1
|
Sasaki Y, Matsuo A, Hashiguchi M, Fujimura K, Koshino H, Tanaka K, Ito Y, Kitahara K, Ishiwata A, Fujita K. Structural analysis of gum arabic side chains from Acacia seyal released by bifidobacterial β-arabino-oligosaccharide 3-O-β-l-arabinopyranosyl-α-l-arabinofuranosidase. Carbohydr Polym 2025; 349:122965. [PMID: 39643419 DOI: 10.1016/j.carbpol.2024.122965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 12/09/2024]
Abstract
Gum arabic is widely used in the food and beverage industries for its emulsifying, stabilizing, and prebiotic effects, which promote Bifidobacterium growth. The two commercially approved varieties of gum arabic, namely, Acacia senegal gum and A. seyal gum, predominantly consist of arabinogalactan protein (AGP), albeit with different side chain modifications. We previously characterized two enzymes belonging to glycoside hydrolase (GH) family 39 in bifidobacteria involved in the release of α-d-Gal-(1→3)-α-l-Ara and β-l-Arap-(1→3)-α-l-Ara from the side chains of A. senegal gum. Although the carbohydrate structure of A. senegal gum is being increasingly explored, limited information is available on A. seyal gum. In this study, we discovered a novel GH39 β-arabino-oligosaccharide 3-O-β-l-arabinopyranosyl-α-l-arabinofuranosidase from Bifidobacterium catenulatum and revealed the accurate structure of β-l-arabino-oligosaccharides released from A. seyal gum as [β-l-Araf-(1→2)-]n-β-l-Arap-(1→3)-α-l-Araf-(1→) (n = 0-3). Growth assays and intracellular enzyme activity assessments using B. catenulatum revealed that β-l-arabino-oligosaccharides were degraded to l-arabinose by GH127 β-l-arabinofuranosidase and GH36 β-l-arabinopyranosidase. This study provides new insights into the diversity of AGP structures and the utilization mechanisms of A. seyal gum in bifidobacteria.
Collapse
Affiliation(s)
- Yuki Sasaki
- Faculty of Agriculture, Kagoshima University, Kagoshima, Kagoshima, Japan; Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Ayako Matsuo
- Faculty of Agriculture, Kagoshima University, Kagoshima, Kagoshima, Japan
| | - Mimika Hashiguchi
- Faculty of Agriculture, Kagoshima University, Kagoshima, Kagoshima, Japan
| | - Kanoko Fujimura
- Faculty of Agriculture, Kagoshima University, Kagoshima, Kagoshima, Japan
| | - Hiroyuki Koshino
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Katsunori Tanaka
- RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan; Department of Chemical Science and Engineering, Tokyo Institute of Technology, Meguro, Tokyo, Japan
| | - Yukishige Ito
- RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan; Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Kanefumi Kitahara
- Faculty of Agriculture, Kagoshima University, Kagoshima, Kagoshima, Japan
| | | | - Kiyotaka Fujita
- Faculty of Agriculture, Kagoshima University, Kagoshima, Kagoshima, Japan.
| |
Collapse
|
2
|
Qiao C, Wang C, Luo H, Ma Y, Luo X, Zhang S, Huo D, Hou C. Development of a Zn-Based Single-Atom Nanozyme for Efficient Hydrolysis of Glycosidic Bonds. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402674. [PMID: 39096071 DOI: 10.1002/smll.202402674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/17/2024] [Indexed: 08/04/2024]
Abstract
Hydrolytic enzymes are essential components in second-generation biofuel technology and food fermentation processes. Nanozymes show promise for large-scale industrial applications as replacements for natural enzymes due to their distinct advantages. However, there remains a research gap concerning glycosidase nanozymes. In this study, a Zn-based single-atom nanozyme (ZnN4-900) is developed for efficient glycosidic bond hydrolysis in an aqueous solution. The planar structure of the class-porphyrin N4 material approximatively mimicked the catalytic centers of natural enzymes, facilitating oxidase-like (OXD-like) activity and promoting glycosidic bond cleavage. Theoretical calculations show that the Zn site can act as Lewis acids, attacking the C─O bond in glycosidic bonds. Additionally, ZnN4-900 has the ability to degrade starch and produce reducing sugars that increased yeast cell biomass by 32.86% and ethanol production by 14.56%. This catalyst held promising potential for enhancing processes in ethanol brewing and starch degradation industries.
Collapse
Affiliation(s)
- Cailin Qiao
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, P. R. China
| | - Chao Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, P. R. China
- National Engineering Research Center of Solid-State Brewing, Luzhou Laojiao Group Co. Ltd., Luzhou, 646000, P. R. China
| | - Huibo Luo
- Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, 188 University Town, Yi bin, 644000, P. R. China
| | - Yi Ma
- Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, 188 University Town, Yi bin, 644000, P. R. China
| | - Xiaogang Luo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, P. R. China
| | - Suyi Zhang
- National Engineering Research Center of Solid-State Brewing, Luzhou Laojiao Group Co. Ltd., Luzhou, 646000, P. R. China
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, P. R. China
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, P. R. China
- Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, 188 University Town, Yi bin, 644000, P. R. China
| |
Collapse
|
3
|
Zheng K, Lyu JC, Thomas EL, Schuster M, Sanguankiattichai N, Ninck S, Kaschani F, Kaiser M, van der Hoorn RAL. The proteome of Nicotiana benthamiana is shaped by extensive protein processing. THE NEW PHYTOLOGIST 2024; 243:1034-1049. [PMID: 38853453 PMCID: PMC11494411 DOI: 10.1111/nph.19891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/29/2024] [Indexed: 06/11/2024]
Abstract
Processing by proteases irreversibly regulates the fate of plant proteins and hampers the production of recombinant proteins in plants, yet only few processing events have been described in agroinfiltrated Nicotiana benthamiana, which has emerged as the main transient protein expression platform in plant science and molecular pharming. Here, we used in-gel digests and mass spectrometry to monitor the migration and topography of 5040 plant proteins within a protein gel. By plotting the peptides over the gel slices, we generated peptographs that reveal where which part of each protein was detected within the protein gel. These data uncovered that 60% of the detected proteins have proteoforms that migrate at lower than predicted molecular weights, implicating extensive proteolytic processing. This analysis confirms the proteolytic removal and degradation of autoinhibitory prodomains of most but not all proteases, and revealed differential processing within pectinemethylesterase and lipase families. This analysis also uncovered intricate processing of glycosidases and uncovered that ectodomain shedding might be common for a diverse range of receptor-like kinases. Transient expression of double-tagged candidate proteins confirmed processing events in vivo. This large proteomic dataset implicates an elaborate proteolytic machinery shaping the proteome of N. benthamiana.
Collapse
Affiliation(s)
- Kaijie Zheng
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and AgroecologyChinese Academy of SciencesChangchun130102China
- The Plant Chemetics Laboratory, Department of BiologyUniversity of OxfordOxfordOX1 3RDUK
| | - Joy C. Lyu
- The Plant Chemetics Laboratory, Department of BiologyUniversity of OxfordOxfordOX1 3RDUK
| | - Emma L. Thomas
- The Plant Chemetics Laboratory, Department of BiologyUniversity of OxfordOxfordOX1 3RDUK
| | - Mariana Schuster
- The Plant Chemetics Laboratory, Department of BiologyUniversity of OxfordOxfordOX1 3RDUK
| | | | - Sabrina Ninck
- Chemical Biology, Center of Medical Biotechnology (ZMB), Faculty of BiologyUniversity of Duisburg‐EssenEssen45141Germany
| | - Farnusch Kaschani
- Chemical Biology, Center of Medical Biotechnology (ZMB), Faculty of BiologyUniversity of Duisburg‐EssenEssen45141Germany
| | - Markus Kaiser
- Chemical Biology, Center of Medical Biotechnology (ZMB), Faculty of BiologyUniversity of Duisburg‐EssenEssen45141Germany
| | | |
Collapse
|
4
|
Wardman JF, Withers SG. Carbohydrate-active enzyme (CAZyme) discovery and engineering via (Ultra)high-throughput screening. RSC Chem Biol 2024; 5:595-616. [PMID: 38966674 PMCID: PMC11221537 DOI: 10.1039/d4cb00024b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/16/2024] [Indexed: 07/06/2024] Open
Abstract
Carbohydrate-active enzymes (CAZymes) constitute a diverse set of enzymes that catalyze the assembly, degradation, and modification of carbohydrates. These enzymes have been fashioned into potent, selective catalysts by millennia of evolution, and yet are also highly adaptable and readily evolved in the laboratory. To identify and engineer CAZymes for different purposes, (ultra)high-throughput screening campaigns have been frequently utilized with great success. This review provides an overview of the different approaches taken in screening for CAZymes and how mechanistic understandings of CAZymes can enable new approaches to screening. Within, we also cover how cutting-edge techniques such as microfluidics, advances in computational approaches and synthetic biology, as well as novel assay designs are leading the field towards more informative and effective screening approaches.
Collapse
Affiliation(s)
- Jacob F Wardman
- Department of Biochemistry and Molecular Biology, University of British Columbia Vancouver BC V6T 1Z3 Canada
- Michael Smith Laboratories, University of British Columbia Vancouver BC V6T 1Z4 Canada
| | - Stephen G Withers
- Department of Biochemistry and Molecular Biology, University of British Columbia Vancouver BC V6T 1Z3 Canada
- Michael Smith Laboratories, University of British Columbia Vancouver BC V6T 1Z4 Canada
- Department of Chemistry, University of British Columbia Vancouver BC V6T 1Z1 Canada
| |
Collapse
|
5
|
Fujita K, Tsunomachi H, Lixia P, Maruyama S, Miyake M, Dakeshita A, Kitahara K, Tanaka K, Ito Y, Ishiwata A, Fushinobu S. Bifidobacterial GH146 β-L-arabinofuranosidase for the removal of β1,3-L-arabinofuranosides on plant glycans. Appl Microbiol Biotechnol 2024; 108:199. [PMID: 38324037 PMCID: PMC10850190 DOI: 10.1007/s00253-024-13014-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/29/2023] [Accepted: 01/14/2024] [Indexed: 02/08/2024]
Abstract
L-Arabinofuranosides with β-linkages are present in several plant molecules, such as arabinogalactan proteins (AGPs), extensin, arabinan, and rhamnogalacturonan-II. We previously characterized a β-L-arabinofuranosidase from Bifidobacterium longum subsp. longum JCM 1217, Bll1HypBA1, which was found to belong to the glycoside hydrolase (GH) family 127. This strain encodes two GH127 genes and two GH146 genes. In the present study, we characterized a GH146 β-L-arabinofuranosidase, Bll3HypBA1 (BLLJ_1848), which was found to constitute a gene cluster with AGP-degrading enzymes. This recombinant enzyme degraded AGPs and arabinan, which contain Araf-β1,3-Araf structures. In addition, the recombinant enzyme hydrolyzed oligosaccharides containing Araf-β1,3-Araf structures but not those containing Araf-β1,2-Araf and Araf-β1,5-Araf structures. The crystal structures of Bll3HypBA1 were determined at resolutions up to 1.7 Å. The monomeric structure of Bll3HypBA1 comprised a catalytic (α/α)6 barrel and two β-sandwich domains. A hairpin structure with two β-strands was observed in Bll3HypBA1, to extend from a β-sandwich domain and partially cover the active site. The active site contains a Zn2+ ion coordinated by Cys3-Glu and exhibits structural conservation of the GH127 cysteine glycosidase Bll1HypBA1. This is the first study to report on a β1,3-specific β-L-arabinofuranosidase. KEY POINTS: • β1,3-l-Arabinofuranose residues are present in arabinogalactan proteins and arabinans as a terminal sugar. • β-l-Arabinofuranosidases are widely present in intestinal bacteria. • Bll3HypBA1 is the first enzyme characterized as a β1,3-linkage-specific β-l-arabinofuranosidase.
Collapse
Affiliation(s)
- Kiyotaka Fujita
- Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima, Kagoshima, 890-0065, Japan.
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima, Kagoshima, 890-0065, Japan.
| | - Hanako Tsunomachi
- Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima, Kagoshima, 890-0065, Japan
| | - Pan Lixia
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-Ku, Tokyo, 113-8657, Japan
- National Key Laboratory of Non-food Biomass Energy Technology, Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Sciences, Nanning, 530007, China
| | - Shun Maruyama
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-Ku, Tokyo, 113-8657, Japan
| | - Masayuki Miyake
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-Ku, Tokyo, 113-8657, Japan
| | - Aimi Dakeshita
- Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima, Kagoshima, 890-0065, Japan
| | - Kanefumi Kitahara
- Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima, Kagoshima, 890-0065, Japan
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima, Kagoshima, 890-0065, Japan
| | - Katsunori Tanaka
- RIKEN, Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-Ku, Tokyo, 152-8552, Japan
| | - Yukishige Ito
- RIKEN, Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Graduate School of Science, Osaka University, 1-1 Machikaneyama-Cho, Toyonaka, Osaka, 560-0043, Japan
| | - Akihiro Ishiwata
- RIKEN, Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Shinya Fushinobu
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-Ku, Tokyo, 113-8657, Japan.
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-Ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
6
|
Borlandelli V, Offen W, Moroz O, Nin-Hill A, McGregor N, Binkhorst L, Ishiwata A, Armstrong Z, Artola M, Rovira C, Davies GJ, Overkleeft HS. β-l- Arabinofurano-cyclitol Aziridines Are Covalent Broad-Spectrum Inhibitors and Activity-Based Probes for Retaining β-l-Arabinofuranosidases. ACS Chem Biol 2023; 18:2564-2573. [PMID: 38051515 PMCID: PMC10728902 DOI: 10.1021/acschembio.3c00558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 12/07/2023]
Abstract
GH127 and GH146 microorganismal retaining β-l-arabinofuranosidases, expressed by human gut microbiomes, feature an atypical catalytic domain and an unusual mechanism of action. We recently reported that both Bacteroides thetaiotaomicron BtGH146 and Bifidobacterium longum HypBA1 are inhibited by β-l-arabinofuranosyl cyclophellitol epoxide, supporting the action of a zinc-coordinated cysteine as a catalytic nucleophile, where in most retaining GH families, an aspartate or glutamate is employed. This work presents a panel of β-l-arabinofuranosyl cyclophellitol epoxides and aziridines as mechanism-based BtGH146/HypBA1 inhibitors and activity-based probes. The β-l-arabinofuranosyl cyclophellitol aziridines both inhibit and label β-l-arabinofuranosidase efficiently (however with different activities), whereas the epoxide-derived probes favor BtGH146 over HypBA1. These findings are accompanied by X-ray structural analysis of the unmodified β-l-arabinofuranosyl cyclophellitol aziridine in complex with both isozymes, which were shown to react by nucleophilic opening of the aziridine, at the pseudoanomeric carbon, by the active site cysteine nucleophile to form a stable thioether bond. Altogether, our activity-based probes may serve as chemical tools for the detection and identification of low-abundance β-l-arabinofuranosidases in complex biological samples.
Collapse
Affiliation(s)
- Valentina Borlandelli
- Bio-organic
Synthesis, Leiden Institute of Chemistry (LIC), Leiden University, Gorlaeus Laboratories, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| | - Wendy Offen
- Department
of Chemistry, York Structural Biology Laboratory, University of York, Heslington, York YO10
5DD, United Kingdom
| | - Olga Moroz
- Department
of Chemistry, York Structural Biology Laboratory, University of York, Heslington, York YO10
5DD, United Kingdom
| | - Alba Nin-Hill
- Departament
de Química Inorgànica i Orgànica (Secció
de Química Orgànica), Institut
de Química Teòrica i Computacional (IQTCUB), Universitat
de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Nicholas McGregor
- Department
of Chemistry, York Structural Biology Laboratory, University of York, Heslington, York YO10
5DD, United Kingdom
| | - Lars Binkhorst
- Bio-organic
Synthesis, Leiden Institute of Chemistry (LIC), Leiden University, Gorlaeus Laboratories, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| | - Akihiro Ishiwata
- RIKEN
Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Zachary Armstrong
- Bio-organic
Synthesis, Leiden Institute of Chemistry (LIC), Leiden University, Gorlaeus Laboratories, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| | - Marta Artola
- Bio-organic
Synthesis, Leiden Institute of Chemistry (LIC), Leiden University, Gorlaeus Laboratories, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| | - Carme Rovira
- Departament
de Química Inorgànica i Orgànica (Secció
de Química Orgànica), Institut
de Química Teòrica i Computacional (IQTCUB), Universitat
de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Gideon J. Davies
- Department
of Chemistry, York Structural Biology Laboratory, University of York, Heslington, York YO10
5DD, United Kingdom
| | - Herman S. Overkleeft
- Bio-organic
Synthesis, Leiden Institute of Chemistry (LIC), Leiden University, Gorlaeus Laboratories, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| |
Collapse
|
7
|
Hu Y, Hong H, Zhou J, Cui Y, Zhang B, Zhao J. Recent advances in enzymatic properties, preparation methods, and functions of glycoside hydrolase from Bifidobacterium: a review. World J Microbiol Biotechnol 2023; 39:344. [PMID: 37843698 DOI: 10.1007/s11274-023-03770-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023]
Abstract
Bifidobacterium is a major probiotic of intestinal gut flora and exerts many physiological activities, and it is widely applied in the fields of food and medicine. As an important part of Bifidobacterium, glycoside hydrolase plays a role in its physiological activity. With the continuous development and improvement of genetic engineering technology, research on this type of enzyme will play a crucial role in promoting the further development of Bifidobacterium in the field of probiotics. In this review, the preparation methods, enzymatic properties, and functions of glycoside hydrolase extracted from Bifidobacterium are described and summarized. The common method for preparing glycoside hydrolase derived from Bifidobacterium is heterologous expression in Escherichia coli BL21. The optimal pH range for these glycoside hydrolase enzymes is between 4.5 and 7.5; the optimal temperature is between 30 and 50 °C, which is close to the optimal growth condition of Bifidobacterium. Based on substrate specificity, these glycoside hydrolase could hydrolyze synthetic substrates and natural oligosaccharides, including a series of pNP artificial substrates, disaccharide, and trisaccharides, while they have little ability to hydrolyze polysaccharide substrates. This review will be expected to provide a basis for the development of Bifidobacterium as a probiotic element.
Collapse
Affiliation(s)
- Yanbo Hu
- School of Food Sciences and Engineering, Chang Chun University, Changchun, 130024, People's Republic of China
| | - Huili Hong
- School of Food Sciences and Engineering, Chang Chun University, Changchun, 130024, People's Republic of China
| | - Jianing Zhou
- School of Food Sciences and Engineering, Chang Chun University, Changchun, 130024, People's Republic of China
| | - Yangyang Cui
- School of Food Sciences and Engineering, Chang Chun University, Changchun, 130024, People's Republic of China
| | - Baochun Zhang
- School of Food Sciences and Engineering, Chang Chun University, Changchun, 130024, People's Republic of China
| | - Jun Zhao
- School of Food Sciences and Engineering, Chang Chun University, Changchun, 130024, People's Republic of China.
| |
Collapse
|
8
|
Ishiwata A, Tsunomachi H, Kameyama K, Sophon K, Nakamura M, Kitahara K, Tanaka K, Ito Y, Fujita K. Bifidobacterial GH146 β-l-Arabinofuranosidase (Bll4HypBA1) as the Last Enzyme for the Complete Removal of Oligoarabinofuranosides from Hydroxyproline-Rich Glycoproteins. Chembiochem 2023; 24:e202200637. [PMID: 36579407 DOI: 10.1002/cbic.202200637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 12/30/2022]
Abstract
In plant cell walls, the hydroxyproline-rich glycoproteins (HRGPs) such as extensin contain oligoarabinofuranoside linked to a hydroxyproline (Hyp) residue. The mature arabinooligosaccharide was revealed to be a tetrasaccharide (α-l-Araf-(1→3)-β-l-Araf-(1→2)-β-l-Araf-(1→2)-β-l-Araf, l-Araf4 ), whose linkages are targets of the bifidobacterial and Xanthomonas arabinooligosaccharide-degrading enzymes. The l-Araf4 motif was cleaved by GH43 α-l-arabinofuranosidase (Arafase) and converted to an l-Araf3 -linked structure. The latter is then cleaved by GH121 β-l-arabinobiosidase (HypBA2), producing β-l-Araf-(1→2)-l-Ara (β-l-arabinobiose) and mono-β-l-Araf linked to the HRGP backbone. In bifidobacteria, the β-l-arabinobiose is then hydrolyzed by GH127 β-l-Arafase (Bll1HypBA1), a mechanistically unique cysteine glycosidase. We recently identified the distantly related homologue from Xanthomonas euvesicatoria as GH146 β-l-Arafase along with paralogues from Bifidobacterium longum, one of which, Bll4HypBA1 (BLLJ_0089), can degrade l-Araf1 -Hyp in a similar way to that of GH146. As the chemical synthesis of the extensin hydrophilic motif 1 a, which possesses three distinct linkages that connect four oligoAraf residues [Hyp(l-Arafn ) (n=4, 3, 1)], was achieved previously, we precisely monitored the step-wise enzymatic cleavage of 1 a in addition to that of potato lectin. The results unequivocally revealed that this enzyme specifically degrades the Hyp(l-Araf1 ) motif.
Collapse
Affiliation(s)
- Akihiro Ishiwata
- RIKEN, Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Hanako Tsunomachi
- Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima, Kagoshima, 890-0065, Japan
| | - Kyohei Kameyama
- Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima, Kagoshima, 890-0065, Japan
| | - Kaeothip Sophon
- RIKEN, Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Masayuki Nakamura
- Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima, Kagoshima, 890-0065, Japan
| | - Kanefumi Kitahara
- Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima, Kagoshima, 890-0065, Japan
| | - Katsunori Tanaka
- RIKEN, Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.,Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8552, Japan
| | - Yukishige Ito
- RIKEN, Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.,Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan
| | - Kiyotaka Fujita
- Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima, Kagoshima, 890-0065, Japan
| |
Collapse
|
9
|
Ishiwata A, Narita S, Kimura K, Tanaka K, Fujita K, Fushinobu S, Ito Y. Mechanism-based inhibition of GH127/146 cysteine glycosidases by stereospecifically functionalized l-arabinofuranosides. Bioorg Med Chem 2022; 75:117054. [PMID: 36334492 DOI: 10.1016/j.bmc.2022.117054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 11/21/2022]
Abstract
To understand the precise mechanism of the glycoside hydrolase (GH) family 127, a cysteine β-l-arabinofuranosidase (Arafase) - HypBA1 - has been isolated from Bifidobacterium longum in the human Gut microbiota, and the design and synthesis of the mechanism-based inhibitors such as l-Araf-haloacetamides have been carried out. The α-l-Araf-azide derivative was used as the monoglycosylamine equivalent to afford the l-Araf-chloroacetamides (α/β-1-Cl) as well as bromoacetamides (α/β-1-Br) in highly stereoselective manner through Staudinger reaction followed by amide formation with/without anomerization. Against HypBA1, the probes 1, especially in the case of α/β-1-Br inhibited the hydrolysis. Conformational implications of these observations are discussed in this manuscript. Additional examinations using l-Araf-azides (α/β-5) resulted in further mechanistic observations of the GH127/146 cysteine glycosidases, including the hydrolysis of β-5 as the substrate and oxidative inhibition by α-5 using the GH127 homologue.
Collapse
Affiliation(s)
- Akihiro Ishiwata
- RIKEN, Cluster for Pioneering Research, Saitama 351-0198, Japan.
| | - Satoru Narita
- RIKEN, Cluster for Pioneering Research, Saitama 351-0198, Japan; Graduate School of Systems Engineering and Science, Shibaura Institute of Technology Saitama 337-8570, Japan
| | - Kenta Kimura
- RIKEN, Cluster for Pioneering Research, Saitama 351-0198, Japan; Graduate School of Systems Engineering and Science, Shibaura Institute of Technology Saitama 337-8570, Japan
| | - Katsunori Tanaka
- RIKEN, Cluster for Pioneering Research, Saitama 351-0198, Japan; Department of Chemical Science and Engineering, Tokyo Institute of Technology, Tokyo 152-8552, Japan
| | - Kiyotaka Fujita
- Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan.
| | - Shinya Fushinobu
- Department of Biotechnology, The University of Tokyo, Tokyo 113-8647, Japan; Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo 113-8647, Japan
| | - Yukishige Ito
- RIKEN, Cluster for Pioneering Research, Saitama 351-0198, Japan; Graduate School of Science, Osaka University, Osaka 560-0043, Japan.
| |
Collapse
|
10
|
Liu Y, Angelov A, Feiler W, Baudrexl M, Zverlov V, Liebl W, Vanderhaeghen S. Arabinan saccharification by biogas reactor metagenome-derived arabinosyl hydrolases. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:121. [PMID: 36371193 PMCID: PMC9655821 DOI: 10.1186/s13068-022-02216-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Plant cell walls represent the most plentiful renewable organic resource on earth, but due to their heterogeneity, complex structure and partial recalcitrance, their use as biotechnological feedstock is still limited. RESULTS In order to identify efficient enzymes for polysaccharide breakdown, we have carried out functional screening of metagenomic fosmid libraries from biogas fermenter microbial communities grown on sugar beet pulp, an arabinan-rich agricultural residue, or other sources containing microbes that efficiently depolymerize polysaccharides, using CPH (chromogenic polysaccharide hydrogel) or ICB (insoluble chromogenic biomass) labeled polysaccharide substrates. Seventy-one depolymerase-encoding genes were identified from 55 active fosmid clones by using Illumina and Sanger sequencing and dbCAN CAZyme (carbohydrate-active enzyme) annotation. An around 56 kb assembled DNA fragment putatively originating from Xylanivirga thermophila strain or a close relative was analyzed in detail. It contained 48 ORFs (open reading frames), of which 31 were assigned to sugar metabolism. Interestingly, a large number of genes for enzymes putatively involved in degradation and utilization of arabinose-containing carbohydrates were found. Seven putative arabinosyl hydrolases from this DNA fragment belonging to glycoside hydrolase (GH) families GH51 and GH43 were biochemically characterized, revealing two with endo-arabinanase activity and four with exo-α-L-arabinofuranosidase activity but with complementary cleavage properties. These enzymes were found to act synergistically and can completely hydrolyze SBA (sugar beet arabinan) and DA (debranched arabinan). CONCLUSIONS We screened 32,776 fosmid clones from several metagenomic libraries with chromogenic lignocellulosic substrates for functional enzymes to advance the understanding about the saccharification of recalcitrant lignocellulose. Seven putative X. thermophila arabinosyl hydrolases were characterized for pectic substrate degradation. The arabinosyl hydrolases displayed maximum activity and significant long-term stability around 50 °C. The enzyme cocktails composed in this study fully degraded the arabinan substrates and thus could serve for arabinose production in food and biofuel industries.
Collapse
Affiliation(s)
- Yajing Liu
- Chair of Microbiology, Technical University of Munich, Emil-Ramann-Straβe 4, 85354 Freising-Weihenstephan, Germany
- Present Address: Chair of Chemistry of Biogenic Resources, Technical University of Munich, Schulgasse 16, 94315 Straubing, Germany
| | - Angel Angelov
- Chair of Microbiology, Technical University of Munich, Emil-Ramann-Straβe 4, 85354 Freising-Weihenstephan, Germany
- Present Address: NGS Competence Center Tübingen, Universitätsklinikum Tübingen, Calwerstraße 7, 72076 Tübingen, Germany
| | - Werner Feiler
- Chair of Microbiology, Technical University of Munich, Emil-Ramann-Straβe 4, 85354 Freising-Weihenstephan, Germany
| | - Melanie Baudrexl
- Chair of Microbiology, Technical University of Munich, Emil-Ramann-Straβe 4, 85354 Freising-Weihenstephan, Germany
| | - Vladimir Zverlov
- Chair of Microbiology, Technical University of Munich, Emil-Ramann-Straβe 4, 85354 Freising-Weihenstephan, Germany
| | - Wolfgang Liebl
- Chair of Microbiology, Technical University of Munich, Emil-Ramann-Straβe 4, 85354 Freising-Weihenstephan, Germany
| | - Sonja Vanderhaeghen
- Chair of Microbiology, Technical University of Munich, Emil-Ramann-Straβe 4, 85354 Freising-Weihenstephan, Germany
- Present Address: IMGM Laboratories, Lochhamer Straße 29a, 82152 Planegg, Germany
| |
Collapse
|
11
|
Synthesis of naturally occurring β-l-arabinofuranosyl-l-arabinofuranoside structures towards the substrate specificity evaluation of β-l-arabinofuranosidase. Bioorg Med Chem 2022; 68:116849. [PMID: 35653870 DOI: 10.1016/j.bmc.2022.116849] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/23/2022]
Abstract
Methyl β-l-arabinofuranosyl-(1 → 2)-, -(1 → 3)-, and -(1 → 5)-α-l-arabinofuranosides have been stereoselectively synthesized through 2-naphthylmethyl ether-mediated intramolecular aglycon delivery (NAP-IAD), whose β-linkages were confirmed by NMR analysis on the 3JH1-H2 coupling constant and 13C chemical shift of C1. The NAP-IAD approach was simply extended for the synthesis of trisaccharide motifs possessing β-l-arabinofuranosyl-(1 → 5)-l-arabinofuranosyl non-reducing terminal structure with the branched β-l-arabinofuranosyl-(1 → 5)-[α-l-arabinofuranosyl-(1 → 3)]-α-l-arabinofuranosyl and the liner β-l-arabinofuranosyl-(1 → 5)-β-l-arabinofuranosyl-(1 → 5)-β-l-arabinofuranosyl structures in olive arabinan and dinoflagellate polyethers, respectively. The results on the substrate specificity of a bifidobacterial β-l-arabinofuranosidase HypBA1 using the regioisomers indicated that HypBA1 could hydrolyze all three linkages however behaved clearly less active to β-(1 → 5)-linked disaccharide than other two regioisomers including the proposed natural degradation product, β-(1 → 2)-linked one from plant extracellular matrix such as extensin. On the other hand, Xanthomonas XeHypBA1 was found to hydrolyze all three disaccharides as the substrate with higher specificity to β-(1 → 2)-linkage than bifidobacterial HypBA1.
Collapse
|
12
|
Kujawska M, Raulo A, Millar M, Warren F, Baltrūnaitė L, Knowles SCL, Hall LJ. Bifidobacterium castoris strains isolated from wild mice show evidence of frequent host switching and diverse carbohydrate metabolism potential. ISME COMMUNICATIONS 2022; 2:20. [PMID: 37938745 PMCID: PMC9723756 DOI: 10.1038/s43705-022-00102-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 01/30/2022] [Accepted: 02/09/2022] [Indexed: 11/09/2023]
Abstract
Members of the gut microbiota genus Bifidobacterium are widely distributed human and animal symbionts believed to exert beneficial effects on their hosts. However, in-depth genomic analyses of animal-associated species and strains are somewhat lacking, particularly in wild animal populations. Here, to examine patterns of host specificity and carbohydrate metabolism capacity, we sequenced whole genomes of Bifidobacterium isolated from wild-caught small mammals from two European countries (UK and Lithuania). Members of Bifidobacterium castoris, Bifidobacterium animalis and Bifodobacterium pseudolongum were detected in wild mice (Apodemus sylvaticus, Apodemus agrarius and Apodemus flavicollis), but not voles or shrews. B. castoris constituted the most commonly recovered Bifidobacterium (78% of all isolates), with the majority of strains only detected in a single population, although populations frequently harboured multiple co-circulating strains. Phylogenetic analysis revealed that the mouse-associated B. castoris clades were not specific to a particular location or host species, and their distribution across the host phylogeny was consistent with regular host shifts rather than host-microbe codiversification. Functional analysis, including in vitro growth assays, suggested that mouse-derived B. castoris strains encoded an extensive arsenal of carbohydrate-active enzymes, including putative novel glycosyl hydrolases such as chitosanases, along with genes encoding putative exopolysaccharides, some of which may have been acquired via horizontal gene transfer. Overall, these results provide a rare genome-level analysis of host specificity and genomic capacity among important gut symbionts of wild animals, and reveal that Bifidobacterium has a labile relationship with its host over evolutionary time scales.
Collapse
Affiliation(s)
- Magdalena Kujawska
- Gut Microbes & Health, Quadram Institute Biosciences, Norwich Research Park, Norwich, UK
- Intestinal Microbiome, ZIEL - Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Aura Raulo
- Department of Zoology, University of Oxford, Mansfield Road, Oxford, UK
| | - Molly Millar
- Food Innovation and Health, Quadram Institute Biosciences, Norwich Research Park, Norwich, UK
| | - Fred Warren
- Food Innovation and Health, Quadram Institute Biosciences, Norwich Research Park, Norwich, UK
| | | | - Sarah C L Knowles
- Department of Zoology, University of Oxford, Mansfield Road, Oxford, UK
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, Hawkshead Lane, Hatfield, Herfordshire, UK
| | - Lindsay J Hall
- Gut Microbes & Health, Quadram Institute Biosciences, Norwich Research Park, Norwich, UK.
- Intestinal Microbiome, ZIEL - Institute for Food & Health, Technical University of Munich, Freising, Germany.
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, UK.
| |
Collapse
|
13
|
Maruyama S, Sawano K, Amaki S, Suzuki T, Narita S, Kimura K, Arakawa T, Yamada C, Ito Y, Dohmae N, Fujita K, Ishiwata A, Fushinobu S. Substrate complex structure, active site labeling and catalytic role of the zinc ion in cysteine glycosidase. Glycobiology 2021; 32:171-180. [PMID: 34735571 DOI: 10.1093/glycob/cwab103] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 09/16/2021] [Accepted: 09/30/2021] [Indexed: 11/13/2022] Open
Abstract
β-l-Arabinofuranosidase HypBA1 from Bifidobacterium longum belongs to the glycoside hydrolase family 127. At the active site of HypBA1, a cysteine residue (Cys417) coordinates with a Zn2+ atom and functions as the catalytic nucleophile for the anomer-retaining hydrolytic reaction. In this study, the role of Zn2+ ion and cysteine in catalysis as well as the substrate-bound structure were studied based on biochemical and crystallographic approaches. The enzymatic activity of HypBA1 decreased after dialysis in the presence of EDTA and guanidine hydrochloride and was then recovered by the addition of Zn2+. The Michaelis complex structure was determined using a crystal of a mutant at the acid/base catalyst residue (E322Q) soaked in a solution containing the substrate p-nitrophenyl-β-l-arabinofuranoside. To investigate the covalent thioglycosyl enzyme intermediate structure, synthetic inhibitors of l-arabinofuranosyl haloacetamide derivatives with different anomer configurations were used to target the nucleophilic cysteine. In the crystal structure of HypBA1, β-configured l-arabinofuranosylamide formed a covalent link with Cys417, whereas α-configured l-arabinofuranosylamide was linked to a noncatalytic residue Cys415. Mass spectrometric analysis indicated that Cys415 was also reactive with the probe molecule. With the β-configured inhibitor, the arabinofuranoside moiety was correctly positioned at the subsite and the active site integrity was retained to successfully mimic the covalent intermediate state.
Collapse
Affiliation(s)
- Shun Maruyama
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kota Sawano
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Satoko Amaki
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Takehiro Suzuki
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Satoru Narita
- RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,Graduate School of Systems Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma, Saitama 337-8570, Japan
| | - Kenta Kimura
- RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,Graduate School of Systems Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma, Saitama 337-8570, Japan
| | - Takatoshi Arakawa
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Chihaya Yamada
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yukishige Ito
- RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,Graduate School of Science, Osaka University, 1-1 Machikaneyamacho, Toyonaka, Osaka 560-0043, Japan
| | - Naoshi Dohmae
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kiyotaka Fujita
- Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima, Kagoshima 890-0065, Japan
| | - Akihiro Ishiwata
- RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Shinya Fushinobu
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
14
|
McGregor NGS, Coines J, Borlandelli V, Amaki S, Artola M, Nin‐Hill A, Linzel D, Yamada C, Arakawa T, Ishiwata A, Ito Y, Marel GA, Codée JDC, Fushinobu S, Overkleeft HS, Rovira C, Davies GJ. Cysteine Nucleophiles in Glycosidase Catalysis: Application of a Covalent β‐
l‐
Arabinofuranosidase Inhibitor. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Nicholas G. S. McGregor
- York Structural Biology Laboratory Department of Chemistry The University of York Heslington York YO10 5DD UK
| | - Joan Coines
- Departament de Química Inorgànica i Orgànica (Secció de Química Orgànica) & Institut de Química Teòrica i Computacional (IQTCUB) Universitat de Barcelona Martí i Franquès 1 08028 Barcelona Spain
| | - Valentina Borlandelli
- Leiden Institute of Chemistry Leiden University Einsteinweg 55 2300 RA Leiden The Netherlands
| | - Satoko Amaki
- Department of Biotechnology The University of Tokyo Bunkyo-ku Tokyo 113-8657 Japan
| | - Marta Artola
- Leiden Institute of Chemistry Leiden University Einsteinweg 55 2300 RA Leiden The Netherlands
| | - Alba Nin‐Hill
- Departament de Química Inorgànica i Orgànica (Secció de Química Orgànica) & Institut de Química Teòrica i Computacional (IQTCUB) Universitat de Barcelona Martí i Franquès 1 08028 Barcelona Spain
| | - Daniël Linzel
- Leiden Institute of Chemistry Leiden University Einsteinweg 55 2300 RA Leiden The Netherlands
| | - Chihaya Yamada
- Department of Biotechnology The University of Tokyo Bunkyo-ku Tokyo 113-8657 Japan
| | - Takatoshi Arakawa
- Department of Biotechnology The University of Tokyo Bunkyo-ku Tokyo 113-8657 Japan
| | - Akihiro Ishiwata
- Synthetic Cellular Chemistry Laboratory RIKEN Cluster for Pioneering Research 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Yukishige Ito
- Synthetic Cellular Chemistry Laboratory RIKEN Cluster for Pioneering Research 2-1 Hirosawa Wako Saitama 351-0198 Japan
- Graduate School of Science Osaka University Toyonaka Osaka 560-0043 Japan
| | - Gijsbert A. Marel
- Leiden Institute of Chemistry Leiden University Einsteinweg 55 2300 RA Leiden The Netherlands
| | - Jeroen D. C. Codée
- Leiden Institute of Chemistry Leiden University Einsteinweg 55 2300 RA Leiden The Netherlands
| | - Shinya Fushinobu
- Department of Biotechnology The University of Tokyo Bunkyo-ku Tokyo 113-8657 Japan
| | - Herman S. Overkleeft
- Leiden Institute of Chemistry Leiden University Einsteinweg 55 2300 RA Leiden The Netherlands
| | - Carme Rovira
- Departament de Química Inorgànica i Orgànica (Secció de Química Orgànica) & Institut de Química Teòrica i Computacional (IQTCUB) Universitat de Barcelona Martí i Franquès 1 08028 Barcelona Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA) Passeig Lluís Companys 23 08020 Barcelona Spain
| | - Gideon J. Davies
- York Structural Biology Laboratory Department of Chemistry The University of York Heslington York YO10 5DD UK
| |
Collapse
|
15
|
Structure and evolution of the bifidobacterial carbohydrate metabolism proteins and enzymes. Biochem Soc Trans 2021; 49:563-578. [PMID: 33666221 PMCID: PMC8106489 DOI: 10.1042/bst20200163] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/04/2021] [Accepted: 02/09/2021] [Indexed: 01/05/2023]
Abstract
Bifidobacteria have attracted significant attention because they provide health-promoting effects in the human gut. In this review, we present a current overview of the three-dimensional structures of bifidobacterial proteins involved in carbohydrate uptake, degradation, and metabolism. As predominant early colonizers of the infant's gut, distinct bifidobacterial species are equipped with a panel of transporters and enzymes specific for human milk oligosaccharides (HMOs). Interestingly, Bifidobacterium bifidum and Bifidobacterium longum possess lacto-N-biosidases with unrelated structural folds to release the disaccharide lacto-N-biose from HMOs, suggesting the convergent evolution of this activity from different ancestral proteins. The crystal structures of enzymes that confer the degradation of glycans from the mucin glycoprotein layer provide a structural basis for the utilization of this sustainable nutrient in the gastrointestinal tract. The utilization of several plant dietary oligosaccharides has been studied in detail, and the prime importance of oligosaccharide-specific ATP-binding cassette (ABC) transporters in glycan utilisations by bifidobacteria has been revealed. The structural elements underpinning the high selectivity and roles of ABC transporter binding proteins in establishing competitive growth on preferred oligosaccharides are discussed. Distinct ABC transporters are conserved across several bifidobacterial species, e.g. those targeting arabinoxylooligosaccharide and α-1,6-galactosides/glucosides. Less prevalent transporters, e.g. targeting β-mannooligosaccharides, may contribute to the metabolic specialisation within Bifidobacterium. Some bifidobacterial species have established symbiotic relationships with humans. Structural studies of carbohydrate-utilizing systems in Bifidobacterium have revealed the interesting history of molecular coevolution with the host, as highlighted by the early selection of bifidobacteria by mucin and breast milk glycans.
Collapse
|
16
|
Kelly SM, Munoz-Munoz J, van Sinderen D. Plant Glycan Metabolism by Bifidobacteria. Front Microbiol 2021; 12:609418. [PMID: 33613480 PMCID: PMC7889515 DOI: 10.3389/fmicb.2021.609418] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/04/2021] [Indexed: 12/18/2022] Open
Abstract
Members of the genus Bifidobacterium, of which the majority have been isolated as gut commensals, are Gram-positive, non-motile, saccharolytic, non-sporulating, anaerobic bacteria. Many bifidobacterial strains are considered probiotic and therefore are thought to bestow health benefits upon their host. Bifidobacteria are highly abundant among the gut microbiota of healthy, full term, breast-fed infants, yet the relative average abundance of bifidobacteria tends to decrease as the human host ages. Because of the inverse correlation between bifidobacterial abundance/prevalence and health, there has been an increasing interest in maintaining, increasing or restoring bifidobacterial populations in the infant, adult and elderly gut. In order to colonize and persist in the gastrointestinal environment, bifidobacteria must be able to metabolise complex dietary and/or host-derived carbohydrates, and be resistant to various environmental challenges of the gut. This is not only important for the autochthonous bifidobacterial species colonising the gut, but also for allochthonous bifidobacteria provided as probiotic supplements in functional foods. For example, Bifidobacterium longum subsp. longum is a taxon associated with the metabolism of plant-derived poly/oligosaccharides in the adult diet, being capable of metabolising hemicellulose and various pectin-associated glycans. Many of these plant glycans are believed to stimulate the metabolism and growth of specific bifidobacterial species and are for this reason classified as prebiotics. In this review, bifidobacterial carbohydrate metabolism, with a focus on plant poly-/oligosaccharide degradation and uptake, as well as its associated regulation, will be discussed.
Collapse
Affiliation(s)
- Sandra M Kelly
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Jose Munoz-Munoz
- Microbial Enzymology Group, Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Douwe van Sinderen
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
17
|
McGregor NGS, Coines J, Borlandelli V, Amaki S, Artola M, Nin-Hill A, Linzel D, Yamada C, Arakawa T, Ishiwata A, Ito Y, van der Marel GA, Codée JDC, Fushinobu S, Overkleeft HS, Rovira C, Davies GJ. Cysteine Nucleophiles in Glycosidase Catalysis: Application of a Covalent β-l-Arabinofuranosidase Inhibitor. Angew Chem Int Ed Engl 2021; 60:5754-5758. [PMID: 33528085 DOI: 10.1002/anie.202013920] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/30/2020] [Indexed: 11/08/2022]
Abstract
The recent discovery of zinc-dependent retaining glycoside hydrolases (GHs), with active sites built around a Zn(Cys)3 (Glu) coordination complex, has presented unresolved mechanistic questions. In particular, the proposed mechanism, depending on a Zn-coordinated cysteine nucleophile and passing through a thioglycosyl enzyme intermediate, remains controversial. This is primarily due to the expected stability of the intermediate C-S bond. To facilitate the study of this atypical mechanism, we report the synthesis of a cyclophellitol-derived β-l-arabinofuranosidase inhibitor, hypothesised to react with the catalytic nucleophile to form a non-hydrolysable adduct analogous to the mechanistic covalent intermediate. This β-l-arabinofuranosidase inhibitor reacts exclusively with the proposed cysteine thiol catalytic nucleophiles of representatives of GH families 127 and 146. X-ray crystal structures determined for the resulting adducts enable MD and QM/MM simulations, which provide insight into the mechanism of thioglycosyl enzyme intermediate breakdown. Leveraging the unique chemistry of cyclophellitol derivatives, the structures and simulations presented here support the assignment of a zinc-coordinated cysteine as the catalytic nucleophile and illuminate the finely tuned energetics of this remarkable metalloenzyme clan.
Collapse
Affiliation(s)
- Nicholas G S McGregor
- York Structural Biology Laboratory, Department of Chemistry, The University of York, Heslington, York, YO10 5DD, UK
| | - Joan Coines
- Departament de Química Inorgànica i Orgànica (Secció de Química Orgànica) & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028, Barcelona, Spain
| | - Valentina Borlandelli
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300, RA, Leiden, The Netherlands
| | - Satoko Amaki
- Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Marta Artola
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300, RA, Leiden, The Netherlands
| | - Alba Nin-Hill
- Departament de Química Inorgànica i Orgànica (Secció de Química Orgànica) & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028, Barcelona, Spain
| | - Daniël Linzel
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300, RA, Leiden, The Netherlands
| | - Chihaya Yamada
- Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Takatoshi Arakawa
- Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Akihiro Ishiwata
- Synthetic Cellular Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Yukishige Ito
- Synthetic Cellular Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.,Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | - Gijsbert A van der Marel
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300, RA, Leiden, The Netherlands
| | - Jeroen D C Codée
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300, RA, Leiden, The Netherlands
| | - Shinya Fushinobu
- Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Herman S Overkleeft
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300, RA, Leiden, The Netherlands
| | - Carme Rovira
- Departament de Química Inorgànica i Orgànica (Secció de Química Orgànica) & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08020, Barcelona, Spain
| | - Gideon J Davies
- York Structural Biology Laboratory, Department of Chemistry, The University of York, Heslington, York, YO10 5DD, UK
| |
Collapse
|
18
|
Tamura K, Brumer H. Glycan utilization systems in the human gut microbiota: a gold mine for structural discoveries. Curr Opin Struct Biol 2020; 68:26-40. [PMID: 33285501 DOI: 10.1016/j.sbi.2020.11.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/20/2020] [Accepted: 11/01/2020] [Indexed: 12/17/2022]
Abstract
The complex glycans comprising 'dietary fiber' evade the limited repertoire of human digestive enzymes and hence feed the vast community of microbes in the lower gastrointestinal tract. As such, complex glycans drive the composition of the human gut microbiota and, in turn, influence diverse facets of our nutrition and health. To access these otherwise recalcitrant carbohydrates, gut bacteria produce coordinated, substrate-specific arsenals of carbohydrate-active enzymes, glycan-binding proteins, oligosaccharide transporters, and transcriptional regulators. A recent explosion of biochemical and enzymological studies of these systems has led to the discovery of manifold new carbohydrate-active enzyme (CAZyme) families. Crucially underpinned by structural biology, these studies have also provided unprecedented molecular insight into the exquisite specificity of glycan recognition in the diverse CAZymes and non-catalytic proteins from the HGM. The revelation of a multitude of new three-dimensional structures and substrate complexes constitutes a 'gold rush' in the structural biology of the human gut microbiota.
Collapse
Affiliation(s)
- Kazune Tamura
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Harry Brumer
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada; Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada.
| |
Collapse
|
19
|
Saito K, Viborg AH, Sakamoto S, Arakawa T, Yamada C, Fujita K, Fushinobu S. Crystal structure of β-L-arabinobiosidase belonging to glycoside hydrolase family 121. PLoS One 2020; 15:e0231513. [PMID: 32479540 PMCID: PMC7263609 DOI: 10.1371/journal.pone.0231513] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/18/2020] [Indexed: 01/06/2023] Open
Abstract
Enzymes acting on α-L-arabinofuranosides have been extensively studied; however, the structures and functions of β-L-arabinofuranosidases are not fully understood. Three enzymes and an ABC transporter in a gene cluster of Bifidobacterium longum JCM 1217 constitute a degradation and import system of β-L-arabinooligosaccharides on plant hydroxyproline-rich glycoproteins. An extracellular β-L-arabinobiosidase (HypBA2) belonging to the glycoside hydrolase (GH) family 121 plays a key role in the degradation pathway by releasing β-1,2-linked arabinofuranose disaccharide (β-Ara2) for the specific sugar importer. Here, we present the crystal structure of the catalytic region of HypBA2 as the first three-dimensional structure of GH121 at 1.85 Å resolution. The HypBA2 structure consists of a central catalytic (α/α)6 barrel domain and two flanking (N- and C-terminal) β-sandwich domains. A pocket in the catalytic domain appears to be suitable for accommodating the β-Ara2 disaccharide. Three acidic residues Glu383, Asp515, and Glu713, located in this pocket, are completely conserved among all members of GH121; site-directed mutagenesis analysis showed that they are essential for catalytic activity. The active site of HypBA2 was compared with those of structural homologs in other GH families: GH63 α-glycosidase, GH94 chitobiose phosphorylase, GH142 β-L-arabinofuranosidase, GH78 α-L-rhamnosidase, and GH37 α,α-trehalase. Based on these analyses, we concluded that the three conserved residues are essential for catalysis and substrate binding. β-L-Arabinobiosidase genes in GH121 are mainly found in the genomes of bifidobacteria and Xanthomonas species, suggesting that the cleavage and specific import system for the β-Ara2 disaccharide on plant hydroxyproline-rich glycoproteins are shared in animal gut symbionts and plant pathogens.
Collapse
Affiliation(s)
- Keita Saito
- Department of Biotechnology, The University of Tokyo, Tokyo, Japan
| | | | - Shiho Sakamoto
- Faculty of Agriculture, Kagoshima University, Kagoshima, Kagoshima, Japan
| | - Takatoshi Arakawa
- Department of Biotechnology, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Chihaya Yamada
- Department of Biotechnology, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Kiyotaka Fujita
- Faculty of Agriculture, Kagoshima University, Kagoshima, Kagoshima, Japan
| | - Shinya Fushinobu
- Department of Biotechnology, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
20
|
Miyake M, Terada T, Shimokawa M, Sugimoto N, Arakawa T, Shimizu K, Igarashi K, Fujita K, Fushinobu S. Structural analysis of β-L-arabinobiose-binding protein in the metabolic pathway of hydroxyproline-rich glycoproteins in Bifidobacterium longum. FEBS J 2020; 287:5114-5129. [PMID: 32246585 DOI: 10.1111/febs.15315] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/09/2020] [Accepted: 03/26/2020] [Indexed: 12/29/2022]
Abstract
Bifidobacterium longum is a symbiotic human gut bacterium that has a degradation system for β-arabinooligosaccharides, which are present in the hydroxyproline-rich glycoproteins of edible plants. Whereas microbial degradation systems for α-linked arabinofuranosyl carbohydrates have been extensively studied, little is understood about the degradation systems targeting β-linked arabinofuranosyl carbohydrates. We functionally and structurally analyzed a substrate-binding protein (SBP) of a putative ABC transporter (BLLJ_0208) in the β-arabinooligosaccharide degradation system. Thermal shift assays and isothermal titration calorimetry revealed that the SBP specifically bound Araf-β1,2-Araf (β-Ara2 ) with a Kd of 0.150 μm, but did not bind L-arabinose or methyl-β-Ara2 . Therefore, the SBP was termed β-arabinobiose-binding protein (BABP). Crystal structures of BABP complexed with β-Ara2 were determined at resolutions of up to 1.78 Å. The findings showed that β-Ara2 was bound to BABP within a short tunnel between two lobes as an α-anomeric form at its reducing end. BABP forms extensive interactions with β-Ara2 , and its binding mode was unique among SBPs. A molecular dynamics simulation revealed that the closed conformation of substrate-bound BABP is stable, whereas substrate-free form can adopt a fully open and two distinct semi-open states. The importer system specific for β-Ara2 may contribute to microbial survival in biological niches with limited amounts of digestible carbohydrates. DATABASE: Atomic coordinates and structure factors (codes 6LCE and 6LCF) have been deposited in the Protein Data Bank (http://wwpdb.org/).
Collapse
Affiliation(s)
| | - Tohru Terada
- The Agricultural Bioinformatics Research Unit, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan
| | | | - Naohisa Sugimoto
- Department of Biomaterial Sciences, The University of Tokyo, Japan
| | - Takatoshi Arakawa
- Department of Biotechnology, The University of Tokyo, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Japan
| | | | - Kiyohiko Igarashi
- Department of Biomaterial Sciences, The University of Tokyo, Japan.,VTT Technical Research Centre of Finland Ltd., Espoo, Finland
| | | | - Shinya Fushinobu
- Department of Biotechnology, The University of Tokyo, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Japan
| |
Collapse
|
21
|
Mondo SJ, Jiménez DJ, Hector RE, Lipzen A, Yan M, LaButti K, Barry K, van Elsas JD, Grigoriev IV, Nichols NN. Genome expansion by allopolyploidization in the fungal strain Coniochaeta 2T2.1 and its exceptional lignocellulolytic machinery. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:229. [PMID: 31572496 PMCID: PMC6757388 DOI: 10.1186/s13068-019-1569-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/13/2019] [Indexed: 05/03/2023]
Abstract
BACKGROUND Particular species of the genus Coniochaeta (Sordariomycetes) exhibit great potential for bioabatement of furanic compounds and have been identified as an underexplored source of novel lignocellulolytic enzymes, especially Coniochaeta ligniaria. However, there is a lack of information about their genomic features and metabolic capabilities. Here, we report the first in-depth genome/transcriptome survey of a Coniochaeta species (strain 2T2.1). RESULTS The genome of Coniochaeta sp. strain 2T2.1 has a size of 74.53 Mbp and contains 24,735 protein-encoding genes. Interestingly, we detected a genome expansion event, resulting ~ 98% of the assembly being duplicated with 91.9% average nucleotide identity between the duplicated regions. The lack of gene loss, as well as the high divergence and strong genome-wide signatures of purifying selection between copies indicates that this is likely a recent duplication, which arose through hybridization between two related Coniochaeta-like species (allopolyploidization). Phylogenomic analysis revealed that 2T2.1 is related Coniochaeta sp. PMI546 and Lecythophora sp. AK0013, which both occur endophytically. Based on carbohydrate-active enzyme (CAZy) annotation, we observed that even after in silico removal of its duplicated content, the 2T2.1 genome contains exceptional lignocellulolytic machinery. Moreover, transcriptomic data reveal the overexpression of proteins affiliated to CAZy families GH11, GH10 (endoxylanases), CE5, CE1 (xylan esterases), GH62, GH51 (α-l-arabinofuranosidases), GH12, GH7 (cellulases), and AA9 (lytic polysaccharide monoxygenases) when the fungus was grown on wheat straw compared with glucose as the sole carbon source. CONCLUSIONS We provide data that suggest that a recent hybridization between the genomes of related species may have given rise to Coniochaeta sp. 2T2.1. Moreover, our results reveal that the degradation of arabinoxylan, xyloglucan and cellulose are key metabolic processes in strain 2T2.1 growing on wheat straw. Different genes for key lignocellulolytic enzymes were identified, which can be starting points for production, characterization and/or supplementation of enzyme cocktails used in saccharification of agricultural residues. Our findings represent first steps that enable a better understanding of the reticulate evolution and "eco-enzymology" of lignocellulolytic Coniochaeta species.
Collapse
Affiliation(s)
- Stephen J. Mondo
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598 USA
- Bioagricultural Science and Pest Management Department, Colorado State University, Fort Collins, CO 80521 USA
| | - Diego Javier Jiménez
- Microbiomes and Bioenergy Research Group, Department of Biological Sciences, Universidad de los Andes, Carrera 1 No 18A-12, Bogotá, Colombia
| | - Ronald E. Hector
- Bioenergy Research Unit, National Center for Agricultural Utilization Research, USDA-ARS, Peoria, IL 61604 USA
| | - Anna Lipzen
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598 USA
| | - Mi Yan
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598 USA
| | - Kurt LaButti
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598 USA
| | - Kerrie Barry
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598 USA
| | - Jan Dirk van Elsas
- Cluster of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Igor V. Grigoriev
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598 USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720-3102 USA
| | - Nancy N. Nichols
- Bioenergy Research Unit, National Center for Agricultural Utilization Research, USDA-ARS, Peoria, IL 61604 USA
| |
Collapse
|
22
|
Tanaka N, Nakajima M, Narukawa-Nara M, Matsunaga H, Kamisuki S, Aramasa H, Takahashi Y, Sugimoto N, Abe K, Terada T, Miyanaga A, Yamashita T, Sugawara F, Kamakura T, Komba S, Nakai H, Taguchi H. Identification, characterization, and structural analyses of a fungal endo-β-1,2-glucanase reveal a new glycoside hydrolase family. J Biol Chem 2019; 294:7942-7965. [PMID: 30926603 DOI: 10.1074/jbc.ra118.007087] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/20/2019] [Indexed: 11/06/2022] Open
Abstract
endo-β-1,2-Glucanase (SGL) is an enzyme that hydrolyzes β-1,2-glucans, which play important physiological roles in some bacteria as a cyclic form. To date, no eukaryotic SGL has been identified. We purified an SGL from Talaromyces funiculosus (TfSGL), a soil fungus, to homogeneity and then cloned the complementary DNA encoding the enzyme. TfSGL shows no significant sequence similarity to any known glycoside hydrolase (GH) families, but shows significant similarity to certain eukaryotic proteins with unknown functions. The recombinant TfSGL (TfSGLr) specifically hydrolyzed linear and cyclic β-1,2-glucans to sophorose (Glc-β-1,2-Glc) as a main product. TfSGLr hydrolyzed reducing-end-modified β-1,2-gluco-oligosaccharides to release a sophoroside with the modified moiety. These results indicate that TfSGL is an endo-type enzyme that preferably releases sophorose from the reducing end of substrates. Stereochemical analysis demonstrated that TfSGL is an inverting enzyme. The overall structure of TfSGLr includes an (α/α)6 toroid fold. The substrate-binding mode was revealed by the structure of a Michaelis complex of an inactive TfSGLr mutant with a β-1,2-glucoheptasaccharide. Mutational analysis and action pattern analysis of β-1,2-gluco-oligosaccharide derivatives revealed an unprecedented catalytic mechanism for substrate hydrolysis. Glu-262 (general acid) indirectly protonates the anomeric oxygen at subsite -1 via the 3-hydroxy group of the Glc moiety at subsite +2, and Asp-446 (general base) activates the nucleophilic water via another water. TfSGLr is apparently different from a GH144 SGL in the reaction and substrate recognition mechanism based on structural comparison. Overall, we propose that TfSGL and closely-related enzymes can be classified into a new family, GH162.
Collapse
Affiliation(s)
- Nobukiyo Tanaka
- From the Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510
| | - Masahiro Nakajima
- From the Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510,
| | - Megumi Narukawa-Nara
- From the Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510
| | - Hiroki Matsunaga
- From the Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510
| | - Shinji Kamisuki
- From the Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510.,the School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201
| | - Hiroki Aramasa
- the Faculty of Agriculture, Niigata University, Niigata 950-2181
| | - Yuta Takahashi
- the Faculty of Agriculture, Niigata University, Niigata 950-2181
| | - Naohisa Sugimoto
- the Faculty of Agriculture, Niigata University, Niigata 950-2181
| | - Koichi Abe
- From the Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510.,the Agricultural Bioinformatics Research Unit, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657
| | - Tohru Terada
- the Agricultural Bioinformatics Research Unit, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657
| | - Akimasa Miyanaga
- the Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8551
| | | | - Fumio Sugawara
- From the Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510
| | - Takashi Kamakura
- From the Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510
| | - Shiro Komba
- the Food Component Analysis Unit, Food Research Institute, National Agriculture and Food Research Organization, 2-1-12, Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| | - Hiroyuki Nakai
- the Faculty of Agriculture, Niigata University, Niigata 950-2181
| | - Hayao Taguchi
- From the Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510
| |
Collapse
|
23
|
N-glycan Utilization by Bifidobacterium Gut Symbionts Involves a Specialist β-Mannosidase. J Mol Biol 2019; 431:732-747. [DOI: 10.1016/j.jmb.2018.12.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/18/2018] [Accepted: 12/24/2018] [Indexed: 12/20/2022]
|
24
|
Sato M, Liebschner D, Yamada Y, Matsugaki N, Arakawa T, Wills SS, Hattie M, Stubbs KA, Ito T, Senda T, Ashida H, Fushinobu S. The first crystal structure of a family 129 glycoside hydrolase from a probiotic bacterium reveals critical residues and metal cofactors. J Biol Chem 2017; 292:12126-12138. [PMID: 28546425 DOI: 10.1074/jbc.m117.777391] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 05/22/2017] [Indexed: 11/06/2022] Open
Abstract
The α-N-acetylgalactosaminidase from the probiotic bacterium Bifidobacterium bifidum (NagBb) belongs to the glycoside hydrolase family 129 and hydrolyzes the glycosidic bond of Tn-antigen (GalNAcα1-Ser/Thr). NagBb is involved in assimilation of O-glycans on mucin glycoproteins by B. bifidum in the human gastrointestinal tract, but its catalytic mechanism has remained elusive because of a lack of sequence homology around putative catalytic residues and of other structural information. Here we report the X-ray crystal structure of NagBb, representing the first GH129 family structure, solved by the single-wavelength anomalous dispersion method based on sulfur atoms of the native protein. We determined ligand-free, GalNAc, and inhibitor complex forms of NagBb and found that Asp-435 and Glu-478 are located in the catalytic domain at appropriate positions for direct nucleophilic attack at the anomeric carbon and proton donation for the glycosidic bond oxygen, respectively. A highly conserved Asp-330 forms a hydrogen bond with the O4 hydroxyl of GalNAc in the -1 subsite, and Trp-398 provides a stacking platform for the GalNAc pyranose ring. Interestingly, a metal ion, presumably Ca2+, is involved in the recognition of the GalNAc N-acetyl group. Mutations at Asp-435, Glu-478, Asp-330, and Trp-398 and residues involved in metal coordination (including an all-Ala quadruple mutant) significantly reduced the activity, indicating that these residues and the metal ion play important roles in substrate recognition and catalysis. Interestingly, NagBb exhibited some structural similarities to the GH101 endo-α-N-acetylgalactosaminidases, but several critical differences in substrate recognition and reaction mechanism account for the different activities of these two enzymes.
Collapse
Affiliation(s)
- Mayo Sato
- Department of Biotechnology, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Dorothee Liebschner
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba 305-0801, Japan
| | - Yusuke Yamada
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba 305-0801, Japan
| | - Naohiro Matsugaki
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba 305-0801, Japan
| | - Takatoshi Arakawa
- Department of Biotechnology, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Siobhán S Wills
- School of Molecular Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Mitchell Hattie
- School of Molecular Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Keith A Stubbs
- School of Molecular Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Tasuku Ito
- Department of Biotechnology, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Toshiya Senda
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba 305-0801, Japan
| | - Hisashi Ashida
- Faculty of Biology-Oriented Science and Technology, Kindai University, 930 Nishimitani, Kinokawa-shi, Wakayama 649-6493, Japan
| | - Shinya Fushinobu
- Department of Biotechnology, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
25
|
Unusual active site location and catalytic apparatus in a glycoside hydrolase family. Proc Natl Acad Sci U S A 2017; 114:4936-4941. [PMID: 28396425 DOI: 10.1073/pnas.1701130114] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The human gut microbiota use complex carbohydrates as major nutrients. The requirement for an efficient glycan degrading systems exerts a major selection pressure on this microbial community. Thus, we propose that these bacteria represent a substantial resource for discovering novel carbohydrate active enzymes. To test this hypothesis, we focused on enzymes that hydrolyze rhamnosidic bonds, as cleavage of these linkages is chemically challenging and there is a paucity of information on l-rhamnosidases. Here we screened the activity of enzymes derived from the human gut microbiota bacterium Bacteroides thetaiotaomicron, which are up-regulated in response to rhamnose-containing glycans. We identified an α-l-rhamnosidase, BT3686, which is the founding member of a glycoside hydrolase (GH) family, GH145. In contrast to other rhamnosidases, BT3686 cleaved l-Rha-α1,4-d-GlcA linkages through a retaining double-displacement mechanism. The crystal structure of BT3686 showed that the enzyme displayed a type A seven-bladed β-propeller fold. Mutagenesis and crystallographic studies, including the structure of BT3686 in complex with the reaction product GlcA, revealed a location for the active site among β-propeller enzymes cited on the posterior surface of the rhamnosidase. In contrast to the vast majority of GH, the catalytic apparatus of BT3686 does not comprise a pair of carboxylic acid residues but, uniquely, a single histidine functions as the only discernable catalytic amino acid. Intriguingly, the histidine, His48, is not invariant in GH145; however, when engineered into structural homologs lacking the imidazole residue, α-l-rhamnosidase activity was established. The potential contribution of His48 to the catalytic activity of BT3686 is discussed.
Collapse
|
26
|
Trincone A. Uncommon Glycosidases for the Enzymatic Preparation of Glycosides. Biomolecules 2015; 5:2160-83. [PMID: 26404386 PMCID: PMC4693232 DOI: 10.3390/biom5042160] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 09/08/2015] [Accepted: 09/09/2015] [Indexed: 01/11/2023] Open
Abstract
Most of the reports in literature dedicated to the use of glycosyl hydrolases for the preparation of glycosides are about gluco- (α- and β-form) and galacto-sidase (β-form), reflecting the high-availability of both anomers of glucosides and of β-galactosides and their wide-ranging applications. Hence, the idea of this review was to analyze the literature focusing on hardly-mentioned natural and engineered glycosyl hydrolases. Their performances in the synthetic mode and natural hydrolytic potential are examined. Both the choice of articles and their discussion are from a biomolecular and a biotechnological perspective of the biocatalytic process, shedding light on new applicative ideas and on the assortment of biomolecular diversity. The hope is to elicit new interest for the development of biocatalysis and to gather attention of biocatalyst practitioners for glycosynthesis.
Collapse
Affiliation(s)
- Antonio Trincone
- Institute of Biomolecular Chemistry, National Research Council, Via Campi Flegrei, 34, Pozzuoli 80078, Naples, Italy.
| |
Collapse
|
27
|
Chaplin AV, Efimov BA, Smeianov VV, Kafarskaia LI, Pikina AP, Shkoporov AN. Intraspecies Genomic Diversity and Long-Term Persistence of Bifidobacterium longum. PLoS One 2015; 10:e0135658. [PMID: 26275230 PMCID: PMC4537262 DOI: 10.1371/journal.pone.0135658] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 07/23/2015] [Indexed: 12/28/2022] Open
Abstract
Members of genus Bifidobacterium are Gram-positive bacteria, representing a large part of the human infant microbiota and moderately common in adults. However, our knowledge about their diversity, intraspecific phylogeny and long-term persistence in humans is still limited. Bifidobacterium longum is generally considered to be the most common and prevalent species in the intestinal microbiota. In this work we studied whole genome sequences of 28 strains of B. longum, including 8 sequences described in this paper. Part of these strains were isolated from healthy children during a long observation period (up to 10 years between isolation from the same patient). The three known subspecies (longum, infantis and suis) could be clearly divided using sequence-based phylogenetic methods, gene content and the average nucleotide identity. The profiles of glycoside hydrolase genes reflected the different ecological specializations of these three subspecies. The high impact of horizontal gene transfer on genomic diversity was observed, which is possibly due to a large number of prophages and rapidly spreading plasmids. The pan-genome characteristics of the subspecies longum corresponded to the open pan-genome model. While the major part of the strain-specific genetic loci represented transposons and phage-derived regions, a large number of cell envelope synthesis genes were also observed within this category, representing high variability of cell surface molecules. We observed the cases of isolation of high genetically similar strains of B. longum from the same patients after long periods of time, however, we didn’t succeed in the isolation of genetically identical bacteria: a fact, reflecting the high plasticity of microbiota in children.
Collapse
Affiliation(s)
- Andrei V Chaplin
- Microbiology and Virology Department, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Boris A Efimov
- Microbiology and Virology Department, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Vladimir V Smeianov
- Department of Natural Sciences, Medical Institute, North Caucasus State Academy for Humanities and Technologies, Cherkessk, Russia
| | - Lyudmila I Kafarskaia
- Microbiology and Virology Department, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Alla P Pikina
- Microbiology and Virology Department, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Andrei N Shkoporov
- Microbiology and Virology Department, Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
28
|
Lansky S, Salama R, Dann R, Shner I, Manjasetty BA, Belrhali H, Shoham Y, Shoham G. Cloning, purification and preliminary crystallographic analysis of Ara127N, a GH127 β-L-arabinofuranosidase from Geobacillus stearothermophilus T6. Acta Crystallogr F Struct Biol Commun 2014; 70:1038-45. [PMID: 25084377 PMCID: PMC4118799 DOI: 10.1107/s2053230x14012680] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 05/31/2014] [Indexed: 12/27/2022] Open
Abstract
The L-arabinan utilization system of Geobacillus stearothermophilus T6 is composed of five transcriptional units that are clustered within a 38 kb DNA segment. One of the transcriptional units contains 11 genes, the last gene of which (araN) encodes a protein, Ara127N, that belongs to the newly established GH127 family. Ara127N shares 44% sequence identity with the recently characterized HypBA1 protein from Bifidobacterium longum and thus is likely to function similarly as a β-L-arabinofuranosidase. β-L-Arabinofuranosidases are enzymes that hydrolyze β-L-arabinofuranoside linkages, the less common form of such linkages, a unique enzymatic activity that has been identified only recently. The interest in the structure and mode of action of Ara127N therefore stems from its special catalytic activity as well as its membership of the new GH127 family, the structure and mechanism of which are only starting to be resolved. Ara127N has recently been cloned, overexpressed, purified and crystallized. Two suitable crystal forms have been obtained: one (CTP form) belongs to the monoclinic space group P21, with unit-cell parameters a = 104.0, b = 131.2, c = 107.6 Å, β = 112.0°, and the other (RB form) belongs to the orthorhombic space group P212121, with unit-cell parameters a = 65.5, b = 118.1, c = 175.0 Å. A complete X-ray diffraction data set has been collected to 2.3 Å resolution from flash-cooled crystals of the wild-type enzyme (RB form) at -173°C using synchrotron radiation. A selenomethionine derivative of Ara127N has also been prepared and crystallized for multi-wavelength anomalous diffraction (MAD) experiments. Crystals of selenomethionine Ara127N appeared to be isomorphous to those of the wild type (CTP form) and enabled the measurement of a three-wavelength MAD diffraction data set at the selenium absorption edge. These data are currently being used for detailed three-dimensional structure determination of the Ara127N protein.
Collapse
Affiliation(s)
- Shifra Lansky
- Institute of Chemistry and the Laboratory for Structural Chemistry and Biology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Rachel Salama
- Department of Biotechnology and Food Engineering, Technion–Israel Institute of Technology, Haifa 32000, Israel
| | - Roie Dann
- Institute of Chemistry and the Laboratory for Structural Chemistry and Biology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Izhak Shner
- Department of Biotechnology and Food Engineering, Technion–Israel Institute of Technology, Haifa 32000, Israel
| | - Babu A. Manjasetty
- European Molecular Biology Laboratory, Grenoble Outstation, 38000 Grenoble, France
- Unit for Virus Host-Cell Interactions, Université Grenoble Alpes–EMBL–CNRS, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Hassan Belrhali
- European Molecular Biology Laboratory, Grenoble Outstation, 38000 Grenoble, France
- Unit for Virus Host-Cell Interactions, Université Grenoble Alpes–EMBL–CNRS, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Yuval Shoham
- Department of Biotechnology and Food Engineering, Technion–Israel Institute of Technology, Haifa 32000, Israel
| | - Gil Shoham
- Institute of Chemistry and the Laboratory for Structural Chemistry and Biology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
29
|
Ishiwata A, Kaeothip S, Takeda Y, Ito Y. Synthesis of the Highly Glycosylated Hydrophilic Motif of Extensins. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201404904] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
30
|
Ishiwata A, Kaeothip S, Takeda Y, Ito Y. Synthesis of the Highly Glycosylated Hydrophilic Motif of Extensins. Angew Chem Int Ed Engl 2014; 53:9812-6. [DOI: 10.1002/anie.201404904] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Indexed: 01/08/2023]
|