1
|
Wang G, Qi W, Liu QH, Guan W. GluN2A: A Promising Target for Developing Novel Antidepressants. Int J Neuropsychopharmacol 2024; 27:pyae037. [PMID: 39185814 DOI: 10.1093/ijnp/pyae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/23/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Depression is a heterogeneous disorder with high morbidity and disability rates that poses serious problems regarding mental health care. It is now well established that N-methyl D-aspartate receptor (NMDAR) modulators are being increasingly explored as potential therapeutic options for treating depression, although relatively little is known about their mechanisms of action. NMDARs are glutamate-gated ion channels that are ubiquitously expressed in the central nervous system (CNS), and they have been shown to play key roles in excitatory synaptic transmission. GluN2A, the predominant Glu2N subunit of functional NMDARs in neurons, is involved in various physiological processes in the CNS and is associated with diseases such as anxiety, depression, and schizophrenia. However, the role of GluN2A in the pathophysiology of depression has not yet been elucidated. METHODS We reviewed several past studies to better understand the function of GluN2A in depression. Additionally, we also summarized the pathogenesis of depression based on the regulation of GluN2A expression, particularly its interaction with neuroinflammation and neurogenesis, which has received considerable critical attention and is highly implicated in the onset of depression. RESULTS These evidence suggests that GluN2A overexpression impairs structural and functional synaptic plasticity, which contributes to the development of depression. Consequently, this knowledge is vital for the development of selective antagonists targeting GluN2A subunits using pharmacological and molecular methods. CONCLUSIONS Specific inhibition of the GluN2A NMDAR subunit is resistant to chronic stress-induced depressive-like behaviors, making them promising targets for the development of novel antidepressants.
Collapse
Affiliation(s)
- Gang Wang
- Department of Hepatobiliary Surgery, Zhangjiagang Hospital affiliated to Soochow University/The First People's Hospital of Zhangjiagang City, Zhangjiagang, China
| | - Wang Qi
- Department of Pharmacology, The First People's Hospital of Yancheng, Yancheng, China
| | - Qiu-Hua Liu
- Department of Hepatobiliary Surgery, Zhangjiagang Hospital affiliated to Soochow University/The First People's Hospital of Zhangjiagang City, Zhangjiagang, China
| | - Wei Guan
- Department of Pharmacology, Pharmacy College, Nantong University, Nantong, China
| |
Collapse
|
2
|
Iacobucci GJ, Popescu GK. Calcium- and calmodulin-dependent inhibition of NMDA receptor currents. Biophys J 2024; 123:277-293. [PMID: 38140727 PMCID: PMC10870176 DOI: 10.1016/j.bpj.2023.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/05/2023] [Accepted: 12/19/2023] [Indexed: 12/24/2023] Open
Abstract
Calcium ions (Ca2+) reduce NMDA receptor currents through several distinct mechanisms. Among these, calmodulin (CaM)-dependent inhibition (CDI) accomplishes rapid, reversible, and incomplete reduction of the NMDA receptor currents in response to elevations in intracellular Ca2+. Quantitative and mechanistic descriptions of CDI of NMDA receptor-mediated signals have been marred by variability originating, in part, from differences in the conditions and metrics used to evaluate this process across laboratories. Recent ratiometric approaches to measure the magnitude and kinetics of NMDA receptor CDI have facilitated rapid insights into this phenomenon. Notably, the kinetics and magnitude of NMDA receptor CDI depend on the degree of saturation of its CaM binding sites, which represent the bona fide calcium sensor for this type of inhibition, the kinetics and magnitude of the Ca2+ signal, which depends on the biophysical properties of the NMDA receptor or of adjacent Ca2+ sources, and on the relative distribution of Ca2+ sources and CaM molecules. Given that all these factors vary widely during development, across cell types, and with physiological and pathological states, it is important to understand how NMDA receptor CDI develops and how it contributes to signaling in the central nervous system. Here, we review briefly these recent advances and highlight remaining questions about the structural and kinetic mechanisms of NMDA receptor CDI. Given that pathologies can arise from several sources, including mutations in the NMDA receptor and in CaM, understanding how CaM responds to intracellular Ca2+ signals to initiate conformational changes in NMDA receptors, and mapping the structural domains responsible will help to envision novel therapeutic strategies to neuropsychiatric diseases, which presently have limited available treatments.
Collapse
Affiliation(s)
- Gary J Iacobucci
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, SUNY, Buffalo, New York
| | - Gabriela K Popescu
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, SUNY, Buffalo, New York.
| |
Collapse
|
3
|
Bej A, Ames JB. Chemical shift assignments of calmodulin bound to a cytosolic domain of GluN2A (residues 1004-1024) from the NMDA receptor. BIOMOLECULAR NMR ASSIGNMENTS 2023; 17:89-93. [PMID: 37029330 DOI: 10.1007/s12104-023-10125-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/30/2023] [Indexed: 05/21/2023]
Abstract
N-methyl-D-aspartate receptors (NMDARs) consist of glycine-binding GluN1 and glutamate-binding GluN2 subunits that form tetrameric ion channels. NMDARs in the neuronal post-synaptic membrane are important for controlling neuroplasticity and synaptic transmission in the brain. Calmodulin (CaM) binds to the cytosolic C0 domains of both GluN1 (residues 841-865) and GluN2 (residues 1004-1024) that may play a role in the Ca2+-dependent desensitization of NMDAR channels. Mutations that disrupt Ca2+-dependent desensitization of NMDARs are linked to Alzheimer's disease, depression, stroke, epilepsy, and schizophrenia. NMR chemical shift assignments are reported here for Ca2+-saturated CaM bound to the GluN2A C0 domain of NMDAR (BMRB no. 51821).
Collapse
Affiliation(s)
- Aritra Bej
- Department of Chemistry, University of California, Davis, CA, 95616, USA
| | - James B Ames
- Department of Chemistry, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
4
|
Niu M, Yang X, Li Y, Sun Y, Wang L, Ha J, Xie Y, Gao Z, Tian C, Wang L, Sun Y. Progresses in GluN2A-containing NMDA Receptors and their Selective Regulators. Cell Mol Neurobiol 2023; 43:139-153. [PMID: 34978648 PMCID: PMC11415211 DOI: 10.1007/s10571-021-01185-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 12/18/2021] [Indexed: 01/07/2023]
Abstract
NMDA receptors play an important physiological role in regulating synaptic plasticity, learning and memory. GluN2A subunits are the most abundant functional subunits of NMDA receptors expressed in mature brain, and their dysfunction is related to various neurological diseases. According to subunit composition, GluN2A-containing NMDA receptors can be divided into two types: diheteromeric and triheteromeric receptors. In this review, the expression, functional and pharmacological properties of different kinds of GluN2A-containing NMDA receptors as well as selective GluN2A regulators were described to further understand this type of NMDA receptors.
Collapse
Affiliation(s)
- Menghan Niu
- Department of Pharmacy, Hebei University of Science and Technology, Yuhua East Road 70, Shijiazhuang, 050018, Hebei, China
| | - Xin Yang
- Department of Pharmaceutical Engineering, Hebei Chemical & Pharmaceutical College, Fangxing Road 88, Shijiazhuang, 050026, Hebei, China
- Hebei Technological Innovation Center of Chiral Medicine, Shijiazhuang, China
| | - Yuanyuan Li
- Department of Pharmacy, Hebei University of Science and Technology, Yuhua East Road 70, Shijiazhuang, 050018, Hebei, China
| | - Yanping Sun
- Department of Pharmacy, Hebei University of Science and Technology, Yuhua East Road 70, Shijiazhuang, 050018, Hebei, China
- Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
- State Key Laboratory Breeding Base-Hebei Province Key Laboratory of Molecular Chemistry for Drug, Shijiazhuang, China
| | - Long Wang
- Department of Family and Consumer Sciences, California State University, Long Beach, USA
| | - Jing Ha
- Department of Pharmacy, Hebei University of Science and Technology, Yuhua East Road 70, Shijiazhuang, 050018, Hebei, China
| | - Yinghua Xie
- Department of Pharmacy, Hebei University of Science and Technology, Yuhua East Road 70, Shijiazhuang, 050018, Hebei, China
| | - Zibin Gao
- Department of Pharmacy, Hebei University of Science and Technology, Yuhua East Road 70, Shijiazhuang, 050018, Hebei, China
- Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
- State Key Laboratory Breeding Base-Hebei Province Key Laboratory of Molecular Chemistry for Drug, Shijiazhuang, China
| | - Changzheng Tian
- Department of Anesthesiology, The First Hospital of Hebei Medical University, Donggang Road 89, Shijiazhuang, 050000, Hebei, China.
| | - Le Wang
- Department of Pharmaceutical Engineering, Hebei Chemical & Pharmaceutical College, Fangxing Road 88, Shijiazhuang, 050026, Hebei, China.
- Hebei Technological Innovation Center of Chiral Medicine, Shijiazhuang, China.
| | - Yongjun Sun
- Department of Pharmacy, Hebei University of Science and Technology, Yuhua East Road 70, Shijiazhuang, 050018, Hebei, China.
- Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, China.
- State Key Laboratory Breeding Base-Hebei Province Key Laboratory of Molecular Chemistry for Drug, Shijiazhuang, China.
| |
Collapse
|
5
|
Gardoni F, Di Luca M. Protein-protein interactions at the NMDA receptor complex: From synaptic retention to synaptonuclear protein messengers. Neuropharmacology 2021; 190:108551. [PMID: 33819458 DOI: 10.1016/j.neuropharm.2021.108551] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/17/2021] [Accepted: 03/26/2021] [Indexed: 12/18/2022]
Abstract
N-methyl-d-aspartate receptors (NMDARs) are glutamate-gated ion channels that support essential functions throughout the brain. NMDARs are tetramers composed of the GluN1 subunit in complex with GluN2- and GluN3-type regulatory subunits, resulting in the formation of various receptor subtypes throughout the central nervous system (CNS), characterised by different kinetics, biophysical and pharmacological properties, and the abilities to interact with specific partners at dendritic spines. NMDARs are expressed at high levels, are widely distributed throughout the brain, and are involved in several physiological and pathological conditions. Here, we will focus on the GluN2A- and GluN2B-containing NMDARs found at excitatory synapses and their interactions with plasticity-relevant proteins, such as the postsynaptic density family of membrane-associated guanylate kinases (PSD-MAGUKs), Ca2+/calmodulin-dependent kinase II (CaMKII) and synaptonuclear protein messengers. The dynamic interactions between NMDAR subunits and various proteins regulating synaptic receptor retention and synaptonuclear signalling mediated by protein messengers suggest that the NMDAR serves as a key molecular player that coordinates synaptic activity and cell-wide events that require gene transcription. Importantly, protein-protein interactions at the NMDAR complex can also contribute to synaptic dysfunction in several brain disorders. Therefore, the modulation of the molecular composition of the NMDAR complex might represent a novel pharmacological approach for the treatment of certain disease states.
Collapse
Affiliation(s)
- Fabrizio Gardoni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Italy
| | - Monica Di Luca
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Italy.
| |
Collapse
|
6
|
Xu Y, Song X, Wang D, Wang Y, Li P, Li J. Proteomic insights into synaptic signaling in the brain: the past, present and future. Mol Brain 2021; 14:37. [PMID: 33596935 PMCID: PMC7888154 DOI: 10.1186/s13041-021-00750-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/09/2021] [Indexed: 12/29/2022] Open
Abstract
Chemical synapses in the brain connect neurons to form neural circuits, providing the structural and functional bases for neural communication. Disrupted synaptic signaling is closely related to a variety of neurological and psychiatric disorders. In the past two decades, proteomics has blossomed as a versatile tool in biological and biomedical research, rendering a wealth of information toward decoding the molecular machinery of life. There is enormous interest in employing proteomic approaches for the study of synapses, and substantial progress has been made. Here, we review the findings of proteomic studies of chemical synapses in the brain, with special attention paid to the key players in synaptic signaling, i.e., the synaptic protein complexes and their post-translational modifications. Looking toward the future, we discuss the technological advances in proteomics such as data-independent acquisition mass spectrometry (DIA-MS), cross-linking in combination with mass spectrometry (CXMS), and proximity proteomics, along with their potential to untangle the mystery of how the brain functions at the molecular level. Last but not least, we introduce the newly developed synaptomic methods. These methods and their successful applications marked the beginnings of the synaptomics era.
Collapse
Affiliation(s)
- Yalan Xu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, 266021, China
| | - Xiuyue Song
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, 266021, China
| | - Dong Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, 266021, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, 266021, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, 266021, China
| | - Jing Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, 266021, China.
| |
Collapse
|
7
|
Warnet XL, Bakke Krog H, Sevillano-Quispe OG, Poulsen H, Kjaergaard M. The C-terminal domains of the NMDA receptor: How intrinsically disordered tails affect signalling, plasticity and disease. Eur J Neurosci 2020; 54:6713-6739. [PMID: 32464691 DOI: 10.1111/ejn.14842] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/16/2020] [Accepted: 05/18/2020] [Indexed: 01/14/2023]
Abstract
NMDA receptors are part of the ionotropic glutamate receptor family, and are crucial for neurotransmission and memory. At the cellular level, the effects of activating these receptors include long-term potentiation (LTP) or depression (LTD). The NMDA receptor is a stringently gated cation channel permeable to Ca2+ , and it shares the molecular architecture of a tetrameric ligand-gated ion channel with the other family members. Its subunits, however, have uniquely long cytoplasmic C-terminal domains (CTDs). While the molecular gymnastics of the extracellular domains have been described in exquisite detail, much less is known about the structure and function of these CTDs. The CTDs vary dramatically in length and sequence between receptor subunits, but they all have a composition characteristic of intrinsically disordered proteins. The CTDs affect channel properties, trafficking and downstream signalling output from the receptor, and these functions are regulated by alternative splicing, protein-protein interactions, and post-translational modifications such as phosphorylation and palmitoylation. Here, we review the roles of the CTDs in synaptic plasticity with a focus on biochemical mechanisms. In total, the CTDs play a multifaceted role as a modifier of channel function, a regulator of cellular location and abundance, and signalling scaffold control the downstream signalling output.
Collapse
Affiliation(s)
- Xavier L Warnet
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.,The Danish Research Institute for Translational Neuroscience (DANDRITE), Aarhus University, Aarhus, Denmark.,The Center for Proteins in Memory (PROMEMO), Aarhus University, Aarhus, Denmark
| | - Helle Bakke Krog
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.,The Danish Research Institute for Translational Neuroscience (DANDRITE), Aarhus University, Aarhus, Denmark.,The Center for Proteins in Memory (PROMEMO), Aarhus University, Aarhus, Denmark
| | - Oscar G Sevillano-Quispe
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.,The Danish Research Institute for Translational Neuroscience (DANDRITE), Aarhus University, Aarhus, Denmark.,The Center for Proteins in Memory (PROMEMO), Aarhus University, Aarhus, Denmark
| | - Hanne Poulsen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.,The Danish Research Institute for Translational Neuroscience (DANDRITE), Aarhus University, Aarhus, Denmark.,The Center for Proteins in Memory (PROMEMO), Aarhus University, Aarhus, Denmark
| | - Magnus Kjaergaard
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.,The Danish Research Institute for Translational Neuroscience (DANDRITE), Aarhus University, Aarhus, Denmark.,The Center for Proteins in Memory (PROMEMO), Aarhus University, Aarhus, Denmark
| |
Collapse
|
8
|
Synaptic GluN2A-Containing NMDA Receptors: From Physiology to Pathological Synaptic Plasticity. Int J Mol Sci 2020; 21:ijms21041538. [PMID: 32102377 PMCID: PMC7073220 DOI: 10.3390/ijms21041538] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 12/16/2022] Open
Abstract
N-Methyl-d-Aspartate Receptors (NMDARs) are ionotropic glutamate-gated receptors. NMDARs are tetramers composed by several homologous subunits of GluN1-, GluN2-, or GluN3-type, leading to the existence in the central nervous system of a high variety of receptor subtypes with different pharmacological and signaling properties. NMDAR subunit composition is strictly regulated during development and by activity-dependent synaptic plasticity. Given the differences between GluN2 regulatory subunits of NMDAR in several functions, here we will focus on the synaptic pool of NMDARs containing the GluN2A subunit, addressing its role in both physiology and pathological synaptic plasticity as well as the contribution in these events of different types of GluN2A-interacting proteins.
Collapse
|
9
|
Van Lam van T, Ivanova T, Hardes K, Heindl MR, Morty RE, Böttcher-Friebertshäuser E, Lindberg I, Than ME, Dahms SO, Steinmetzer T. Design, Synthesis, and Characterization of Macrocyclic Inhibitors of the Proprotein Convertase Furin. ChemMedChem 2019; 14:673-685. [PMID: 30680958 DOI: 10.1002/cmdc.201800807] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/18/2019] [Indexed: 12/20/2022]
Abstract
The activation of viral glycoproteins by the host protease furin is an essential step in the replication of numerous pathogenic viruses. Thus, effective inhibitors of furin could serve as broad-spectrum antiviral drugs. A crystal structure of an inhibitory hexapeptide derivative in complex with furin served as template for the rational design of various types of new cyclic inhibitors. Most of the prepared derivatives are relatively potent furin inhibitors with inhibition constants in the low nanomolar or even sub-nanomolar range. For seven derivatives the crystal structures in complex with furin could be determined. In three complexes, electron density was found for the entire inhibitor. In the other cases the structures could be determined only for the P6/P5-P1 segments, which directly interact with furin. The cyclic derivatives together with two non-cyclic reference compounds were tested as inhibitors of the proteolytic activation and replication of respiratory syncytial virus in cells. Significant antiviral activity was found for both linear reference inhibitors, whereas a negligible efficacy was determined for the cyclic derivatives.
Collapse
Affiliation(s)
- Thuy Van Lam van
- Institute of Pharmaceutical Chemistry, Philipps University, Marbacher Weg 6, 35032, Marburg, Germany
| | - Teodora Ivanova
- Institute of Pharmaceutical Chemistry, Philipps University, Marbacher Weg 6, 35032, Marburg, Germany
| | - Kornelia Hardes
- Institute of Pharmaceutical Chemistry, Philipps University, Marbacher Weg 6, 35032, Marburg, Germany
| | - Miriam Ruth Heindl
- Institute of Virology, Philipps University, Hans-Meerwein-Str. 2, 35043, Marburg, Germany
| | - Rory E Morty
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | | | - Iris Lindberg
- Department of Anatomy and Neurobiology, University of Maryland Medical School, Baltimore, MD, 21201, USA
| | - Manuel E Than
- Protein Crystallography Group, Leibniz Institute on Aging-Fritz Lipmann Institute, Beutenbergstr. 11, 07745, Jena, Germany
| | - Sven O Dahms
- Department of Biosciences, University of Salzburg, Billrothstrasse 11, 5020, Salzburg, Austria
| | - Torsten Steinmetzer
- Institute of Pharmaceutical Chemistry, Philipps University, Marbacher Weg 6, 35032, Marburg, Germany
| |
Collapse
|
10
|
Sapkota K, Dore K, Tang K, Irvine M, Fang G, Burnell ES, Malinow R, Jane DE, Monaghan DT. The NMDA receptor intracellular C-terminal domains reciprocally interact with allosteric modulators. Biochem Pharmacol 2018; 159:140-153. [PMID: 30503374 DOI: 10.1016/j.bcp.2018.11.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 11/28/2018] [Indexed: 11/27/2022]
Abstract
N-methyl-d-aspartate receptors (NMDARs) have multiple prominent roles in CNS function but their excessive or insufficient activity contributes to neuropathological/psychiatric disorders. Consequently, a variety of positive and negative allosteric modulators (PAMs and NAMs, respectively) have recently been developed. Although these modulators bind to extracellular domains, in the present report we find that the NMDAR's intracellular C-terminal domains (CTDs) significantly influence PAM/NAM activity. GluN2 CTD deletion robustly affected NAM and PAM activity with both enhancing and inhibiting effects that were compound-specific and NMDAR subunit-specific. In three cases, individual PAMs became NAMs at specific GluN2-truncated receptors. In contrast to GluN2, GluN1 CTD removal only reduced PAM activity of UBP684 and CIQ, and did not affect NAM activity. Consistent with these findings, agents altering phosphorylation state or intracellular calcium levels displayed receptor-specific and compound-specific effects on PAM activity. It is possible that the GluN2's M4 domain transmits intracellular modulatory signals from the CTD to the M1/M4 channel gating machinery and that this site is a point of convergence in the direct or indirect actions of several PAMs/NAMs thus rendering them sensitive to CTD status. Thus, allosteric modulators are likely to have a marked and varied sensitivity to post-translational modifications, protein-protein associations, and intracellular ions. The interaction between PAM activity and NMDAR CTDs appears reciprocal. GluN1 CTD-deletion eliminated UBP684, but not pregnenolone sulfate (PS), PAM activity. And, in the absence of agonists, UBP684, but not PS, was able to promote movement of fluorescently-tagged GluN1-CTDs. Thus, it may be possible to pharmacologically target NMDAR metabotropic activity in the absence of channel activation.
Collapse
Affiliation(s)
- Kiran Sapkota
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA
| | - Kim Dore
- Center for Neural Circuits and Behavior, Department of Neuroscience and Section for Neurobiology, Division of Biology, University of California at San Diego, San Diego, CA 92093-0634, USA
| | - Kang Tang
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA
| | - Mark Irvine
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology & Neuroscience, Biomedical Sciences Building, University Walk, University of Bristol, Bristol BS8 1TD, UK
| | - Guangyu Fang
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology & Neuroscience, Biomedical Sciences Building, University Walk, University of Bristol, Bristol BS8 1TD, UK
| | - Erica S Burnell
- School of Chemistry, National University of Ireland Galway, Galway H91TK33, Ireland
| | - Roberto Malinow
- Center for Neural Circuits and Behavior, Department of Neuroscience and Section for Neurobiology, Division of Biology, University of California at San Diego, San Diego, CA 92093-0634, USA
| | - David E Jane
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology & Neuroscience, Biomedical Sciences Building, University Walk, University of Bristol, Bristol BS8 1TD, UK
| | - Daniel T Monaghan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA.
| |
Collapse
|
11
|
The Pharmabiotic Approach to Treat Hyperammonemia. Nutrients 2018; 10:nu10020140. [PMID: 29382084 PMCID: PMC5852716 DOI: 10.3390/nu10020140] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/22/2018] [Accepted: 01/26/2018] [Indexed: 12/12/2022] Open
Abstract
Ammonia is constantly produced as a metabolic waste from amino acid catabolism in mammals. Ammonia, the toxic waste metabolite, is resolved in the liver where the urea cycle converts free ammonia to urea. Liver malfunctions cause hyperammonemia that leads to central nervous system (CNS) dysfunctions, such as brain edema, convulsions, and coma. The current treatments for hyperammonemia, such as antibiotics or lactulose, are designed to decrease the intestinal production of ammonia and/or its absorption into the body and are not effective, besides being often accompanied by side effects. In recent years, increasing evidence has shown that modifications of the gut microbiota could be used to treat hyperammonemia. Considering the role of the gut microbiota and the physiological characteristics of the intestine, the removal of ammonia from the intestine by modulating the gut microbiota would be an ideal approach to treat hyperammonemia. In this review, we discuss the significance of hyperammonemia and its related diseases and the efficacy of the current management methods for hyperammonemia to understand the mechanism of ammonia transport in the human body. The possibility to use the gut microbiota as pharmabiotics to treat hyperammonemia and its related diseases is also explored.
Collapse
|
12
|
Iacobucci GJ, Popescu GK. Resident Calmodulin Primes NMDA Receptors for Ca 2+-Dependent Inactivation. Biophys J 2017; 113:2236-2248. [PMID: 28712640 PMCID: PMC5700250 DOI: 10.1016/j.bpj.2017.06.035] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/09/2017] [Accepted: 06/13/2017] [Indexed: 10/19/2022] Open
Abstract
N-methyl-d-aspartate (NMDA) receptors are glutamate- and glycine-gated channels that flux Na+ and Ca2+ into postsynaptic neurons during synaptic transmission. The resulting intracellular Ca2+ transient is essential to physiological and pathological processes related to synaptic development, plasticity, and apoptosis. It also engages calmodulin (CaM) to reduce subsequent NMDA receptor activity in a process known as Ca2+-dependent inactivation (CDI). Here, we used whole-cell electrophysiology to measure CDI and computational modeling to dissect the sequence of events that underlies it. With these approaches, we estimate that CaM senses NMDA receptor Ca2+ influx at ∼9 nm from the channel pore. Further, when we controlled the frequency of Ca2+ influx through individual channels, we found that a kinetic model where apoCaM associates with channels before their activation best predicts the measured CDI. These results provide, to our knowledge, novel functional evidence for CaM preassociation to NMDA receptors in living cells. This particular mechanism for autoinhibitory feedback reveals strategies and challenges for Ca2+ regulation in neurons during physiological synaptic activity and disease.
Collapse
Affiliation(s)
- Gary J Iacobucci
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York.
| | - Gabriela K Popescu
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York.
| |
Collapse
|
13
|
Singh S, Virdi AS, Jaswal R, Chawla M, Kapoor S, Mohapatra SB, Manoj N, Pareek A, Kumar S, Singh P. A temperature-responsive gene in sorghum encodes a glycine-rich protein that interacts with calmodulin. Biochimie 2017; 137:115-123. [PMID: 28322928 DOI: 10.1016/j.biochi.2017.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 02/22/2017] [Accepted: 03/15/2017] [Indexed: 11/26/2022]
Abstract
Imposition of different biotic and abiotic stress conditions results in an increase in intracellular levels of Ca2+ which is sensed by various sensor proteins. Calmodulin (CaM) is one of the best studied transducers of Ca2+ signals. CaM undergoes conformational changes upon binding to Ca2+ and interacts with different types of proteins, thereby, regulating their activities. The present study reports the cloning and characterization of a sorghum cDNA encoding a protein (SbGRBP) that shows homology to glycine-rich RNA-binding proteins. The expression of SbGRBP in the sorghum seedlings is modulated by heat stress. The SbGRBP protein is localized in the nucleus as well as in cytosol, and shows interaction with CaM that requires the presence of Ca2+. SbGRBP depicts binding to single- and also double-stranded DNA. Fluorescence spectroscopic analyses suggest that interaction of SbGRBP with nucleic acids may be modulated after binding with CaM. To our knowledge, this is the first study to provide evidence for interaction of a stress regulated glycine-rich RNA-binding protein with CaM.
Collapse
Affiliation(s)
- Supreet Singh
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Amardeep Singh Virdi
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Rajdeep Jaswal
- Biotechnology Division, Institute of Himalayan Bioresource Technology, Palampur, 176061 Himachal Pradesh, India
| | - Mrinalini Chawla
- Interdisciplinary Center for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Sanjay Kapoor
- Interdisciplinary Center for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Samar B Mohapatra
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Narayanan Manoj
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sanjay Kumar
- Biotechnology Division, Institute of Himalayan Bioresource Technology, Palampur, 176061 Himachal Pradesh, India.
| | - Prabhjeet Singh
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| |
Collapse
|
14
|
Dinamarca MC, Guzzetti F, Karpova A, Lim D, Mitro N, Musardo S, Mellone M, Marcello E, Stanic J, Samaddar T, Burguière A, Caldarelli A, Genazzani AA, Perroy J, Fagni L, Canonico PL, Kreutz MR, Gardoni F, Di Luca M. Ring finger protein 10 is a novel synaptonuclear messenger encoding activation of NMDA receptors in hippocampus. eLife 2016; 5:e12430. [PMID: 26977767 PMCID: PMC4805553 DOI: 10.7554/elife.12430] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 02/19/2016] [Indexed: 12/11/2022] Open
Abstract
Synapses and nuclei are connected by bidirectional communication mechanisms that enable information transfer encoded by macromolecules. Here, we identified RNF10 as a novel synaptonuclear protein messenger. RNF10 is activated by calcium signals at the postsynaptic compartment and elicits discrete changes at the transcriptional level. RNF10 is enriched at the excitatory synapse where it associates with the GluN2A subunit of NMDA receptors (NMDARs). Activation of synaptic GluN2A-containing NMDARs and induction of long term potentiation (LTP) lead to the translocation of RNF10 from dendritic segments and dendritic spines to the nucleus. In particular, we provide evidence for importin-dependent long-distance transport from synapto-dendritic compartments to the nucleus. Notably, RNF10 silencing prevents the maintenance of LTP as well as LTP-dependent structural modifications of dendritic spines. DOI:http://dx.doi.org/10.7554/eLife.12430.001 Brain activity depends on the communication between neurons. This process takes place at the junctions between neurons, which are known as synapses, and typically involves one of the cells releasing a chemical messenger that binds to receptors on the other cell. The binding triggers a cascade of events inside the recipient cell, including the production of new receptors and their insertion into the cell membrane. These changes strengthen the synapse and are thought to be one of the ways in which the brain establishes and maintains memories. However, in order to induce these changes at the synapse, neurons must be able to activate the genes that encode their component parts. These genes are present inside the cell nucleus, which is located some distance away from the synapse. Studies have shown that signals can be sent from the nucleus to the synapse and vice versa, enabling the two parts of the cell to exchange information. Synapses that communicate using a chemical called glutamate have been particularly well studied; but it still remains unclear how the activation of receptors at these “glutamatergic synapses” is linked to activation of genes inside the nucleus at the molecular level. Dinamarca, Guzzetti et al. have now discovered that this process at glutamatergic synapses involves the movement of a protein messenger to the nucleus. Specifically, activation at synapses of a particularly common subtype of receptor, called NMDA, causes a protein called Ring Finger protein 10 (or RNF10 for short) to move from the synapse to the nucleus. To leave the synapse, RNF10 first has to bind to proteins called importins, which transport RNF10 into the nucleus. Once inside the nucleus, RNF10 binds to another protein that interacts with the DNA to start the production of new synaptic proteins. Further work is required to identify the molecular mechanisms that trigger RNF10 to leave the synapse. In addition, future studies should evaluate the levels and activity of RNF10 in brain disorders in which synapses are known to function abnormally. DOI:http://dx.doi.org/10.7554/eLife.12430.002
Collapse
Affiliation(s)
- Margarita C Dinamarca
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Francesca Guzzetti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Anna Karpova
- RG Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Dmitry Lim
- Dipartimento di Scienze del Farmaco, Università degli Studi del Piemonte Orientale "Amedeo Avogadro", Novara, Italy
| | - Nico Mitro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Stefano Musardo
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Manuela Mellone
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Elena Marcello
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Jennifer Stanic
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Tanmoy Samaddar
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | | | - Antonio Caldarelli
- Dipartimento di Scienze del Farmaco, Università degli Studi del Piemonte Orientale "Amedeo Avogadro", Novara, Italy
| | - Armando A Genazzani
- Dipartimento di Scienze del Farmaco, Università degli Studi del Piemonte Orientale "Amedeo Avogadro", Novara, Italy
| | - Julie Perroy
- CNRS, Institut de Génomique Fonctionnelle, Montpellier, France
| | - Laurent Fagni
- CNRS, Institut de Génomique Fonctionnelle, Montpellier, France
| | - Pier Luigi Canonico
- Dipartimento di Scienze del Farmaco, Università degli Studi del Piemonte Orientale "Amedeo Avogadro", Novara, Italy
| | - Michael R Kreutz
- RG Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Fabrizio Gardoni
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Monica Di Luca
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
15
|
Valiullina F, Zakharova Y, Mukhtarov M, Draguhn A, Burnashev N, Rozov A. The Relative Contribution of NMDARs to Excitatory Postsynaptic Currents is Controlled by Ca(2+)-Induced Inactivation. Front Cell Neurosci 2016; 10:12. [PMID: 26858606 PMCID: PMC4731592 DOI: 10.3389/fncel.2016.00012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/13/2016] [Indexed: 11/13/2022] Open
Abstract
NMDA receptors (NMDARs) are important mediators of excitatory synaptic transmission and plasticity. A hallmark of these channels is their high permeability to Ca(2+). At the same time, they are themselves inhibited by the elevation of intracellular Ca(2+) concentration. It is unclear however, whether the Ca(2+) entry associated with single NMDAR mediated synaptic events is sufficient to self-inhibit their activation. Such auto-regulation would have important effects on the dynamics of synaptic excitation in several central neuronal networks. Therefore, we studied NMDAR-mediated synaptic currents in mouse hippocampal CA1 pyramidal neurons. Postsynaptic responses to subthreshold Schaffer collateral stimulation depended strongly on the absence or presence of intracellular Ca(2+) buffers. Loading of pyramidal cells with exogenous Ca(2+) buffers increased the amplitude and decay time of NMDAR mediated EPSCs (EPSPs) and prolonged the time window for action potential (AP) generation. Our data indicate that the Ca(2+) influx mediated by unitary synaptic events is sufficient to produce detectable self-inhibition of NMDARs even at a physiological Mg(2+) concentration. Therefore, the contribution of NMDARs to synaptic excitation is strongly controlled by both previous synaptic activity as well as by the Ca(2+) buffer capacity of postsynaptic neurons.
Collapse
Affiliation(s)
| | - Yulia Zakharova
- OpenLab of Neurobiology, Kazan Federal University Kazan, Russia
| | - Marat Mukhtarov
- OpenLab of Neurobiology, Kazan Federal University Kazan, Russia
| | - Andreas Draguhn
- Department of Physiology and Pathophysiology, University of Heidelberg Heidelberg, Germany
| | - Nail Burnashev
- INMED, Institut de Neurobiologie de la Méditerranée UMR901, Aix-Marseille UniversitéMarseille, France; INSERM U901Marseille, France
| | - Andrei Rozov
- OpenLab of Neurobiology, Kazan Federal UniversityKazan, Russia; Department of Physiology and Pathophysiology, University of HeidelbergHeidelberg, Germany
| |
Collapse
|