low stoichiometry and extreme lability in most tandem mass spectrometry. Separation or enrichment of O-GlcNAc proteins or peptides from complex mixtures has been of great interest because quantitative analysis of protein O-GlcNAcylation can elucidate their functions and regulatory mechanisms in disease. However, valid and specific analytical methods are still lacking, and efforts are needed to further advance this direction. Here, we provide an overview of recent advances in various analytical methods, focusing on chemical oxidation, affinity of antibodies and lectins, hydrophilic interaction, and enzymatic addition of monosaccharides in conjugation with these methods. O-GlcNAcylation quantification has been described in detail using mass-spectrometric or non-mass-spectrometric techniques. We briefly summarized dysregulated changes in O-GlcNAcylation in disease.
Collapse
Affiliation(s)
- Wenhua Hu
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University Suzhou Jiangsu 215123 China
| | - Guolin Zhang
- Suzhou Institute for Drug Control Suzhou Jiangsu 215104 China
| | - Yu Zhou
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College Hangzhou Zhejiang 310014 China
| | - Jun Xia
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College Hangzhou Zhejiang 310014 China
| | - Peng Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University Suzhou Jiangsu 215004 China
| | - Wenjin Xiao
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University Suzhou Jiangsu 215004 China
| | - Man Xue
- Suzhou Institute for Drug Control Suzhou Jiangsu 215104 China
| | - Zhaohui Lu
- Health Examination Center, The Second Affiliated Hospital of Soochow University Suzhou Jiangsu 215004 China
| | - Shuang Yang
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University Suzhou Jiangsu 215123 China
| |
Collapse
|
4
|
Sheikh MO, Capicciotti CJ, Liu L, Praissman J, Ding D, Mead DG, Brindley MA, Willer T, Campbell KP, Moremen KW, Wells L, Boons GJ. Cell surface glycan engineering reveals that matriglycan alone can recapitulate dystroglycan binding and function. Nat Commun 2022; 13:3617. [PMID: 35750689 PMCID: PMC9232514 DOI: 10.1038/s41467-022-31205-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/07/2022] [Indexed: 12/29/2022] Open
Abstract
α-Dystroglycan (α-DG) is uniquely modified on O-mannose sites by a repeating disaccharide (-Xylα1,3-GlcAβ1,3-)n termed matriglycan, which is a receptor for laminin-G domain-containing proteins and employed by old-world arenaviruses for infection. Using chemoenzymatically synthesized matriglycans printed as a microarray, we demonstrate length-dependent binding to Laminin, Lassa virus GP1, and the clinically-important antibody IIH6. Utilizing an enzymatic engineering approach, an N-linked glycoprotein was converted into a IIH6-positive Laminin-binding glycoprotein. Engineering of the surface of cells deficient for either α-DG or O-mannosylation with matriglycans of sufficient length recovers infection with a Lassa-pseudovirus. Finally, free matriglycan in a dose and length dependent manner inhibits viral infection of wildtype cells. These results indicate that matriglycan alone is necessary and sufficient for IIH6 staining, Laminin and LASV GP1 binding, and Lassa-pseudovirus infection and support a model in which it is a tunable receptor for which increasing chain length enhances ligand-binding capacity.
Collapse
Affiliation(s)
- M Osman Sheikh
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Chantelle J Capicciotti
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
- Departments of Chemistry, Biomedical and Molecular Sciences, and Surgery, Queen's University, Kingston, ON, Canada
| | - Lin Liu
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Jeremy Praissman
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Dahai Ding
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
- Department of Chemistry, University of Georgia, Athens, GA, USA
| | - Daniel G Mead
- College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | | | - Tobias Willer
- Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics, The University of Iowa, Iowa City, IA, USA
- Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Kevin P Campbell
- Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics, The University of Iowa, Iowa City, IA, USA
- Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Kelley W Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA, USA
| | - Lance Wells
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA.
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA, USA.
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA.
- Department of Chemistry, University of Georgia, Athens, GA, USA.
- Department of Chemical Biology and Drug Discovery, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
5
|
Magerd S, Senarai T, Thongsum O, Chawiwithaya C, Sato C, Kitajima K, Weerachatyanukul W, Asuvapongpatana S, Surinlert P. Shrimp thrombospondin (TSP): presence of O-β1,4 N-acetylglucosamine polymers and its function in TSP chain association in egg extracellular matrix. Sci Rep 2022; 12:7925. [PMID: 35562392 PMCID: PMC9106747 DOI: 10.1038/s41598-022-11873-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/29/2022] [Indexed: 11/12/2022] Open
Abstract
We characterized the existence of O-β(1,4)-GlcNAc polymers (β1,4GNP) that were anchored on the O-linked glycosylation sites of shrimp thrombospondin (pmTSP-II). There were five putative β1,4GNP linkages on the epithelial growth factor-like domain of pmTSP-II. Antibody against O-β-GlcNAc (CTD110.6) was used to prove the existence of linear and complex β1,4GNP. The antibody well reacted with linear chito-triose, -tetraose and -pentaose conjugated with phosphatidylethanolamine lipid. The immunoreactivity could also be detected with a complex β1,4GNP within pmTSP-II (at MW > 250 kDa). Upon denaturing the protein with SDS-PAGE buffer, the size of pmTSP-II was shifted to be 250 kDa, approximately 2.5 folds larger than the deduced molecular mass of pmTSP-II (110 kDa), suggesting additional association of pmTSP-II apart from its known disulfide bridging. This was confirmed by chitinase digestion on pmTSP-II protein leading to the subsequent smaller protein bands at 110–170 kDa in time- and concentration-dependent manners. These bands well reacted with CTD110.6 antibody and disappeared after extensive chitinase hydrolysis. Together, we believe that β1,4GNP on pmTSP-II serve the function in an inter-chain association to provide structural architecture of egg extracellular matrix, a novel function of pmTSP-II in reproductive biology.
Collapse
Affiliation(s)
- Sirilug Magerd
- Department of Basic Medical Science, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok, Thailand
| | - Thanyaporn Senarai
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Orawan Thongsum
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | - Chihiro Sato
- Bioscience and Biotechnology Center and Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Ken Kitajima
- Bioscience and Biotechnology Center and Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | | | | | - Piyaporn Surinlert
- Chulabhorn International College of Medicine, Thammasat University, Pathum-Thani, Thailand. .,Research Unit in Synthesis and Applications of Graphene, Thammasat University, Pathum-Thani, Thailand.
| |
Collapse
|
6
|
Bigotti MG, Brancaccio A. High degree of conservation of the enzymes synthesizing the laminin-binding glycoepitope of α-dystroglycan. Open Biol 2021; 11:210104. [PMID: 34582712 PMCID: PMC8478517 DOI: 10.1098/rsob.210104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The dystroglycan (DG) complex plays a pivotal role for the stabilization of muscles in Metazoa. It is formed by two subunits, extracellular α-DG and transmembrane β-DG, originating from a unique precursor via a complex post-translational maturation process. The α-DG subunit is extensively glycosylated in sequential steps by several specific enzymes and employs such glycan scaffold to tightly bind basement membrane molecules. Mutations of several of these enzymes cause an alteration of the carbohydrate structure of α-DG, resulting in severe neuromuscular disorders collectively named dystroglycanopathies. Given the fundamental role played by DG in muscle stability, it is biochemically and clinically relevant to investigate these post-translational modifying enzymes from an evolutionary perspective. A first phylogenetic history of the thirteen enzymes involved in the fabrication of the so-called 'M3 core' laminin-binding epitope has been traced by an overall sequence comparison approach, and interesting details on the primordial enzyme set have emerged, as well as substantial conservation in Metazoa. The optimization along with the evolution of a well-conserved enzymatic set responsible for the glycosylation of α-DG indicate the importance of the glycosylation shell in modulating the connection between sarcolemma and surrounding basement membranes to increase skeletal muscle stability, and eventually support movement and locomotion.
Collapse
Affiliation(s)
- Maria Giulia Bigotti
- School of Translational Health Sciences, Research Floor Level 7, Bristol Royal Infirmary, Upper Maudlin Street, Bristol BS2 8HW, UK,School of Biochemistry, University Walk, University of Bristol, Bristol BS8 1TD, UK
| | - Andrea Brancaccio
- School of Biochemistry, University Walk, University of Bristol, Bristol BS8 1TD, UK,Institute of Chemical Sciences and Technologies ‘Giulio Natta’ (SCITEC) - CNR, Largo F.Vito 1, 00168, Rome, Italy
| |
Collapse
|
7
|
Abstract
The limb-girdle muscular dystrophies (LGMD) are a collection of genetic diseases united in their phenotypical expression of pelvic and shoulder area weakness and wasting. More than 30 subtypes have been identified, five dominant and 26 recessive. The increase in the characterization of new genotypes in the family of LGMDs further adds to the heterogeneity of the disease. Meanwhile, better understanding of the phenotype led to the reconsideration of the disease definition, which resulted in eight old subtypes to be no longer recognized officially as LGMD and five new diseases to be added to the LGMD family. The unique variabilities of LGMD stem from genetic mutations, which then lead to protein and ultimately muscle dysfunction. Herein, we review the LGMD pathway, starting with the genetic mutations that encode proteins involved in muscle maintenance and repair, and including the genotype–phenotype relationship of the disease, the epidemiology, disease progression, burden of illness, and emerging treatments.
Collapse
|
8
|
The promiscuous binding pocket of SLC35A1 ensures redundant transport of CDP-ribitol to the Golgi. J Biol Chem 2021; 296:100789. [PMID: 34015330 PMCID: PMC8192872 DOI: 10.1016/j.jbc.2021.100789] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/06/2021] [Accepted: 05/13/2021] [Indexed: 01/23/2023] Open
Abstract
The glycoprotein α-dystroglycan helps to link the intracellular cytoskeleton to the extracellular matrix. A unique glycan structure attached to this protein is required for its interaction with extracellular matrix proteins such as laminin. Up to now, this is the only mammalian glycan known to contain ribitol phosphate groups. Enzymes in the Golgi apparatus use CDP-ribitol to incorporate ribitol phosphate into the glycan chain of α-dystroglycan. Since CDP-ribitol is synthesized in the cytoplasm, we hypothesized that an unknown transporter must be required for its import into the Golgi apparatus. We discovered that CDP-ribitol transport relies on the CMP-sialic acid transporter SLC35A1 and the transporter SLC35A4 in a redundant manner. These two transporters are closely related, but bulky residues in the predicted binding pocket of SLC35A4 limit its size. We hypothesized that the large binding pocket SLC35A1 might accommodate the bulky CMP-sialic acid and the smaller CDP-ribitol, whereas SLC35A4 might only accept CDP-ribitol. To test this, we expressed SLC35A1 with mutations in its binding pocket in SLC35A1 KO cell lines. When we restricted the binding site of SLC35A1 by introducing the bulky residues present in SLC35A4, the mutant transporter was unable to support sialylation of proteins in cells but still supported ribitol phosphorylation. This demonstrates that the size of the binding pocket determines the substrate specificity of SLC35A1, allowing a variety of cytosine nucleotide conjugates to be transported. The redundancy with SLC35A4 also explains why patients with SLC35A1 mutations do not show symptoms of α-dystroglycan deficiency.
Collapse
|
9
|
Global view of human protein glycosylation pathways and functions. Nat Rev Mol Cell Biol 2020; 21:729-749. [PMID: 33087899 DOI: 10.1038/s41580-020-00294-x] [Citation(s) in RCA: 572] [Impact Index Per Article: 143.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2020] [Indexed: 02/07/2023]
Abstract
Glycosylation is the most abundant and diverse form of post-translational modification of proteins that is common to all eukaryotic cells. Enzymatic glycosylation of proteins involves a complex metabolic network and different types of glycosylation pathways that orchestrate enormous amplification of the proteome in producing diversity of proteoforms and its biological functions. The tremendous structural diversity of glycans attached to proteins poses analytical challenges that limit exploration of specific functions of glycosylation. Major advances in quantitative transcriptomics, proteomics and nuclease-based gene editing are now opening new global ways to explore protein glycosylation through analysing and targeting enzymes involved in glycosylation processes. In silico models predicting cellular glycosylation capacities and glycosylation outcomes are emerging, and refined maps of the glycosylation pathways facilitate genetic approaches to address functions of the vast glycoproteome. These approaches apply commonly available cell biology tools, and we predict that use of (single-cell) transcriptomics, genetic screens, genetic engineering of cellular glycosylation capacities and custom design of glycoprotein therapeutics are advancements that will ignite wider integration of glycosylation in general cell biology.
Collapse
|
10
|
Gorelik A, van Aalten DMF. Tools for functional dissection of site-specific O-GlcNAcylation. RSC Chem Biol 2020; 1:98-109. [PMID: 34458751 PMCID: PMC8386111 DOI: 10.1039/d0cb00052c] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 05/20/2020] [Indexed: 12/14/2022] Open
Abstract
Protein O-GlcNAcylation is an abundant post-translational modification of intracellular proteins with the monosaccharide N-acetylglucosamine covalently tethered to serines and threonines. Modification of proteins with O-GlcNAc is required for metazoan embryo development and maintains cellular homeostasis through effects on transcription, signalling and stress response. While disruption of O-GlcNAc homeostasis can have detrimental impact on cell physiology and cause various diseases, little is known about the functions of individual O-GlcNAc sites. Most of the sites are modified sub-stoichiometrically which is a major challenge to the dissection of O-GlcNAc function. Here, we discuss the application, advantages and limitations of the currently available tools and technologies utilised to dissect the function of O-GlcNAc on individual proteins and sites in vitro and in vivo. Additionally, we provide a perspective on future developments required to decipher the protein- and site-specific roles of this essential sugar modification.
Collapse
Affiliation(s)
- Andrii Gorelik
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee Dundee UK
| | - Daan M F van Aalten
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee Dundee UK
- Institute for Molecular Precision Medicine, Xiangya Hospital, Central South University Changsha China
| |
Collapse
|
11
|
Alam SMD, Tsukamoto Y, Ogawa M, Senoo Y, Ikeda K, Tashima Y, Takeuchi H, Okajima T. N-Glycans on EGF domain-specific O-GlcNAc transferase (EOGT) facilitate EOGT maturation and peripheral endoplasmic reticulum localization. J Biol Chem 2020; 295:8560-8574. [PMID: 32376684 DOI: 10.1074/jbc.ra119.012280] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/30/2020] [Indexed: 02/03/2023] Open
Abstract
Epidermal growth factor (EGF) domain-specific O-GlcNAc transferase (EOGT) is an endoplasmic reticulum (ER)-resident protein that modifies EGF repeats of Notch receptors and thereby regulates Delta-like ligand-mediated Notch signaling. Several EOGT mutations that may affect putative N-glycosylation consensus sites are recorded in the cancer database, but the presence and function of N-glycans in EOGT have not yet been characterized. Here, we identified N-glycosylation sites in mouse EOGT and elucidated their molecular functions. Three predicted N-glycosylation consensus sequences on EOGT are highly conserved among mammalian species. Within these sites, we found that Asn-263 and Asn-354, but not Asn-493, are modified with N-glycans. Lectin blotting, endoglycosidase H digestion, and MS analysis revealed that both residues are modified with oligomannose N-glycans. Loss of an individual N-glycan on EOGT did not affect its endoplasmic reticulum (ER) localization, enzyme activity, and ability to O-GlcNAcylate Notch1 in HEK293T cells. However, simultaneous substitution of both N-glycosylation sites affected both EOGT maturation and expression levels without an apparent change in enzymatic activity, suggesting that N-glycosylation at a single site is sufficient for EOGT maturation and expression. Accordingly, a decrease in O-GlcNAc stoichiometry was observed in Notch1 co-expressed with an N263Q/N354Q variant compared with WT EOGT. Moreover, the N263Q/N354Q variant exhibited altered subcellular distribution within the ER in HEK293T cells, indicating that N-glycosylation of EOGT is required for its ER localization at the cell periphery. These results suggest critical roles of N-glycans in sustaining O-GlcNAc transferase function both by maintaining EOGT levels and by ensuring its proper subcellular localization in the ER.
Collapse
Affiliation(s)
- Sayad Md Didarul Alam
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yohei Tsukamoto
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mitsutaka Ogawa
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuya Senoo
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazutaka Ikeda
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,RIKEN, Center for Integrative Medical Sciences, Suehiro-cho, Tsurumi, Yokohama, Japan
| | - Yuko Tashima
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hideyuki Takeuchi
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tetsuya Okajima
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
12
|
Gorelik A, Bartual SG, Borodkin VS, Varghese J, Ferenbach AT, van Aalten DMF. Genetic recoding to dissect the roles of site-specific protein O-GlcNAcylation. Nat Struct Mol Biol 2019; 26:1071-1077. [PMID: 31695185 PMCID: PMC6858883 DOI: 10.1038/s41594-019-0325-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 10/02/2019] [Indexed: 12/11/2022]
Abstract
Modification of specific Ser and Thr residues of nucleocytoplasmic proteins with O-GlcNAc, catalyzed by O-GlcNAc transferase (OGT), is an abundant posttranslational event essential for proper animal development and is dysregulated in various diseases. Due to the rapid concurrent removal by the single O-GlcNAcase (OGA), precise functional dissection of site-specific O-GlcNAc modification in vivo is currently not possible without affecting the entire O-GlcNAc proteome. Exploiting the fortuitous promiscuity of OGT, we show that S-GlcNAc is a hydrolytically stable and accurate structural mimic of O-GlcNAc that can be encoded in mammalian systems with CRISPR-Cas9 in an otherwise unperturbed O-GlcNAcome. Using this approach, we target an elusive Ser 405 O-GlcNAc site on OGA, showing that this site-specific modification affects OGA stability.
Collapse
Affiliation(s)
- Andrii Gorelik
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Sergio Galan Bartual
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Vladimir S Borodkin
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Joby Varghese
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Andrew T Ferenbach
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Daan M F van Aalten
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK.
| |
Collapse
|
13
|
Selvan N, Williamson R, Mariappa D, Campbell DG, Gourlay R, Ferenbach AT, Aristotelous T, Hopkins-Navratilova I, Trost M, van Aalten DMF. A mutant O-GlcNAcase enriches Drosophila developmental regulators. Nat Chem Biol 2017; 13:882-887. [PMID: 28604694 DOI: 10.1038/nchembio.2404] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 03/14/2017] [Indexed: 01/09/2023]
Abstract
Protein O-GlcNAcylation is a reversible post-translational modification of serines and threonines on nucleocytoplasmic proteins. It is cycled by the enzymes O-GlcNAc transferase (OGT) and O-GlcNAc hydrolase (O-GlcNAcase or OGA). Genetic approaches in model organisms have revealed that protein O-GlcNAcylation is essential for early embryogenesis. The Drosophila melanogaster gene supersex combs (sxc), which encodes OGT, is a polycomb gene, whose null mutants display homeotic transformations and die at the pharate adult stage. However, the identities of the O-GlcNAcylated proteins involved and the underlying mechanisms linking these phenotypes to embryonic development are poorly understood. Identification of O-GlcNAcylated proteins from biological samples is hampered by the low stoichiometry of this modification and by limited enrichment tools. Using a catalytically inactive bacterial O-GlcNAcase mutant as a substrate trap, we have enriched the O-GlcNAc proteome of the developing Drosophila embryo, identifying, among others, known regulators of Hox genes as candidate conveyors of OGT function during embryonic development.
Collapse
Affiliation(s)
- Nithya Selvan
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Ritchie Williamson
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Daniel Mariappa
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK.,Division of Gene Regulation and Expression, University of Dundee, Dundee, UK
| | - David G Campbell
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Robert Gourlay
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Andrew T Ferenbach
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK.,Division of Gene Regulation and Expression, University of Dundee, Dundee, UK
| | - Tonia Aristotelous
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, UK
| | - Iva Hopkins-Navratilova
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, UK
| | - Matthias Trost
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK.,Institute for Cell and Molecular Biosciences (ICaMB), Newcastle University, Newcastle-upon-Tyne, UK
| | - Daan M F van Aalten
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK.,Division of Gene Regulation and Expression, University of Dundee, Dundee, UK
| |
Collapse
|
14
|
Evolution of protein N-glycosylation process in Golgi apparatus which shapes diversity of protein N-glycan structures in plants, animals and fungi. Sci Rep 2017; 7:40301. [PMID: 28074929 PMCID: PMC5225481 DOI: 10.1038/srep40301] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 12/01/2016] [Indexed: 01/21/2023] Open
Abstract
Protein N-glycosylation (PNG) is crucial for protein folding and enzymatic activities, and has remarkable diversity among eukaryotic species. Little is known of how unique PNG mechanisms arose and evolved in eukaryotes. Here we demonstrate a picture of onset and evolution of PNG components in Golgi apparatus that shaped diversity of eukaryotic protein N-glycan structures, with an emphasis on roles that domain emergence and combination played on PNG evolution. 23 domains were identified from 24 known PNG genes, most of which could be classified into a single clan, indicating a single evolutionary source for the majority of the genes. From 153 species, 4491 sequences containing the domains were retrieved, based on which we analyzed distribution of domains among eukaryotic species. Two domains in GnTV are restricted to specific eukaryotic domains, while 10 domains distribute not only in species where certain unique PNG reactions occur and thus genes harboring these domains are supoosed to be present, but in other ehkaryotic lineages. Notably, two domains harbored by β-1,3 galactosyltransferase, an essential enzyme in forming plant-specific Lea structure, were present in separated genes in fungi and animals, suggesting its emergence as a result of domain shuffling.
Collapse
|
15
|
Halmo SM, Singh D, Patel S, Wang S, Edlin M, Boons GJ, Moremen KW, Live D, Wells L. Protein O-Linked Mannose β-1,4- N-Acetylglucosaminyl-transferase 2 (POMGNT2) Is a Gatekeeper Enzyme for Functional Glycosylation of α-Dystroglycan. J Biol Chem 2016; 292:2101-2109. [PMID: 27932460 DOI: 10.1074/jbc.m116.764712] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/04/2016] [Indexed: 12/27/2022] Open
Abstract
Disruption of the O-mannosylation pathway involved in functional glycosylation of α-dystroglycan gives rise to congenital muscular dystrophies. Protein O-linked mannose β-1,4-N-acetylglucosaminyltransferase 2 (POMGNT2) catalyzes the first step toward the functional matriglycan structure on α-dystroglycan that is responsible for binding extracellular matrix proteins and certain arenaviruses. Alternatively, protein O-linked mannose β-1,2-N-acetylglucosaminyltransferase 1 (POMGNT1) catalyzes the first step toward other various glycan structures present on α-dystroglycan of unknown function. Here, we demonstrate that POMGNT1 is promiscuous for O-mannosylated peptides, whereas POMGNT2 displays significant primary amino acid selectivity near the site of O-mannosylation. We define a POMGNT2 acceptor motif, conserved among 59 vertebrate species, in α-dystroglycan that when engineered into a POMGNT1-only site is sufficient to convert the O-mannosylated peptide to a substrate for POMGNT2. Additionally, an acceptor glycopeptide is a less efficient substrate for POMGNT2 when two of the conserved amino acids are replaced. These findings begin to define the selectivity of POMGNT2 and suggest that this enzyme functions as a gatekeeper enzyme to prevent the vast majority of O-mannosylated sites on proteins from becoming modified with glycan structures functional for binding laminin globular domain-containing proteins.
Collapse
Affiliation(s)
- Stephanie M Halmo
- From the Complex Carbohydrate Research Center and.,the Departments of Biochemistry and Molecular Biology and
| | - Danish Singh
- From the Complex Carbohydrate Research Center and.,the Departments of Biochemistry and Molecular Biology and
| | - Sneha Patel
- From the Complex Carbohydrate Research Center and
| | - Shuo Wang
- From the Complex Carbohydrate Research Center and
| | - Melanie Edlin
- From the Complex Carbohydrate Research Center and.,Chemistry, University of Georgia, Athens, Georgia 30602
| | - Geert-Jan Boons
- From the Complex Carbohydrate Research Center and.,Chemistry, University of Georgia, Athens, Georgia 30602
| | - Kelley W Moremen
- From the Complex Carbohydrate Research Center and.,the Departments of Biochemistry and Molecular Biology and
| | - David Live
- From the Complex Carbohydrate Research Center and
| | - Lance Wells
- From the Complex Carbohydrate Research Center and .,the Departments of Biochemistry and Molecular Biology and
| |
Collapse
|
16
|
Blaeser A, Awano H, Wu B, Lu QL. Progressive Dystrophic Pathology in Diaphragm and Impairment of Cardiac Function in FKRP P448L Mutant Mice. PLoS One 2016; 11:e0164187. [PMID: 27711214 PMCID: PMC5053477 DOI: 10.1371/journal.pone.0164187] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 09/21/2016] [Indexed: 01/22/2023] Open
Abstract
Mutations in the gene for fukutin-related protein represent a subset of muscular dystrophies known as dystroglycanopathies characterized by loss of functionally-glycosylated-alpha-dystroglycan and a wide range of dystrophic phenotypes. Mice generated by our lab containing the P448L mutation in the fukutin-related protein gene demonstrate the dystrophic phenotype similar to that of LGMD2I. Here we examined the morphology of the heart and diaphragm, focusing on pathology of diaphragm and cardiac function of the mutant mice for up to 12 months. Both diaphragm and heart lack clear expression of functionally-glycosylated-alpha-dystroglycan throughout the observed period. The diaphragm undergoes progressive deterioration in histology with increasing amount of centranucleation and inflammation. Large areas of mononuclear cell infiltration and fibrosis of up to 60% of tissue area were detected as early as 6 months of age. Despite a less severe morphology with only patches of mononuclear cell infiltration and fibrosis of ~5% by 12 months of age in the heart, cardiac function is clearly affected. High frequency ultrasound reveals a smaller heart size up to 10 months of age. There are significant increases in myocardial thickness and decrease in cardiac output through 12 months. Dysfunction in the heart represents a key marker for evaluating experimental therapies aimed at cardiac muscle.
Collapse
Affiliation(s)
- Anthony Blaeser
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Cannon Research Center, Carolinas Medical Center, 1000 Blythe Blvd., Charlotte, NC 28203, United States of America
- * E-mail: (AB); (QLL)
| | - Hiroyuki Awano
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Cannon Research Center, Carolinas Medical Center, 1000 Blythe Blvd., Charlotte, NC 28203, United States of America
| | - Bo Wu
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Cannon Research Center, Carolinas Medical Center, 1000 Blythe Blvd., Charlotte, NC 28203, United States of America
| | - Qi-Long Lu
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Cannon Research Center, Carolinas Medical Center, 1000 Blythe Blvd., Charlotte, NC 28203, United States of America
- * E-mail: (AB); (QLL)
| |
Collapse
|
17
|
Transgenic Rescue of the LARGEmyd Mouse: A LARGE Therapeutic Window? PLoS One 2016; 11:e0159853. [PMID: 27467128 PMCID: PMC4965172 DOI: 10.1371/journal.pone.0159853] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 07/08/2016] [Indexed: 12/02/2022] Open
Abstract
LARGE is a glycosyltransferase involved in glycosylation of α-dystroglycan (α-DG). Absence of this protein in the LARGEmyd mouse results in α-DG hypoglycosylation, and is associated with central nervous system abnormalities and progressive muscular dystrophy. Up-regulation of LARGE has previously been proposed as a therapy for the secondary dystroglycanopathies: overexpression in cells compensates for defects in multiple dystroglycanopathy genes. Counterintuitively, LARGE overexpression in an FKRP-deficient mouse exacerbates pathology, suggesting that modulation of α-DG glycosylation requires further investigation. Here we demonstrate that transgenic expression of human LARGE (LARGE-LV5) in the LARGEmyd mouse restores α-DG glycosylation (with marked hyperglycosylation in muscle) and that this corrects both the muscle pathology and brain architecture. By quantitative analyses of LARGE transcripts we also here show that levels of transgenic and endogenous LARGE in the brains of transgenic animals are comparable, but that the transgene is markedly overexpressed in heart and particularly skeletal muscle (20–100 fold over endogenous). Our data suggest LARGE overexpression may only be deleterious under a forced regenerative context, such as that resulting from a reduction in FKRP: in the absence of such a defect we show that systemic expression of LARGE can indeed act therapeutically, and that even dramatic LARGE overexpression is well-tolerated in heart and skeletal muscle. Moreover, correction of LARGEmyd brain pathology with only moderate, near-physiological LARGE expression suggests a generous therapeutic window.
Collapse
|
18
|
Gerin I, Ury B, Breloy I, Bouchet-Seraphin C, Bolsée J, Halbout M, Graff J, Vertommen D, Muccioli GG, Seta N, Cuisset JM, Dabaj I, Quijano-Roy S, Grahn A, Van Schaftingen E, Bommer GT. ISPD produces CDP-ribitol used by FKTN and FKRP to transfer ribitol phosphate onto α-dystroglycan. Nat Commun 2016; 7:11534. [PMID: 27194101 PMCID: PMC4873967 DOI: 10.1038/ncomms11534] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 04/06/2016] [Indexed: 01/27/2023] Open
Abstract
Mutations in genes required for the glycosylation of α-dystroglycan lead to muscle and brain diseases known as dystroglycanopathies. However, the precise structure and biogenesis of the assembled glycan are not completely understood. Here we report that three enzymes mutated in dystroglycanopathies can collaborate to attach ribitol phosphate onto α-dystroglycan. Specifically, we demonstrate that isoprenoid synthase domain-containing protein (ISPD) synthesizes CDP-ribitol, present in muscle, and that both recombinant fukutin (FKTN) and fukutin-related protein (FKRP) can transfer a ribitol phosphate group from CDP-ribitol to α-dystroglycan. We also show that ISPD and FKTN are essential for the incorporation of ribitol into α-dystroglycan in HEK293 cells. Glycosylation of α-dystroglycan in fibroblasts from patients with hypomorphic ISPD mutations is reduced. We observe that in some cases glycosylation can be partially restored by addition of ribitol to the culture medium, suggesting that dietary supplementation with ribitol should be evaluated as a therapy for patients with ISPD mutations.
Collapse
Affiliation(s)
- Isabelle Gerin
- WELBIO and de Duve Institute, Biological Chemistry, Université Catholique de Louvain, B-1200 Brussels, Belgium
| | - Benoît Ury
- WELBIO and de Duve Institute, Biological Chemistry, Université Catholique de Louvain, B-1200 Brussels, Belgium
| | - Isabelle Breloy
- Institute for Biochemistry II, Medical Faculty, University of Cologne, D-50931 Cologne, Germany
| | - Céline Bouchet-Seraphin
- AP-HP, Hôpital Bichat-Claude Bernard, Laboratoire de Biochimie Métabolique et Cellulaire, F-75018 Paris, France
| | - Jennifer Bolsée
- WELBIO and de Duve Institute, Biological Chemistry, Université Catholique de Louvain, B-1200 Brussels, Belgium
| | - Mathias Halbout
- WELBIO and de Duve Institute, Biological Chemistry, Université Catholique de Louvain, B-1200 Brussels, Belgium
| | - Julie Graff
- WELBIO and de Duve Institute, Biological Chemistry, Université Catholique de Louvain, B-1200 Brussels, Belgium
| | - Didier Vertommen
- WELBIO and de Duve Institute, Biological Chemistry, Université Catholique de Louvain, B-1200 Brussels, Belgium
| | - Giulio G Muccioli
- Louvain Drug Research Institute, Université Catholique de Louvain, B-1200 Brussels, Belgium
| | - Nathalie Seta
- AP-HP, Hôpital Bichat-Claude Bernard, Laboratoire de Biochimie Métabolique et Cellulaire, F-75018 Paris, France
| | - Jean-Marie Cuisset
- Hôpital Roger-Salengro, Service de neuropédiatrie, Centre de Référence des Maladies Neuromusculaires, CHRU, F-59000 Lille, France
| | - Ivana Dabaj
- AP-HP, Hôpital R Poincaré, Service de pédiatrie, F-92380 Garches, France
| | - Susana Quijano-Roy
- AP-HP, Hôpital R Poincaré, Service de pédiatrie, F-92380 Garches, France.,Centre de Référence des Maladies Neuromusculaires, F-92380 Garches, France.,Université de Versailles-St Quentin, U1179 UVSQ - INSERM, F-78180 Montigny, France
| | - Ammi Grahn
- WELBIO and de Duve Institute, Biological Chemistry, Université Catholique de Louvain, B-1200 Brussels, Belgium
| | - Emile Van Schaftingen
- WELBIO and de Duve Institute, Biological Chemistry, Université Catholique de Louvain, B-1200 Brussels, Belgium
| | - Guido T Bommer
- WELBIO and de Duve Institute, Biological Chemistry, Université Catholique de Louvain, B-1200 Brussels, Belgium
| |
Collapse
|
19
|
Gagnon J, Daou S, Zamorano N, Iannantuono NVG, Hammond-Martel I, Mashtalir N, Bonneil E, Wurtele H, Thibault P, Affar EB. Undetectable histone O-GlcNAcylation in mammalian cells. Epigenetics 2016; 10:677-91. [PMID: 26075789 DOI: 10.1080/15592294.2015.1060387] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
O-GlcNAcylation is a posttranslational modification catalyzed by the O-Linked N-acetylglucosamine (O-GlcNAc) transferase (OGT) and reversed by O-GlcNAcase (OGA). Numerous transcriptional regulators, including chromatin modifying enzymes, transcription factors, and co-factors, are targeted by O-GlcNAcylation, indicating that this modification is central for chromatin-associated processes. Recently, OGT-mediated O-GlcNAcylation was reported to be a novel histone modification, suggesting a potential role in directly coordinating chromatin structure and function. In contrast, using multiple biochemical approaches, we report here that histone O-GlcNAcylation is undetectable in mammalian cells. Conversely, O-GlcNAcylation of the transcription regulators Host Cell Factor-1 (HCF-1) and Ten-Eleven Translocation protein 2 (TET2) could be readily observed. Our study raises questions on the occurrence and abundance of O-GlcNAcylation as a histone modification in mammalian cells and reveals technical complications regarding the detection of genuine protein O-GlcNAcylation. Therefore, the identification of the specific contexts in which histone O-GlcNAcylation might occur is still to be established.
Collapse
Key Words
- Chromatin
- Epigenetics
- H2B K120ub, Histone H2B lysine 120 monoubiquitination
- H2B S112 O-GlcNAc, Histone H2B serine 112 O-GlcNAc
- HCF-1
- HCF-1, Host Cell Factor-1
- Histone
- O-GlcNAc
- O-GlcNAc, O-Linked N-acetylglucosamine
- O-GlcNAcylation
- OGA, O-GlcNAcase
- OGT
- OGT, O-Linked N-acetylglucosamine transferase
- PUGNAc, O-(2-acetamido-2-deoxyglucopyranosylidene) amino N-phenylcarbamate
- Polycomb
- TET2
- TET2, Ten-Eleven Translocation protein 2
- UDP-GlcNAc, Uridine Diphosphate N-Acetylglucosamine
- WGA, Wheat Germ Agglutinin.
- posttranslational modification
Collapse
Affiliation(s)
- Jessica Gagnon
- a Maisonneuve-Rosemont Hospital Research Center and Department of Medicine; University of Montréal ; Montréal, Québec , Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
The dystrophin complex stabilizes the plasma membrane of striated muscle cells. Loss of function mutations in the genes encoding dystrophin, or the associated proteins, trigger instability of the plasma membrane, and myofiber loss. Mutations in dystrophin have been extensively cataloged, providing remarkable structure-function correlation between predicted protein structure and clinical outcomes. These data have highlighted dystrophin regions necessary for in vivo function and fueled the design of viral vectors and now, exon skipping approaches for use in dystrophin restoration therapies. However, dystrophin restoration is likely more complex, owing to the role of the dystrophin complex as a broad cytoskeletal integrator. This review will focus on dystrophin restoration, with emphasis on the regions of dystrophin essential for interacting with its associated proteins and discuss the structural implications of these approaches.
Collapse
Affiliation(s)
- Quan Q Gao
- Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, Illinois, USA
| | - Elizabeth M McNally
- Center for Genetic Medicine, Northwestern University, Chicago, Chicago, Illinois, USA
| |
Collapse
|
21
|
Endo Y, Dong M, Noguchi S, Ogawa M, Hayashi YK, Kuru S, Sugiyama K, Nagai S, Ozasa S, Nonaka I, Nishino I. Milder forms of muscular dystrophy associated with POMGNT2 mutations. NEUROLOGY-GENETICS 2015; 1:e33. [PMID: 27066570 PMCID: PMC4811383 DOI: 10.1212/nxg.0000000000000033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 09/24/2015] [Indexed: 12/15/2022]
Abstract
Objective: To determine the genetic variants in patients with dystroglycanopathy (DGP) and assess the pathogenicity of these variants. Methods: A total of 20 patients with DGP were identified by immunohistochemistry or Western blot analysis. Whole-exome sequencing (WES) was performed using patient samples. The pathogenicity of the variants identified was evaluated on the basis of the phenotypic recovery in a knockout (KO) haploid human cell line by transfection with mutated POMGNT2 cDNA and on the basis of the in vitro enzymatic activity of mutated proteins. Results: WES identified homozygous and compound heterozygous missense variants in POMGNT2 in 3 patients with the milder limb-girdle muscular dystrophy (LGMD) and intellectual disability without brain malformation. The 2 identified variants were located in the putative glycosyltransferase domain of POMGNT2, which affected its enzymatic activity. Mutated POMGNT2 cDNAs failed to rescue the phenotype of POMGNT2-KO cells. Conclusions: Novel variants in POMGNT2 are associated with milder forms of LGMD. The findings of this study expand the clinical and pathologic spectrum of DGP associated with POMGNT2 variants from the severest Walker-Warburg syndrome to the mildest LGMD phenotypes. The simple method to verify pathogenesis of variants may allow researchers to evaluate any variants present in all of the known causative genes and the variants in novel candidate genes to detect DGPs, particularly without using patients' specimens.
Collapse
Affiliation(s)
- Yukari Endo
- Department of Neuromuscular Research (Y.E., M.D., S. Noguchi, M.O., Y.K.H., I. Nonaka, I. Nishino), National Institute of Neuroscience; and Department of Genome Medicine Development (Y.E., S. Noguchi, I. Nishino), Medical Genome Center, NCNP, Tokyo, Japan; Department of Neurology (M.D.), China-Japan Friendship Hospital, Beijing, China; Department of Pathophysiology (Y.K.H.), Tokyo Medical University; National Hospital Organization Suzuka National Hospital (S.K.), Mie, Japan; Department of Pediatrics (K.S.), Local Independent Administrative Institution, Mie Prefectural General Medical Center; Department of Child Neurology (S. Nagai), Shikoku Medical Center for Children and Adults, Kagawa, Japan; and Department of Pediatrics (S.O.), Kumamoto University, Kumamoto, Japan
| | - Mingrui Dong
- Department of Neuromuscular Research (Y.E., M.D., S. Noguchi, M.O., Y.K.H., I. Nonaka, I. Nishino), National Institute of Neuroscience; and Department of Genome Medicine Development (Y.E., S. Noguchi, I. Nishino), Medical Genome Center, NCNP, Tokyo, Japan; Department of Neurology (M.D.), China-Japan Friendship Hospital, Beijing, China; Department of Pathophysiology (Y.K.H.), Tokyo Medical University; National Hospital Organization Suzuka National Hospital (S.K.), Mie, Japan; Department of Pediatrics (K.S.), Local Independent Administrative Institution, Mie Prefectural General Medical Center; Department of Child Neurology (S. Nagai), Shikoku Medical Center for Children and Adults, Kagawa, Japan; and Department of Pediatrics (S.O.), Kumamoto University, Kumamoto, Japan
| | - Satoru Noguchi
- Department of Neuromuscular Research (Y.E., M.D., S. Noguchi, M.O., Y.K.H., I. Nonaka, I. Nishino), National Institute of Neuroscience; and Department of Genome Medicine Development (Y.E., S. Noguchi, I. Nishino), Medical Genome Center, NCNP, Tokyo, Japan; Department of Neurology (M.D.), China-Japan Friendship Hospital, Beijing, China; Department of Pathophysiology (Y.K.H.), Tokyo Medical University; National Hospital Organization Suzuka National Hospital (S.K.), Mie, Japan; Department of Pediatrics (K.S.), Local Independent Administrative Institution, Mie Prefectural General Medical Center; Department of Child Neurology (S. Nagai), Shikoku Medical Center for Children and Adults, Kagawa, Japan; and Department of Pediatrics (S.O.), Kumamoto University, Kumamoto, Japan
| | - Megumu Ogawa
- Department of Neuromuscular Research (Y.E., M.D., S. Noguchi, M.O., Y.K.H., I. Nonaka, I. Nishino), National Institute of Neuroscience; and Department of Genome Medicine Development (Y.E., S. Noguchi, I. Nishino), Medical Genome Center, NCNP, Tokyo, Japan; Department of Neurology (M.D.), China-Japan Friendship Hospital, Beijing, China; Department of Pathophysiology (Y.K.H.), Tokyo Medical University; National Hospital Organization Suzuka National Hospital (S.K.), Mie, Japan; Department of Pediatrics (K.S.), Local Independent Administrative Institution, Mie Prefectural General Medical Center; Department of Child Neurology (S. Nagai), Shikoku Medical Center for Children and Adults, Kagawa, Japan; and Department of Pediatrics (S.O.), Kumamoto University, Kumamoto, Japan
| | - Yukiko K Hayashi
- Department of Neuromuscular Research (Y.E., M.D., S. Noguchi, M.O., Y.K.H., I. Nonaka, I. Nishino), National Institute of Neuroscience; and Department of Genome Medicine Development (Y.E., S. Noguchi, I. Nishino), Medical Genome Center, NCNP, Tokyo, Japan; Department of Neurology (M.D.), China-Japan Friendship Hospital, Beijing, China; Department of Pathophysiology (Y.K.H.), Tokyo Medical University; National Hospital Organization Suzuka National Hospital (S.K.), Mie, Japan; Department of Pediatrics (K.S.), Local Independent Administrative Institution, Mie Prefectural General Medical Center; Department of Child Neurology (S. Nagai), Shikoku Medical Center for Children and Adults, Kagawa, Japan; and Department of Pediatrics (S.O.), Kumamoto University, Kumamoto, Japan
| | - Satoshi Kuru
- Department of Neuromuscular Research (Y.E., M.D., S. Noguchi, M.O., Y.K.H., I. Nonaka, I. Nishino), National Institute of Neuroscience; and Department of Genome Medicine Development (Y.E., S. Noguchi, I. Nishino), Medical Genome Center, NCNP, Tokyo, Japan; Department of Neurology (M.D.), China-Japan Friendship Hospital, Beijing, China; Department of Pathophysiology (Y.K.H.), Tokyo Medical University; National Hospital Organization Suzuka National Hospital (S.K.), Mie, Japan; Department of Pediatrics (K.S.), Local Independent Administrative Institution, Mie Prefectural General Medical Center; Department of Child Neurology (S. Nagai), Shikoku Medical Center for Children and Adults, Kagawa, Japan; and Department of Pediatrics (S.O.), Kumamoto University, Kumamoto, Japan
| | - Kenji Sugiyama
- Department of Neuromuscular Research (Y.E., M.D., S. Noguchi, M.O., Y.K.H., I. Nonaka, I. Nishino), National Institute of Neuroscience; and Department of Genome Medicine Development (Y.E., S. Noguchi, I. Nishino), Medical Genome Center, NCNP, Tokyo, Japan; Department of Neurology (M.D.), China-Japan Friendship Hospital, Beijing, China; Department of Pathophysiology (Y.K.H.), Tokyo Medical University; National Hospital Organization Suzuka National Hospital (S.K.), Mie, Japan; Department of Pediatrics (K.S.), Local Independent Administrative Institution, Mie Prefectural General Medical Center; Department of Child Neurology (S. Nagai), Shikoku Medical Center for Children and Adults, Kagawa, Japan; and Department of Pediatrics (S.O.), Kumamoto University, Kumamoto, Japan
| | - Shigehiro Nagai
- Department of Neuromuscular Research (Y.E., M.D., S. Noguchi, M.O., Y.K.H., I. Nonaka, I. Nishino), National Institute of Neuroscience; and Department of Genome Medicine Development (Y.E., S. Noguchi, I. Nishino), Medical Genome Center, NCNP, Tokyo, Japan; Department of Neurology (M.D.), China-Japan Friendship Hospital, Beijing, China; Department of Pathophysiology (Y.K.H.), Tokyo Medical University; National Hospital Organization Suzuka National Hospital (S.K.), Mie, Japan; Department of Pediatrics (K.S.), Local Independent Administrative Institution, Mie Prefectural General Medical Center; Department of Child Neurology (S. Nagai), Shikoku Medical Center for Children and Adults, Kagawa, Japan; and Department of Pediatrics (S.O.), Kumamoto University, Kumamoto, Japan
| | - Shiro Ozasa
- Department of Neuromuscular Research (Y.E., M.D., S. Noguchi, M.O., Y.K.H., I. Nonaka, I. Nishino), National Institute of Neuroscience; and Department of Genome Medicine Development (Y.E., S. Noguchi, I. Nishino), Medical Genome Center, NCNP, Tokyo, Japan; Department of Neurology (M.D.), China-Japan Friendship Hospital, Beijing, China; Department of Pathophysiology (Y.K.H.), Tokyo Medical University; National Hospital Organization Suzuka National Hospital (S.K.), Mie, Japan; Department of Pediatrics (K.S.), Local Independent Administrative Institution, Mie Prefectural General Medical Center; Department of Child Neurology (S. Nagai), Shikoku Medical Center for Children and Adults, Kagawa, Japan; and Department of Pediatrics (S.O.), Kumamoto University, Kumamoto, Japan
| | - Ikuya Nonaka
- Department of Neuromuscular Research (Y.E., M.D., S. Noguchi, M.O., Y.K.H., I. Nonaka, I. Nishino), National Institute of Neuroscience; and Department of Genome Medicine Development (Y.E., S. Noguchi, I. Nishino), Medical Genome Center, NCNP, Tokyo, Japan; Department of Neurology (M.D.), China-Japan Friendship Hospital, Beijing, China; Department of Pathophysiology (Y.K.H.), Tokyo Medical University; National Hospital Organization Suzuka National Hospital (S.K.), Mie, Japan; Department of Pediatrics (K.S.), Local Independent Administrative Institution, Mie Prefectural General Medical Center; Department of Child Neurology (S. Nagai), Shikoku Medical Center for Children and Adults, Kagawa, Japan; and Department of Pediatrics (S.O.), Kumamoto University, Kumamoto, Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research (Y.E., M.D., S. Noguchi, M.O., Y.K.H., I. Nonaka, I. Nishino), National Institute of Neuroscience; and Department of Genome Medicine Development (Y.E., S. Noguchi, I. Nishino), Medical Genome Center, NCNP, Tokyo, Japan; Department of Neurology (M.D.), China-Japan Friendship Hospital, Beijing, China; Department of Pathophysiology (Y.K.H.), Tokyo Medical University; National Hospital Organization Suzuka National Hospital (S.K.), Mie, Japan; Department of Pediatrics (K.S.), Local Independent Administrative Institution, Mie Prefectural General Medical Center; Department of Child Neurology (S. Nagai), Shikoku Medical Center for Children and Adults, Kagawa, Japan; and Department of Pediatrics (S.O.), Kumamoto University, Kumamoto, Japan
| |
Collapse
|
22
|
Intracellular and extracellular O-linked N-acetylglucosamine in the nervous system. Exp Neurol 2015; 274:166-74. [DOI: 10.1016/j.expneurol.2015.08.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/07/2015] [Accepted: 08/11/2015] [Indexed: 12/16/2022]
|
23
|
Nakagawa N, Yagi H, Kato K, Takematsu H, Oka S. Ectopic clustering of Cajal-Retzius and subplate cells is an initial pathological feature in Pomgnt2-knockout mice, a model of dystroglycanopathy. Sci Rep 2015; 5:11163. [PMID: 26060116 PMCID: PMC4461912 DOI: 10.1038/srep11163] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 05/18/2015] [Indexed: 11/09/2022] Open
Abstract
Aberrant glycosylation of dystroglycan causes congenital muscular dystrophies associated with cobblestone lissencephaly, classified as dystroglycanopathy. However, pathological features in the onset of brain malformations, including the precise timing and primary cause of the pial basement membrane disruption and abnormalities in the migration of pyramidal neurons, remain unexplored. Using the Pomgnt2-knockout (KO) mouse as a dystroglycanopathy model, we show that breaches of the pial basement membrane appeared at embryonic day 11.5, coinciding with the ectopic clustering of Cajal-Retzius cells and subplate neurons and prior to the migration onset of pyramidal neurons. Furthermore, in the Pomgnt2-KO cerebral cortex, preplate splitting failure likely occurred due to the aggregation of Cajal-Retzius and subplate cells, and migrating pyramidal neurons lost polarity and radial orientation. Our findings demonstrate the initial pathological events in dystroglycanopathy mice and contribute to our understanding of how dystroglycan dysfunction affects brain development and progresses to cobblestone lissencephaly.
Collapse
Affiliation(s)
- Naoki Nakagawa
- Department of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Hirokazu Yagi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Koichi Kato
- 1] Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan [2] Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama Myodaiji, Okazaki 444-8787, Japan
| | - Hiromu Takematsu
- Department of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Shogo Oka
- Department of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
24
|
Moreira-Filho CA, Bando SY, Bertonha FB, Iamashita P, Silva FN, Costa LDF, Silva AV, Castro LHM, Wen HT. Community structure analysis of transcriptional networks reveals distinct molecular pathways for early- and late-onset temporal lobe epilepsy with childhood febrile seizures. PLoS One 2015; 10:e0128174. [PMID: 26011637 PMCID: PMC4444281 DOI: 10.1371/journal.pone.0128174] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 04/24/2015] [Indexed: 12/21/2022] Open
Abstract
Age at epilepsy onset has a broad impact on brain plasticity and epilepsy pathomechanisms. Prolonged febrile seizures in early childhood (FS) constitute an initial precipitating insult (IPI) commonly associated with mesial temporal lobe epilepsy (MTLE). FS-MTLE patients may have early disease onset, i.e. just after the IPI, in early childhood, or late-onset, ranging from mid-adolescence to early adult life. The mechanisms governing early (E) or late (L) disease onset are largely unknown. In order to unveil the molecular pathways underlying E and L subtypes of FS-MTLE we investigated global gene expression in hippocampal CA3 explants of FS-MTLE patients submitted to hippocampectomy. Gene coexpression networks (GCNs) were obtained for the E and L patient groups. A network-based approach for GCN analysis was employed allowing: i) the visualization and analysis of differentially expressed (DE) and complete (CO) - all valid GO annotated transcripts - GCNs for the E and L groups; ii) the study of interactions between all the system's constituents based on community detection and coarse-grained community structure methods. We found that the E-DE communities with strongest connection weights harbor highly connected genes mainly related to neural excitability and febrile seizures, whereas in L-DE communities these genes are not only involved in network excitability but also playing roles in other epilepsy-related processes. Inversely, in E-CO the strongly connected communities are related to compensatory pathways (seizure inhibition, neuronal survival and responses to stress conditions) while in L-CO these communities harbor several genes related to pro-epileptic effects, seizure-related mechanisms and vulnerability to epilepsy. These results fit the concept, based on fMRI and behavioral studies, that early onset epilepsies, although impacting more severely the hippocampus, are associated to compensatory mechanisms, while in late MTLE development the brain is less able to generate adaptive mechanisms, what has implications for epilepsy management and drug discovery.
Collapse
Affiliation(s)
| | - Silvia Yumi Bando
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
| | - Fernanda Bernardi Bertonha
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
| | - Priscila Iamashita
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
| | | | | | | | - Luiz Henrique Martins Castro
- Department of Neurology, FMUSP, São Paulo, SP, Brazil
- Clinical Neurology Division, Hospital das Clínicas, FMUSP, São Paulo, SP, Brazil
| | - Hung-Tzu Wen
- Epilepsy Surgery Group, Hospital das Clínicas, FMUSP, São Paulo, SP, Brazil
| |
Collapse
|
25
|
Ogawa M, Sawaguchi S, Furukawa K, Okajima T. N-acetylglucosamine modification in the lumen of the endoplasmic reticulum. Biochim Biophys Acta Gen Subj 2015; 1850:1319-24. [PMID: 25791024 DOI: 10.1016/j.bbagen.2015.03.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/07/2015] [Accepted: 03/11/2015] [Indexed: 12/25/2022]
Abstract
BACKGROUND O-linked β-N-acetylglucosamine (O-GlcNAc) modification of epidermal growth factor (EGF) domains catalyzed by EGF domain O-GlcNAc transferase (EOGT) is the first example of GlcNAc modification in the lumen of the endoplasmic reticulum (ER). SCOPE OF REVIEW This review summarizes current knowledge on the EOGT-catalyzed O-GlcNAc modification of EGF domains obtained through biochemical characterization, genetic analysis in Drosophila, and identification of human EOGT mutation. Additionally, this review discusses GTDC2-another ER protein homologous to EOGT that catalyzes the GlcNAc modification of O-mannosylated α-dystroglycan-and other components of the biosynthetic pathway involved in GlcNAc modification in the ER lumen. MAJOR CONCLUSIONS GlcNAc modification in the ER lumen has been identified as a novel type of protein modification that regulates specific protein function. Moreover, abnormal GlcNAc modification in the ER lumen is responsible for Adams-Oliver syndrome and Walker-Warburg syndrome. GENERAL SIGNIFICANCE Elucidation of the biological function of GlcNAc modification in the ER lumen will provide new insights into the unique roles of O-glycans, whose importance has been demonstrated in multifunctional glycoproteins such as Notch receptors and α-dystroglyan.
Collapse
Affiliation(s)
- Mitsutaka Ogawa
- Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065, Japan; Department of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura, Nagahama, Shiga 526-0829, Japan
| | - Shogo Sawaguchi
- Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065, Japan
| | - Koichi Furukawa
- Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065, Japan
| | - Tetsuya Okajima
- Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065, Japan.
| |
Collapse
|
26
|
Ogawa M, Sawaguchi S, Kawai T, Nadano D, Matsuda T, Yagi H, Kato K, Furukawa K, Okajima T. Impaired O-linked N-acetylglucosaminylation in the endoplasmic reticulum by mutated epidermal growth factor (EGF) domain-specific O-linked N-acetylglucosamine transferase found in Adams-Oliver syndrome. J Biol Chem 2014; 290:2137-49. [PMID: 25488668 DOI: 10.1074/jbc.m114.598821] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Epidermal growth factor (EGF) domain-specific O-linked N-acetylglucosamine (EOGT) is an endoplasmic reticulum (ER)-resident O-linked N-acetylglucosamine (O-GlcNAc) transferase that acts on EGF domain-containing proteins such as Notch receptors. Recently, mutations in EOGT have been reported in patients with Adams-Oliver syndrome (AOS). Here, we have characterized enzymatic properties of mouse EOGT and EOGT mutants associated with AOS. Simultaneous expression of EOGT with Notch1 EGF repeats in human embryonic kidney 293T (HEK293T) cells led to immunoreactivity with the CTD110.6 antibody in the ER. Consistent with the GlcNAc modification in the ER, the enzymatic properties of EOGT are distinct from those of Golgi-resident GlcNAc transferases; the pH optimum of EOGT ranges from 7.0 to 7.5, and the Km value for UDP N-acetylglucosamine (UDP-GlcNAc) is 25 μm. Despite the relatively low Km value for UDP-GlcNAc, EOGT-catalyzed GlcNAcylation depends on the hexosamine pathway, as revealed by the increased O-GlcNAcylation of Notch1 EGF repeats upon supplementation with hexosamine, suggesting differential regulation of the luminal UDP-GlcNAc concentration in the ER and Golgi. As compared with wild-type EOGT, O-GlcNAcylation in the ER is nearly abolished in HEK293T cells exogenously expressing EOGT variants associated with AOS. Introduction of the W207S mutation resulted in degradation of the protein via the ubiquitin-proteasome pathway, although the stability and ER localization of EOGT(R377Q) were not affected. Importantly, the interaction between UDP-GlcNAc and EOGT(R377Q) was impaired without adversely affecting the acceptor substrate interaction. These results suggest that impaired glycosyltransferase activity in mutant EOGT proteins and the consequent defective O-GlcNAcylation in the ER constitute the molecular basis for AOS.
Collapse
Affiliation(s)
- Mitsutaka Ogawa
- From the Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065, the Department of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura, Nagahama, Shiga 526-0829
| | - Shogo Sawaguchi
- From the Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065
| | - Takami Kawai
- From the Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065
| | - Daita Nadano
- the Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601
| | - Tsukasa Matsuda
- the Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601
| | - Hirokazu Yagi
- the Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, and
| | - Koichi Kato
- the Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, and the Institute for Molecular Science and Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, 5-1 Higashiyama Myodaiji, Okazaki 444-8787, Japan
| | - Koichi Furukawa
- From the Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065
| | - Tetsuya Okajima
- From the Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065,
| |
Collapse
|
27
|
Ogawa M, Furukawa K, Okajima T. Extracellular O-linked β- N-acetylglucosamine: Its biology and relationship to human disease. World J Biol Chem 2014; 5:224-230. [PMID: 24921011 PMCID: PMC4050115 DOI: 10.4331/wjbc.v5.i2.224] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 01/20/2014] [Accepted: 04/09/2014] [Indexed: 02/05/2023] Open
Abstract
The O-linked β-N-acetylglucosamine (O-GlcNAc)ylation of cytoplasmic and nuclear proteins regulates basic cellular functions and is involved in the etiology of neurodegeneration and diabetes. Intracellular O-GlcNAcylation is catalyzed by a single O-GlcNAc transferase, O-GlcNAc transferase (OGT). Recently, an atypical O-GlcNAc transferase, extracellular O-linked β-N-acetylglucosamine (EOGT), which is responsible for the modification of extracellular O-GlcNAc, was identified. Although both OGT and EOGT are regulated through the common hexosamine biosynthesis pathway, EOGT localizes to the lumen of the endoplasmic reticulum and transfers GlcNAc to epidermal growth factor-like domains in an OGT-independent manner. In Drosophila, loss of Eogt gives phenotypes similar to those caused by defects in the apical extracellular matrix. Dumpy, a membrane-anchored apical extracellular matrix protein, was identified as a major O-GlcNAcylated protein, and EOGT mediates Dumpy-dependent cell adhesion. In mammals, extracellular O-GlcNAc was detected on extracellular proteins including heparan sulfate proteoglycan 2, Nell1, laminin subunit alpha-5, Pamr1, and transmembrane proteins, including Notch receptors. Although the physiological function of O-GlcNAc in mammals has not yet been elucidated, exome sequencing identified homozygous EOGT mutations in patients with Adams-Oliver syndrome, a rare congenital disorder characterized by aplasia cutis congenita and terminal transverse limb defects. This review summarizes the current knowledge of extracellular O-GlcNAc and its implications in the pathological processes in Adams-Oliver syndrome.
Collapse
|
28
|
Praissman JL, Wells L. Mammalian O-mannosylation pathway: glycan structures, enzymes, and protein substrates. Biochemistry 2014; 53:3066-78. [PMID: 24786756 PMCID: PMC4033628 DOI: 10.1021/bi500153y] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The
mammalian O-mannosylation pathway for protein post-translational
modification is intricately involved in modulating cell–matrix
interactions in the musculature and nervous system. Defects in enzymes
of this biosynthetic pathway are causative for multiple forms of congenital
muscular dystophy. The application of advanced genetic and biochemical
technologies has resulted in remarkable progress in this field over
the past few years, culminating with the publication of three landmark
papers in 2013 alone. In this review, we will highlight recent progress
focusing on the dramatic expansion of the set of genes known to be
involved in O-mannosylation and disease processes, the concurrent
acceleration of the rate of O-mannosylation pathway protein functional
assignments, the tremendous increase in the number of proteins now
known to be modified by O-mannosylation, and the recent progress in
protein O-mannose glycan quantification and site assignment. Also,
we attempt to highlight key outstanding questions raised by this abundance
of new information.
Collapse
Affiliation(s)
- Jeremy L Praissman
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, The University of Georgia , Athens, Georgia 30602, United States
| | | |
Collapse
|
29
|
Vannoy CH, Xu L, Keramaris E, Lu P, Xiao X, Lu QL. Adeno-associated virus-mediated overexpression of LARGE rescues α-dystroglycan function in dystrophic mice with mutations in the fukutin-related protein. Hum Gene Ther Methods 2014; 25:187-96. [PMID: 24635668 DOI: 10.1089/hgtb.2013.151] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Multiple genes (e.g., POMT1, POMT2, POMGnT1, ISPD, GTDC2, B3GALNT2, FKTN, FKRP, and LARGE) are known to be involved in the glycosylation pathway of α-dystroglycan (α-DG). Mutations of these genes result in muscular dystrophies with wide phenotypic variability. Abnormal glycosylation of α-DG with decreased extracellular ligand binding activity is a common biochemical feature of these genetic diseases. While it is known that LARGE overexpression can compensate for defects in a few aforementioned genes, it is unclear whether it can also rescue defects in FKRP function. We examined adeno-associated virus (AAV)-mediated LARGE or FKRP overexpression in two dystrophic mouse models with loss-of-function mutations: (1) Large(myd) (LARGE gene) and (2) FKRP(P448L) (FKRP gene). The results agree with previous findings that overexpression of LARGE can ameliorate the dystrophic phenotypes of Large(myd) mice. In addition, LARGE overexpression in the FKRP(P448L) mice effectively generated functional glycosylation (hyperglycosylation) of α-DG and improved dystrophic pathologies in treated muscles. Conversely, FKRP transgene overexpression failed to rescue the defect in glycosylation and improve the phenotypes of the Large(myd) mice. Our findings suggest that AAV-mediated LARGE gene therapy may still be a viable therapeutic strategy for dystroglycanopathies with FKRP deficiency.
Collapse
Affiliation(s)
- Charles H Vannoy
- 1 McColl-Lockwood Laboratory for Muscular Dystrophy Research, Cannon Research Center, Carolinas Medical Center , Carolinas Healthcare System, Charlotte, NC 28231
| | | | | | | | | | | |
Collapse
|
30
|
Blaeser A, Sparks S, Brown SC, Campbell K, Lu Q. Third International Workshop for Glycosylation Defects in Muscular Dystrophies, 18-19 April 2013, Charlotte, USA. Brain Pathol 2014; 24:280-4. [PMID: 24397416 DOI: 10.1111/bpa.12118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 12/18/2013] [Indexed: 12/21/2022] Open
Affiliation(s)
- Anthony Blaeser
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Neuromuscular/ALS Center, Carolinas Medical Center, Carolinas Healthcare System, Charlotte, NC
| | | | | | | | | |
Collapse
|
31
|
Tashima Y, Stanley P. Antibodies that detect O-linked β-D-N-acetylglucosamine on the extracellular domain of cell surface glycoproteins. J Biol Chem 2014; 289:11132-11142. [PMID: 24573683 DOI: 10.1074/jbc.m113.492512] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The transfer of N-acetylglucosamine (GlcNAc) to Ser or Thr in cytoplasmic and nuclear proteins is a well known post-translational modification that is catalyzed by the O-GlcNAc transferase OGT. A more recently identified O-GlcNAc transferase, EOGT, functions in the secretory pathway and transfers O-GlcNAc to proteins with epidermal growth factor-like (EGF) repeats. A number of antibodies that detect O-GlcNAc in cytosolic and nuclear extracts have been described previously. Here we compare seven of these antibodies (CTD110.6, 10D8, RL2, HGAC85, 18B10.C7(#3), 9D1.E4(#10), and 1F5.D6 (#14) for detection of the O-GlcNAc modification on extracellular domains of membrane or secreted glycoproteins that may also carry various N- and O-glycans. We found that CTD110.6 binds not only to O-GlcNAc on proteins but also to terminal β-GlcNAc on the complex N-glycans of Lec8 Chinese hamster ovary (CHO) cells that lack UDP-Gal transporter activity and express GlcNAc-terminating, complex N-glycans. We show that CTD110.6, #3, and #10 antibodies can be used to detect cell surface glycoproteins bearing O-GlcNAc. Cell surface glycoproteins recognized by CTD110.6 antibody included NOTCH1 that possesses many EGF repeats with a consensus site for EOGT. Knockdown of CHO Eogt reduced binding of CTD110.6 to Lec1 CHO cells, and expression of a human EOGT cDNA increased the O-GlcNAc signal on Lec1 cells and the extracellular domain of NOTCH1. Thus, with careful controls, antibodies CTD110.6 (IgM), #3 (IgG), and #10 (IgG) can be used to detect membrane and secreted proteins modified by O-GlcNAc on EGF repeats.
Collapse
Affiliation(s)
- Yuko Tashima
- Department of Cell Biology, Albert Einstein College of Medicine, New York, New York 10461
| | - Pamela Stanley
- Department of Cell Biology, Albert Einstein College of Medicine, New York, New York 10461.
| |
Collapse
|