1
|
Goodman S, Chappell G, Guyton KZ, Pogribny IP, Rusyn I. Epigenetic alterations induced by genotoxic occupational and environmental human chemical carcinogens: An update of a systematic literature review. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2022; 789:108408. [PMID: 35690411 PMCID: PMC9188653 DOI: 10.1016/j.mrrev.2021.108408] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/28/2021] [Accepted: 12/07/2021] [Indexed: 01/03/2023]
Abstract
Epigenetic alterations, such as changes in DNA methylation, histones/chromatin structure, nucleosome positioning, and expression of non-coding RNAs, are recognized among key characteristics of carcinogens; they may occur independently or concomitantly with genotoxic effects. While data on genotoxicity are collected through standardized guideline tests, data collected on epigenetic effects is far less uniform. In 2016, we conducted a systematic review of published studies of genotoxic carcinogens that reported epigenetic endpoints to better understand the evidence for epigenetic alterations of human carcinogens, and the potential association with genotoxic endpoints. Since then, the number of studies of epigenetic effects of chemicals has nearly doubled. This review stands as an update on epigenetic alterations induced by occupational and environmental human carcinogens that were previously and recently classified as Group 1 by the International Agency for Research on Cancer. We found that the evidence of epigenetic effects remains uneven across agents. Studies of DNA methylation are most abundant, while reports concerning effects on non-coding RNA have increased over the past 5 years. By contrast, mechanistic toxicology studies of histone modifications and chromatin state alterations remain few. We found that most publications of epigenetic effects of carcinogens were studies in exposed humans or human cells. Studies in rodents represent the second most common species used for epigenetic studies in toxicology, in vivo exposures being the most predominant. Future studies should incorporate dose- and time-dependent study designs and also investigate the persistence of effects following cessation of exposure, considering the dynamic nature of most epigenetic alterations.
Collapse
Affiliation(s)
- Samantha Goodman
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | | | | | - Igor P Pogribny
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, USA
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
2
|
Birkett N, Al-Zoughool M, Bird M, Baan RA, Zielinski J, Krewski D. Overview of biological mechanisms of human carcinogens. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2019; 22:288-359. [PMID: 31631808 DOI: 10.1080/10937404.2019.1643539] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This review summarizes the carcinogenic mechanisms for 109 Group 1 human carcinogens identified as causes of human cancer through Volume 106 of the IARC Monographs. The International Agency for Research on Cancer (IARC) evaluates human, experimental and mechanistic evidence on agents suspected of inducing cancer in humans, using a well-established weight of evidence approach. The monographs provide detailed mechanistic information about all carcinogens. Carcinogens with closely similar mechanisms of action (e.g. agents emitting alpha particles) were combined into groups for the review. A narrative synopsis of the mechanistic profiles for the 86 carcinogens or carcinogen groups is presented, based primarily on information in the IARC monographs, supplemented with a non-systematic review. Most carcinogens included a genotoxic mechanism.
Collapse
Affiliation(s)
- Nicholas Birkett
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
- McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Mustafa Al-Zoughool
- Department of Community and Environmental Health, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Michael Bird
- McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Robert A Baan
- International Agency for Research on Cancer, Lyon, France
| | - Jan Zielinski
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
- McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Daniel Krewski
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
- McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Risk Sciences International, Ottawa, Canada
| |
Collapse
|
3
|
Loch-Caruso R, Hassan I, Harris SM, Kumar A, Bjork F, Lash LH. Trichloroethylene exposure in mid-pregnancy decreased fetal weight and increased placental markers of oxidative stress in rats. Reprod Toxicol 2018; 83:38-45. [PMID: 30468822 DOI: 10.1016/j.reprotox.2018.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 11/09/2018] [Accepted: 11/19/2018] [Indexed: 12/29/2022]
Abstract
Although epidemiology studies have associated maternal trichloroethylene (TCE) exposure with decreased birth weight and preterm birth, mechanistic explanations for these associations are currently lacking. We hypothesized that TCE targets the placenta with adverse consequences for pregnancy outcomes. Pregnant Wistar rats were exposed orally to vehicle or 480 mg TCE/kg body weight from gestational days (gd) 6-16, and tissues were collected on gd 16. Exposure to TCE significantly decreased average fetal weight without reducing maternal weight. In placenta, TCE significantly increased 8-hydroxy-deoxyguanosine, global 5-hydroxymethylcytosine, and mRNA expression of Tet3, which codes for an enzyme involved in 5-hydroxymethylcytosine formation. Furthermore, glutathione S-transferase activity and immunohistochemical staining were increased in placentas of TCE-exposed rats. The present study provides the first evidence that TCE increases markers of oxidative stress in placenta in a fetal growth restriction rat model, providing new insight into the placenta as a potentially relevant target for TCE-induced adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Rita Loch-Caruso
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, 48109-2029, USA.
| | - Iman Hassan
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, 48109-2029, USA.
| | - Sean M Harris
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, 48109-2029, USA.
| | - Anjana Kumar
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, 48109-2029, USA.
| | - Faith Bjork
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, 48109-2029, USA.
| | - Lawrence H Lash
- Department of Pharmacology, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI, 48201, USA.
| |
Collapse
|
4
|
Lu W, Chen Z, Ren X, Liu W, Deng R, Yuan J, Huang X, Zhu W, Liu J. SET promotes H2Ak9 acetylation by suppressing HDAC1 in trichloroethylene-induced hepatic cytotoxicity. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 59:125-131. [PMID: 29579541 DOI: 10.1016/j.etap.2018.03.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 06/08/2023]
Abstract
Trichloroethylene (TCE) was widely used as an industrial solvent which could cause severe liver damage. The histone chaperone SET have been identified as an important mediator of TCE-induced hepatic cytotoxicity in our previous study; however, the underlying regulatory mechanisms remain poorly understood. In this study, we found a total of 136 histone acetylation sites involved in TCE-induced hepatic cytotoxicity with the technique of Triton-acid-urea polyacrylamide gel electrophoresis (TAU-PAGE) coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Importantly, 17 histone acetylation sites were revealed to be mediated by SET in TCE-induced cytotoxicity. The acetylation of histone H2AK9 (H2AK9ac) was further validated by Western-blot analysis. The data showed that TCE treatment increased the acetylation of H2AK9 in hepatic L-02 cell and decreased the one in SET-knockdown L-02 cells. Besides, levels of the histone deacetylases (HDACs, including HDAC1, HDAC2, and HDAC3) was also analyzed. Interestingly, the level of HDAC1 was aberrantly suppressed in TCE-treated L-02 cells while enhanced in SET-knockdown L-02 cells. To further explore the potential role of HDAC1 in SET-mediated hepatic cytotoxicity of TCE, we employed RNA interference (RNAi) to knockdown HDAC1 in both wide type L-02 and SET-knockdown cells. The results showed that the siRNA inhibition of HDAC1 increased the acetylation of H2AK9. Taken together, our data suggested that SET promoted the acetylation of H2AK9 via suppressing the level of HDAC1, which was involved in SET-mediated hepatic cytotoxicity of TCE.
Collapse
Affiliation(s)
- Weixue Lu
- School of Chemistry, Xiangtan University, Yuhu District, Xiangtan, 411105, Hunan, China; Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen, 518055, Guangdong, China
| | - Zhihong Chen
- Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen, 518055, Guangdong, China; School of Public Health, Southern Medical University, Tonghe District, Guangzhou, 510515, China
| | - Xiaohu Ren
- Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen, 518055, Guangdong, China
| | - Wei Liu
- Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen, 518055, Guangdong, China
| | - Rongxia Deng
- Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen, 518055, Guangdong, China
| | - Jianhui Yuan
- Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen, 518055, Guangdong, China
| | - Xinfeng Huang
- Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen, 518055, Guangdong, China
| | - Weiguo Zhu
- School of Chemistry, Xiangtan University, Yuhu District, Xiangtan, 411105, Hunan, China; School of Materials Science and Engineering, Jiangsu Collaboration Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Wujin District, Changzhou 213164, China.
| | - Jianjun Liu
- Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
5
|
Heydari M, Ahmadizadeh M, Ahmadi Angali K. Ameliorative effect of vitamin E on trichloroethylene-induced nephrotoxicity in rats. J Nephropathol 2016; 6:168-173. [PMID: 28975097 PMCID: PMC5607979 DOI: 10.15171/jnp.2017.29] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 12/08/2016] [Indexed: 11/09/2022] Open
Abstract
Background:
1,1,2-Trichloroethylene (TCE) is an important organic solvent which is widespread in the environment. Work place exposure to TCE has been associated adverse effects in many organs including kidney. Vitamin E is an antioxidant that can overcome oxidative stress.
Objectives:
The aim of the present study is to examine the role of vitamin E against destructive effects of TCE on rat kidney.
Materials and Methods:
A total of 35 male Wistar rats were randomly divided into seven groups of equal number in each. The rats in group I were the controls received vehicle only. Animals in groups III, V and VII received intraperitoneal injection (i.p) of corn oil. Rats in groups of II, IV, and VI were received vitamin E at a dose of 200 mg/kg; 30 minutes later, animals were received TCE (i.p) at doses of 1000 mg/kg (groups II and III), 1500 mg/kg (groups of IV and V), and 2000 mg/kg (groups of VI and VII) respectively. The experiment repeated for 7 consecutive days. Twenty-four hours after last administration, animals were killed with overdose of sodium pentobarbital. Blood samples were analyzed for blood urea nitrogen (BUN) and creatinine (Cr). One part of the kidney tissues were excised for measuring malondialdehyde (MDA) and glutathione (GSH) concentrations. Another part were excised for histopathological estimation.
Results:
TCE induced a dose-dependent elevation in BUN, Cr, MDA and markedly decreased GSH level when compared to those in control rats. TCE-induced dose-dependent injury in rat kidney tissue. Vitamin E significantly decreased BUN, Cr, MDA and increased GSH levels and protected kidney damage in TCE treated animals.
Conclusions:
The observations suggest that vitamin E may have a protective effect against TCE-induced oxidative stress in the rat kidney.
Collapse
Affiliation(s)
- Mojgan Heydari
- Department of Occupational Health, Engineering, School of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Massumeh Ahmadizadeh
- Department of Occupational Health, Engineering, School of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Kambiz Ahmadi Angali
- Department of Statistics and Epidemiology, School of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
6
|
Cui Y, Choudhury SR, Irudayaraj J. Epigenetic Toxicity of Trichloroethylene: A Single-Molecule Perspective. Toxicol Res (Camb) 2016; 5:641-650. [PMID: 28944004 DOI: 10.1039/c5tx00454c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The volatile, water soluble trichloroethylene (TCE) is a hazardous industrial waste and could lead to various health problems, including cancer, neuropathy, cardiovascular defects, and immune diseases. Toxicological studies taking use of in vitro and in vivo models have been conducted to understand the biological impacts of TCE at the genetic, transcriptomic, metabolomic, and signaling levels. The epigenetic aberrations induced by TCE have also been reported in a number of model organisms, while a detailed mechanistic elucidation is lacking. In this study we uncover an unreported mechanism accounting for the epigenetic toxicity due to TCE exposure by monitoring the single-molecule dynamics of DNA methyltransferase 3a (Dnmt3a) in living cells. TCE-induced global DNA hypomethylation could be partly attributed to the disrupted Dnmt3a-DNA association. By analyzing the components of detached Dnmt3a, we found that the Dnmt3a oligomers (e.g., dimer, trimer, and high-order oligomers) dissociated from heterochromatin in a dose-dependent manner upon exposure. Thereafter the diminished DNA-binding affinity of Dnmt3a resulted in a significant decrease in 5-methylcytosine (5mC) under both acute high-dosage and chronic low-dosage TCE exposure. The resulting DNA demethylation might also be contributed by the elevated expression of ten-eleven-translocation (Tet) enzymes and reformed cysteine cycle. Besides the global effect, we further identified that a group of heterochromatin-located, cancer-related microRNAs (miRNAs) experienced promoter demethylation upon TCE exposure.
Collapse
Affiliation(s)
- Yi Cui
- Department of Agricultural and Biological Engineering, Bindley Bioscience Center, Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Samrat Roy Choudhury
- Department of Agricultural and Biological Engineering, Bindley Bioscience Center, Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Joseph Irudayaraj
- Department of Agricultural and Biological Engineering, Bindley Bioscience Center, Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
7
|
Hong WX, Huang A, Lin S, Yang X, Yang L, Zhou L, Huang H, Wu D, Huang X, Xu H, Liu J. Differential expression profile of membrane proteins in L-02 cells exposed to trichloroethylene. Toxicol Ind Health 2015; 32:1774-83. [PMID: 26045551 DOI: 10.1177/0748233715588438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Trichloroethylene (TCE), a halogenated organic solvent widely used in industries, is known to cause severe hepatotoxicity. However, the mechanisms underlying TCE hepatotoxicity are still not well understood. It is predicted that membrane proteins are responsible for key biological functions, and recent studies have revealed that TCE exposure can induce abnormal levels of membrane proteins in body fluids and cultured cells. The aim of this study is to investigate the TCE-induced alterations of membrane proteins profiles in human hepatic L-02 liver cells. A comparative membrane proteomics analysis was performed in combination with two-dimensional fluorescence difference gel electrophoresis and matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry. A total of 15 proteins were identified as differentially expressed (4 upregulated and 11 downregulated) between TCE-treated cells and normal controls. Among this, 14 of them are suggested as membrane-associated proteins by their transmembrane domain and/or subcellular location. Furthermore, the differential expression of β subunit of adenosine triphosphate synthase (ATP5B) and prolyl 4-hydroxylase, β polypeptide (P4HB) were verified by Western blot analysis in TCE-treated L-02 cells. Our work not only reveals the association between TCE exposure and altered expression of membrane proteins but also provides a novel strategy to discover membrane biomarkers and elucidate the potential mechanisms involving with membrane proteins response to chemical-induced toxic effect.
Collapse
Affiliation(s)
- Wen-Xu Hong
- Key Laboratory of Modern Toxicology of Shenzhen, Medical Key Laboratory of Guangdong Province, Medical Key Laboratory of Health Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Aibo Huang
- Pharmacy College of Jinan University, Guangzhou, China
| | - Sheng Lin
- Shenzhen Research Institute of Population and Family Planning, Shenzhen, China
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Medical Key Laboratory of Guangdong Province, Medical Key Laboratory of Health Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Linqing Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Medical Key Laboratory of Guangdong Province, Medical Key Laboratory of Health Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Li Zhou
- Key Laboratory of Modern Toxicology of Shenzhen, Medical Key Laboratory of Guangdong Province, Medical Key Laboratory of Health Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Haiyan Huang
- Key Laboratory of Modern Toxicology of Shenzhen, Medical Key Laboratory of Guangdong Province, Medical Key Laboratory of Health Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Desheng Wu
- Key Laboratory of Modern Toxicology of Shenzhen, Medical Key Laboratory of Guangdong Province, Medical Key Laboratory of Health Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Xinfeng Huang
- Key Laboratory of Modern Toxicology of Shenzhen, Medical Key Laboratory of Guangdong Province, Medical Key Laboratory of Health Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Hua Xu
- Pharmacy College of Jinan University, Guangzhou, China
| | - Jianjun Liu
- Key Laboratory of Modern Toxicology of Shenzhen, Medical Key Laboratory of Guangdong Province, Medical Key Laboratory of Health Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| |
Collapse
|
8
|
Ren X, Li J, Xia B, Liu W, Yang X, Hong WX, Huang P, Wang Y, Li S, Zou F, Liu J. Phosphoproteomic analyses of L-02 liver cells exposed to trichloroethylene. Toxicol Mech Methods 2015; 25:459-66. [DOI: 10.3109/15376516.2015.1045655] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|