1
|
Neves ER, Anand A, Mueller J, Remy RA, Xu H, Selting KA, Sarkaria JN, Harley BA, Pedron-Haba S. Targeting glioblastoma tumor hyaluronan to enhance therapeutic interventions that regulate metabolic cell properties. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.05.574065. [PMID: 38260497 PMCID: PMC10802468 DOI: 10.1101/2024.01.05.574065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Despite extensive advances in cancer research, glioblastoma (GBM) still remains a very locally invasive and thus challenging tumor to treat, with a poor median survival. Tumor cells remodel their microenvironment and utilize extracellular matrix to promote invasion and therapeutic resistance. We aim here to determine how GBM cells exploit hyaluronan (HA) to maintain proliferation using ligand-receptor dependent and ligand-receptor independent signaling. We use tissue engineering approaches to recreate the three-dimensional tumor microenvironment in vitro, then analyze shifts in metabolism, hyaluronan secretion, HA molecular weight distribution, as well as hyaluronan synthetic enzymes (HAS) and hyaluronidases (HYAL) activity in an array of patient derived xenograft GBM cells. We reveal that endogenous HA plays a role in mitochondrial respiration and cell proliferation in a tumor subtype dependent manner. We propose a tumor specific combination treatment of HYAL and HAS inhibitors to disrupt the HA stabilizing role in GBM cells. Taken together, these data shed light on the dual metabolic and ligand - dependent signaling roles of hyaluronan in glioblastoma. Significance The control of aberrant hyaluronan metabolism in the tumor microenvironment can improve the efficacy of current treatments. Bioengineered preclinical models demonstrate potential to predict, stratify and accelerate the development of cancer treatments.
Collapse
|
2
|
Lierova A, Kasparova J, Filipova A, Cizkova J, Pekarova L, Korecka L, Mannova N, Bilkova Z, Sinkorova Z. Hyaluronic Acid: Known for Almost a Century, but Still in Vogue. Pharmaceutics 2022; 14:838. [PMID: 35456670 PMCID: PMC9029726 DOI: 10.3390/pharmaceutics14040838] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 02/04/2023] Open
Abstract
Hyaluronic acid (HA) has a special position among glycosaminoglycans. As a major component of the extracellular matrix (ECM). This simple, unbranched polysaccharide is involved in the regulation of various biological cell processes, whether under physiological conditions or in cases of cell damage. This review summarizes the history of this molecule's study, its distinctive metabolic pathway in the body, its unique properties, and current information regarding its interaction partners. Our main goal, however, is to intensively investigate whether this relatively simple polymer may find applications in protecting against ionizing radiation (IR) or for therapy in cases of radiation-induced damage. After exposure to IR, acute and belated damage develops in each tissue depending upon the dose received and the cellular composition of a given organ. A common feature of all organ damage is a distinct change in composition and structure of the ECM. In particular, the important role of HA was shown in lung tissue and the variability of this flexible molecule in the complex mechanism of radiation-induced lung injuries. Moreover, HA is also involved in intermediating cell behavior during morphogenesis and in tissue repair during inflammation, injury, and would healing. The possibility of using the HA polymer to affect or treat radiation tissue damage may point to the missing gaps in the responsible mechanisms in the onset of this disease. Therefore, in this article, we will also focus on obtaining answers from current knowledge and the results of studies as to whether hyaluronic acid can also find application in radiation science.
Collapse
Affiliation(s)
- Anna Lierova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, 500 01 Hradec Kralove, Czech Republic; (A.F.); (J.C.); (L.P.); (Z.S.)
| | - Jitka Kasparova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, 532 10 Pardubice, Czech Republic; (J.K.); (L.K.); (N.M.); (Z.B.)
| | - Alzbeta Filipova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, 500 01 Hradec Kralove, Czech Republic; (A.F.); (J.C.); (L.P.); (Z.S.)
| | - Jana Cizkova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, 500 01 Hradec Kralove, Czech Republic; (A.F.); (J.C.); (L.P.); (Z.S.)
| | - Lenka Pekarova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, 500 01 Hradec Kralove, Czech Republic; (A.F.); (J.C.); (L.P.); (Z.S.)
| | - Lucie Korecka
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, 532 10 Pardubice, Czech Republic; (J.K.); (L.K.); (N.M.); (Z.B.)
| | - Nikola Mannova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, 532 10 Pardubice, Czech Republic; (J.K.); (L.K.); (N.M.); (Z.B.)
| | - Zuzana Bilkova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, 532 10 Pardubice, Czech Republic; (J.K.); (L.K.); (N.M.); (Z.B.)
| | - Zuzana Sinkorova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, 500 01 Hradec Kralove, Czech Republic; (A.F.); (J.C.); (L.P.); (Z.S.)
| |
Collapse
|
3
|
Šínová R, Pavlík V, Ondrej M, Velebný V, Nešporová K. Hyaluronan: A key player or just a bystander in skin photoaging? Exp Dermatol 2021; 31:442-458. [PMID: 34726319 DOI: 10.1111/exd.14491] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 10/07/2021] [Accepted: 10/29/2021] [Indexed: 02/06/2023]
Abstract
Photoaged skin exhibits signs of inflammation, DNA damage and changes in morphology that are visible at the macroscopic and microscopic levels. Photoaging also affects the extracellular matrix (ECM) including hyaluronan (HA), the main polysaccharide component thereof. HA is a structurally simple but biologically complex molecule that serves as a water-retaining component and provides both a scaffold for a number of the proteins of the ECM and the ligand for cellular receptors. The study provides an overview of the literature concerning the changes in HA amount, size and metabolism, and the potential role of HA in photoaging. We also suggest novel HA contributions to photoaging based on our knowledge of the role of HA in other pathological processes, including the senescence and inflammation-triggered ECM reorganization. Moreover, we discuss potential direct or indirect intervention to mitigate photoaging that targets the hyaluronan metabolism, as well as supplementation.
Collapse
Affiliation(s)
- Romana Šínová
- Contipro a.s., Dolní Dobrouč, Czech Republic.,Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Vojtěch Pavlík
- Contipro a.s., Dolní Dobrouč, Czech Republic.,Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Martin Ondrej
- Contipro a.s., Dolní Dobrouč, Czech Republic.,Department of Radiobiology, Faculty of Military Health Sciences, University of Defense in Brno, Hradec Kralove, Czech Republic
| | | | | |
Collapse
|
4
|
Wang J, Teng F, Chai H, Zhang C, Liang X, Yang Y. GNA14 stimulation of KLF7 promotes malignant growth of endometrial cancer through upregulation of HAS2. BMC Cancer 2021; 21:456. [PMID: 33892667 PMCID: PMC8066949 DOI: 10.1186/s12885-021-08202-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 04/15/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Endometrial cancer (UCEC) is one of the most common gynecological malignancies. We previously found that overexpression of G protein α subunit 14 (GNA14) promoted UCEC growth. Krüppel-like factor 7 (KLF7) acts as an oncogene in various cancer types, whereas the connection between GNA14 and KLF7 in UCEC is unclear. We herein explored the involvement of GNA14/KLF7 in UCEC development. METHODS Clinical relevance of GNA14, KLF7 and HAS2 in UCEC was analyzed from TCGA and by immunohistochemical staining. Knockdown and overexpression of indicated genes were conducted by transfecting the cells with siRNAs and lentivirus, respectively. mRNA and protein expression was detected by qRT-PCR and Western blot. CCK8, colony formation, cell cycle, apoptosis, transwell and wound healing were performed to check cell biology function in vitro. Tumor growth in nude mice was conducted to check in vivo function. RNA sequencing was used to determine dys-regulated genes. RESULTS We demonstrated that GNA14 stimulated the expression of KLF7 in UCEC cells. There was a positive correlation between GNA14 and KLF7 in normal and UCEC tissues. In vitro, KLF7 promoted cell proliferation, colony formation, cell cycle progression, and migration of UCEC cells. Apoptosis was inhibited by KLF7. Xenografted tumorigenesis of UCEC cells was suppressed by KLF7 knockdown. Furthermore, RNA sequencing results showed that KLF7 regulated the expression of a large amount of genes, among which hyaluronan synthase 2 (HAS2) was downregulated in KLF7 knockdown cells. Based on TCGA database and immunoblotting assays, KLF7 positively regulated HAS2 in UCEC cells and tissues. Lastly, knockdown of HAS2 reversed the oncogenic role of KLF7 on UCEC cell proliferation, migration, and xenografted tumor development. CONCLUSION Taken together, we reveal that GNA14/KLF7/HAS2 signaling cascade exerts tumor promoting function during UCEC development.
Collapse
Affiliation(s)
- Jing Wang
- Department of obstetrics and gynecology, the First Hospital of Lanzhou University, Key Laboratory for Gynecologic Oncology Gansu Province, NO.1 Donggang West Road, Chengguan District, Lanzhou, Gansu, 730000, P. R. China
| | - Fei Teng
- Department of obstetrics and gynecology, the First Hospital of Lanzhou University, Key Laboratory for Gynecologic Oncology Gansu Province, NO.1 Donggang West Road, Chengguan District, Lanzhou, Gansu, 730000, P. R. China
| | - Hongxia Chai
- Department of obstetrics and gynecology, the First Hospital of Lanzhou University, Key Laboratory for Gynecologic Oncology Gansu Province, NO.1 Donggang West Road, Chengguan District, Lanzhou, Gansu, 730000, P. R. China
| | - Caixia Zhang
- Department of obstetrics and gynecology, the First Hospital of Lanzhou University, Key Laboratory for Gynecologic Oncology Gansu Province, NO.1 Donggang West Road, Chengguan District, Lanzhou, Gansu, 730000, P. R. China
| | - Xiaolei Liang
- Department of obstetrics and gynecology, the First Hospital of Lanzhou University, Key Laboratory for Gynecologic Oncology Gansu Province, NO.1 Donggang West Road, Chengguan District, Lanzhou, Gansu, 730000, P. R. China.
| | - Yongxiu Yang
- Department of obstetrics and gynecology, the First Hospital of Lanzhou University, Key Laboratory for Gynecologic Oncology Gansu Province, NO.1 Donggang West Road, Chengguan District, Lanzhou, Gansu, 730000, P. R. China.
| |
Collapse
|
5
|
Abstract
The extracellular matrix is part of the microenvironment and its functions are associated with the physical and chemical properties of the tissue. Among the extracellular components, the glycosaminoglycan hyaluronan is a key component, defining both the physical and biochemical characteristics of the healthy matrices. The hyaluronan metabolism is strictly regulated in physiological conditions, but in the tumoral tissues, its expression, size and binding proteins interaction are dysregulated. Hyaluronan from the tumor microenvironment promotes tumor cell proliferation, invasion, immune evasion, stemness alterations as well as drug resistance. This chapter describes data regarding novel concepts of hyaluronan functions in the tumor. Additionally, we discuss potential clinical applications of targeting HA metabolism in cancer therapy.
Collapse
|
6
|
Kim YH, Lee SB, Shim S, Kim A, Park JH, Jang WS, Lee SJ, Myung JK, Park S, Lee SJ, Kim MJ. Hyaluronic acid synthase 2 promotes malignant phenotypes of colorectal cancer cells through transforming growth factor beta signaling. Cancer Sci 2019; 110:2226-2236. [PMID: 31102316 PMCID: PMC6609812 DOI: 10.1111/cas.14070] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 05/14/2019] [Accepted: 05/16/2019] [Indexed: 12/14/2022] Open
Abstract
Hyaluronic acid synthase 2 (HAS2) is suggested to play a critical role in malignancy and is abnormally expressed in many carcinomas. However, its role in colorectal cancer (CRC) malignancy and specific signaling mechanisms remain obscure. Here, we report that HAS2 was markedly increased in both CRC tissue and malignant CRC cell lines. Depletion of HAS2 in HCT116 and DLD1 cells, which express high levels of HAS2, critically increased sensitivity of radiation/oxaliplatin‐mediated apoptotic cell death. Moreover, downregulation of HAS2 suppressed migration, invasion and metastasis in nude mice. Conversely, ectopic overexpression of HAS2 in SW480 cells, which express low levels of HAS2, showed the opposite effect. Notably, HAS2 loss‐ and gain‐of‐function experiments revealed that it regulates CRC malignancy through TGF‐β expression and SMAD2/Snail downstream components. Collectively, our findings suggest that HAS2 contributes to malignant phenotypes of CRC, at least partly, through activation of the TGF‐β signaling pathway, and shed light on the novel mechanisms behind the constitutive activation of HAS2 signaling in CRC, thereby highlighting its potential as a therapeutic target.
Collapse
Affiliation(s)
- Young-Heon Kim
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Science, Seoul, Korea.,Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, Korea
| | - Seung Bum Lee
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Science, Seoul, Korea
| | - Sehwan Shim
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Science, Seoul, Korea
| | - Areumnuri Kim
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Science, Seoul, Korea
| | - Ji-Hye Park
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Science, Seoul, Korea
| | - Won-Suk Jang
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Science, Seoul, Korea
| | - Sun-Joo Lee
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Science, Seoul, Korea
| | - Jae Kyung Myung
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Science, Seoul, Korea.,Lab. of Experimental Pathology, Departments of Pathology, Korea Institute of Radiological & Medical Science, Seoul, Korea
| | - Sunhoo Park
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Science, Seoul, Korea.,Lab. of Experimental Pathology, Departments of Pathology, Korea Institute of Radiological & Medical Science, Seoul, Korea
| | - Su-Jae Lee
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, Korea
| | - Min-Jung Kim
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Science, Seoul, Korea
| |
Collapse
|
7
|
Sukowati CHC, Anfuso B, Fiore E, Ie SI, Raseni A, Vascotto F, Avellini C, Mazzolini G, Tiribelli C. Hyaluronic acid inhibition by 4-methylumbelliferone reduces the expression of cancer stem cells markers during hepatocarcinogenesis. Sci Rep 2019; 9:4026. [PMID: 30858465 PMCID: PMC6411988 DOI: 10.1038/s41598-019-40436-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 02/11/2019] [Indexed: 12/25/2022] Open
Abstract
Hyaluronic acid (HA) is a glycosaminoglycan of extracellular matrix related to cell surface which interacts with various cell types. To understand the role of HA during hepatocarcinogenesis, we assessed the effect of the inhibition of HA deposition and its association with heterogeneous hepatocellular carcinoma (HCC) cells. In this study, we used transgenic mice C57BL/6J-Tg(Alb1HBV)44Bri/J (HBV-TG) and normal C57BL/6 J (WT) for in vivo study, while HCC cells Huh7 and JHH6 as in vitro models. Both models were treated with an HA inhibitor 4-methylumbelliferone (4MU). We observed that 4MU treatments in animal model down-regulated the mRNA expressions of HA-related genes Has3 and Hyal2 only in HBV-TG but not in normal WT. As observed in vivo, in HCC cell lines, the HAS2 mRNA expression was down-regulated in Huh7 while HAS3 in JHH6, both with or without the presence of extrinsic HA. Interestingly, in both models, the expressions of various cancer stem cells (CD44, CD90, CD133, and EpCAM) were also decreased. Further, histological analysis showed that 4MU treatment with dose 25 mg/kg/day reduced fibrosis, inflammation, and steatosis in vivo, in addition to be pro-apoptotic. We concluded that the inhibition of HA reduced the expressions of HA-related genes and stem cells markers in both models, indicating a possible modulation of cells-to-cells and cells-to-matrix interaction.
Collapse
Affiliation(s)
- Caecilia H C Sukowati
- Fondazione Italiana Fegato, AREA Science Park Basovizza, SS14 km 163.5, 34149, Trieste, Italy. .,Department of Medicine, University of Udine, Piazzale M. Kolbe 1, 33100, Udine, Italy.
| | - Beatrice Anfuso
- Fondazione Italiana Fegato, AREA Science Park Basovizza, SS14 km 163.5, 34149, Trieste, Italy
| | - Esteban Fiore
- Gene Therapy Laboratory, Facultad de Ciencias Biomédicas, Universidad Austral, Avenida Presidente Perón 1500, B1629ODT, Derqui-Pilar, Buenos Aires, Argentina
| | - Susan I Ie
- Laboratory of Hepatitis and Emerging Diseases, Eijkman Institute for Molecular Biology, Jl. Diponegoro 69, 10430, Jakarta, Indonesia
| | - Alan Raseni
- Institute for Maternal and Child Health - Institute for Research and Health Care Burlo Garofolo, Via dell'Istria, 65, 34137, Trieste, Italy
| | - Fulvia Vascotto
- Institute for Maternal and Child Health - Institute for Research and Health Care Burlo Garofolo, Via dell'Istria, 65, 34137, Trieste, Italy
| | - Claudio Avellini
- Department of Medical and Biological Sciences, University Hospital Santa Maria della Misericordia, Piazzale Santa Maria della Misericordia 15, 33100, Udine, Italy
| | - Guillermo Mazzolini
- Gene Therapy Laboratory, Facultad de Ciencias Biomédicas, Universidad Austral, Avenida Presidente Perón 1500, B1629ODT, Derqui-Pilar, Buenos Aires, Argentina
| | - Claudio Tiribelli
- Fondazione Italiana Fegato, AREA Science Park Basovizza, SS14 km 163.5, 34149, Trieste, Italy
| |
Collapse
|
8
|
Wu RL, Huang L, Zhao HC, Geng XP. Hyaluronic acid in digestive cancers. J Cancer Res Clin Oncol 2016; 143:1-16. [DOI: 10.1007/s00432-016-2213-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 07/27/2016] [Indexed: 01/03/2023]
|
9
|
Abstract
Hyaluronic acid or hyaluronan (HA) is perhaps one of the most uncomplicated large polymers that regulates several normal physiological processes and, at the same time, contributes to the manifestation of a variety of chronic and acute diseases, including cancer. Members of the HA signaling pathway (HA synthases, HA receptors, and HYAL-1 hyaluronidase) have been experimentally shown to promote tumor growth, metastasis, and angiogenesis, and hence each of them is a potential target for cancer therapy. Furthermore, as these members are also overexpressed in a variety of carcinomas, targeting of the HA family is clinically relevant. A variety of targeted approaches have been developed to target various HA family members, including small-molecule inhibitors and antibody and vaccine therapies. These treatment approaches inhibit HA-mediated intracellular signaling that promotes tumor cell proliferation, motility, and invasion, as well as induction of endothelial cell functions. Being nontoxic, nonimmunogenic, and versatile for modifications, HA has been used in nanoparticle preparations for the targeted delivery of chemotherapy drugs and other anticancer compounds to tumor cells through interaction with cell-surface HA receptors. This review discusses basic and clinical translational aspects of targeting each HA family member and respective treatment approaches that have been described in the literature.
Collapse
|