1
|
Li Z, Zheng D, Zhang T, Ruan S, Li N, Yu Y, Peng Y, Wang D. The roles of nuclear receptors in cholesterol metabolism and reverse cholesterol transport in nonalcoholic fatty liver disease. Hepatol Commun 2024; 8:e0343. [PMID: 38099854 PMCID: PMC10727660 DOI: 10.1097/hc9.0000000000000343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 10/28/2023] [Indexed: 12/18/2023] Open
Abstract
As the most prevalent chronic liver disease globally, NAFLD encompasses a pathological process that ranges from simple steatosis to NASH, fibrosis, cirrhosis, and HCC, closely associated with numerous extrahepatic diseases. While the initial etiology was believed to be hepatocyte injury caused by lipid toxicity from accumulated triglycerides, recent studies suggest that an imbalance of cholesterol homeostasis is of greater significance. The role of nuclear receptors in regulating liver cholesterol homeostasis has been demonstrated to be crucial. This review summarizes the roles and regulatory mechanisms of nuclear receptors in the 3 main aspects of cholesterol production, excretion, and storage in the liver, as well as their cross talk in reverse cholesterol transport. It is hoped that this review will offer new insights and theoretical foundations for the study of the pathogenesis and progression of NAFLD and provide new research directions for extrahepatic diseases associated with NAFLD.
Collapse
|
2
|
Potential Therapeutic Agents That Target ATP Binding Cassette A1 (ABCA1) Gene Expression. Drugs 2022; 82:1055-1075. [PMID: 35861923 DOI: 10.1007/s40265-022-01743-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2022] [Indexed: 11/03/2022]
Abstract
The cholesterol efflux protein ATP binding cassette protein A1 (ABCA) and apolipoprotein A1 (apo A1) are key constituents in the process of reverse-cholesterol transport (RCT), whereby excess cholesterol in the periphery is transported to the liver where it can be converted primarily to bile acids for either use in digestion or excreted. Due to their essential roles in RCT, numerous studies have been conducted in cells, mice, and humans to more thoroughly understand the pathways that regulate their expression and activity with the goal of developing therapeutics that enhance RCT to reduce the risk of cardiovascular disease. Many of the drugs and natural compounds examined target several transcription factors critical for ABCA1 expression in both macrophages and the liver. Likewise, several miRNAs target not only ABCA1 but also the same transcription factors that are critical for its high expression. However, after years of research and many preclinical and clinical trials, only a few leads have proven beneficial in this regard. In this review we discuss the various transcription factors that serve as drug targets for ABCA1 and provide an update on some important leads.
Collapse
|
3
|
Song X, Yan G, Wang H, Lou D. Septin 4 activates PPARγ/LXRα signaling by upregulating ABCA1 and ABCG1 expression to inhibit the formation of THP-1 macrophage-derived foam cells. Exp Ther Med 2021; 22:763. [PMID: 34035860 PMCID: PMC8135116 DOI: 10.3892/etm.2021.10195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/08/2021] [Indexed: 11/30/2022] Open
Abstract
Septin 4 is a member of a family of GTP-binding proteins that has been previously reported regulate cytoskeletal organization. In addition, it has been suggested to serve a role in atherosclerosis. Therefore, the present study aimed to investigate the effects of Septin 4 on foam cell formation. THP-1 cells were first exposed to phorbol-12-myristate-13-acetate for differentiation into macrophages before being transformed into foam cells by treatment with oxidized low-density lipoprotein (ox-LDL). Septin 4 expression was then knocked down or overexpressed in THP-1 cells using transfection, whilst peroxisome proliferator activated receptor γ (PPARγ) was also inhibited using its selective antagonist (T0070907) in the presence of Septin 4 overexpression. Oil red staining was used to detect lipid uptake, and total cholesterol (TC), free cholesterol (FC) and ATP binding cassette subfamily A/G member 1 (ABCA1/G1) protein expression were also measured. The results demonstrated that upon ox-LDL stimulation, macrophages that were derived from THP-1 cells transformed into foam cells, where Septin 4 was highly expressed in ox-LDL-induced foam cells. Septin 4 knockdown promoted TC and FC levels, but reduced ABCA1/G1 protein expression. The protein expression levels of PPARγ and liver X receptor α (LXRα) were also decreased after Septin 4 knockdown. However, Septin 4 overexpression resulted in the opposite results being observed. Additionally, blocking PPARγ activity using its inhibitor T0070907 or knocking down LXRα expression using short hairpin RNA reversed the effects of Septin 4 overexpression on foam cell formation and cholesterol handling. In conclusion, Septin 4 may serve an important role in preventing foam cell formation by activating PPARγ/LXRα signaling and subsequently enhancing ABCA1/G1 expression.
Collapse
Affiliation(s)
- Xiaoying Song
- Department of Geriatrics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Guoliang Yan
- Department of Emergency, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Haihui Wang
- Department of Emergency, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Danfei Lou
- Department of Geriatrics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| |
Collapse
|
4
|
Frambach SJCM, de Haas R, Smeitink JAM, Rongen GA, Russel FGM, Schirris TJJ. Brothers in Arms: ABCA1- and ABCG1-Mediated Cholesterol Efflux as Promising Targets in Cardiovascular Disease Treatment. Pharmacol Rev 2020; 72:152-190. [PMID: 31831519 DOI: 10.1124/pr.119.017897] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis is a leading cause of cardiovascular disease worldwide, and hypercholesterolemia is a major risk factor. Preventive treatments mainly focus on the effective reduction of low-density lipoprotein cholesterol, but their therapeutic value is limited by the inability to completely normalize atherosclerotic risk, probably due to the disease complexity and multifactorial pathogenesis. Consequently, high-density lipoprotein cholesterol gained much interest, as it appeared to be cardioprotective due to its major role in reverse cholesterol transport (RCT). RCT facilitates removal of cholesterol from peripheral tissues, including atherosclerotic plaques, and its subsequent hepatic clearance into bile. Therefore, RCT is expected to limit plaque formation and progression. Cellular cholesterol efflux is initiated and propagated by the ATP-binding cassette (ABC) transporters ABCA1 and ABCG1. Their expression and function are expected to be rate-limiting for cholesterol efflux, which makes them interesting targets to stimulate RCT and lower atherosclerotic risk. This systematic review discusses the molecular mechanisms relevant for RCT and ABCA1 and ABCG1 function, followed by a critical overview of potential pharmacological strategies with small molecules to enhance cellular cholesterol efflux and RCT. These strategies include regulation of ABCA1 and ABCG1 expression, degradation, and mRNA stability. Various small molecules have been demonstrated to increase RCT, but the underlying mechanisms are often not completely understood and are rather unspecific, potentially causing adverse effects. Better understanding of these mechanisms could enable the development of safer drugs to increase RCT and provide more insight into its relation with atherosclerotic risk. SIGNIFICANCE STATEMENT: Hypercholesterolemia is an important risk factor of atherosclerosis, which is a leading pathological mechanism underlying cardiovascular disease. Cholesterol is removed from atherosclerotic plaques and subsequently cleared by the liver into bile. This transport is mediated by high-density lipoprotein particles, to which cholesterol is transferred via ATP-binding cassette transporters ABCA1 and ABCG1. Small-molecule pharmacological strategies stimulating these transporters may provide promising options for cardiovascular disease treatment.
Collapse
Affiliation(s)
- Sanne J C M Frambach
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ria de Haas
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jan A M Smeitink
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gerard A Rongen
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frans G M Russel
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tom J J Schirris
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
5
|
Li Y, Chen S, Sun J, Yu Y, Li M. Interleukin-38 inhibits adipogenesis and inflammatory cytokine production in 3T3-L1 preadipocytes. Cell Biol Int 2020; 44:2357-2362. [PMID: 32716099 DOI: 10.1002/cbin.11428] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/25/2020] [Accepted: 07/23/2020] [Indexed: 12/11/2022]
Abstract
Interleukin-38 (IL-38) is a novel member of the IL-1 cytokine family with anti-inflammatory activity. However, its effect on adipogenesis and inflammatory cytokines secretion of adipocytes in vitro has not been reported. To address whether IL-38 inhibits adipogenesis and inflammation in vitro, adipose precursor 3T3-L1 cells were cultured with or without IL-38. The morphology and size of lipid droplets in 3T3-L1 cells were measured by Oil red O staining. The mRNA expression levels of GATA-binding protein-3 (GATA-3), glucose transporter type 4 (GLUT4), peroxisome proliferator-associated receptor γ2, IL-1β, IL-6, and monocyte chemoattractant protein-1 (MCP-1) in 3T3-L1 cells were detected by real-time PCR, The contents of IL-6, IL-1β, and MCP-1 in 3T3-L1 cell medium supernatants were determined by enzyme-linked immunosorbent assay. IL-38 significantly decreased the number of lipid droplets in 3T3-L1 cells. IL-38 also increased GATA-3 and GLUT4 mRNA expression and inhibited IL-1β, IL-6, and MCP-1 secretion by 3T3-L1 cells. It is concluded that IL-38 can inhibit the differentiation of human adipocytes and inflammatory cytokine production by 3T3-L1 cells.
Collapse
Affiliation(s)
- Yan Li
- Department of Immunology, Ningbo University School of Medicine, Ningbo, China
| | - Sisi Chen
- Department of Immunology, Ningbo University School of Medicine, Ningbo, China
| | - Jun Sun
- Department of Immunology, Ningbo University School of Medicine, Ningbo, China
| | - Yang Yu
- The Fifth People's Hospital of Jilin City, Jilin, China
| | - Mingcai Li
- Department of Immunology, Ningbo University School of Medicine, Ningbo, China
| |
Collapse
|
6
|
Lu R, Zheng Z, Yin Y, Jiang Z. Effect of Genistein on Cholesterol Metabolism-Related Genes in HepG2 Cell. J Food Sci 2019; 84:2330-2336. [PMID: 31313321 DOI: 10.1111/1750-3841.14725] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 05/27/2019] [Accepted: 06/09/2019] [Indexed: 11/30/2022]
Abstract
It has been reported that genistein could improve metabolic syndromes. Our study aimed to investigate the effects and potential mechanisms of genistein on improving cholesterol metabolism in HepG2 cell. HepG2 cells were cultured with 0, 0.01, 1.00, 10.00, and 50.00 µM genistein for 24 hr. The current results showed a dose-dependent manner between genistein and intracellular contents of total cholesterol (TC), high-density lipoprotein-cholesterol (HDL-C), and cellular apolipoprotein A1 (Apo-A1) secretion. TC was increased by 25.69%, meanwhile HDL-C and Apo-A1 were decreased by 56.00% and 25.93%, respectively, when the dosage of genistein was 1.00 µM. Genistein dose-dependently upregulated the protein and mRNA levels of sterol regulatory element binding proteins-2 (SREBP-2), as well as the mRNA levels of low-density lipoprotein receptor (LDLR) and 3-hydroxy-3-methyl glutaryl coenzyme A reductase (HMGCR), by 145.91%, 72.29%, 310.23%, and 123.08%, respectively, when we gave 1.00 µM genistein, indicating that intracellular cholesterol synthesis and absorption of exogenous cholesterol were increased. In addition, the mRNA levels of peroxisome proliferator-activated receptor-γ (PPARγ) and liver X receptor (LXRα), lowered by 58.23% and 34.86% at 0.01 µM genistein, were reduced in a dose-dependent manner. LXRα and ATP-binding cassette transporter A1 (ABCA1) protein levels were significantly (P < 0.05) decreased by 50.35% and 11.60% at 1.00 µM genistein, which indicated that cellular cholesterol efflux was inhibited. Taken together, our results suggested that genistein at dosage of more than 1.00 µM was able to increase the intracellular cholesterol levels by up regulating SREBP-2/LDLR/HMGCR pathway and suppressing PPARγ/LXRα/ABCA1 pathway. PRACTICAL APPLICATION: In this study, genistein appeared to be effective in reducing plasma cholesterol levels due to increase the intracellular cholesterol levels by upregulating cholesterol absorption through SREBP-2/LDLR/HMGCR pathway, and also downregulating cholesterol efflux via PPARγ/LXRα/ABCA1 pathway in vitro. In addition, plasma cholesterol is regarded as the key indicator of atherosclerosis; therefore, we believe that our findings could be used for further exploration on a possible therapeutic application of genistein for atherosclerosis.
Collapse
Affiliation(s)
- Rongrong Lu
- Nutrition, School of Public Health, Sun Yat-Sen Univ., Guangzhou, Guangdong, 510605, China
| | - Zicong Zheng
- Nutrition, School of Public Health, Sun Yat-Sen Univ., Guangzhou, Guangdong, 510605, China
| | - Yimin Yin
- Nutrition, School of Public Health, Sun Yat-Sen Univ., Guangzhou, Guangdong, 510605, China
| | - Zhuoqin Jiang
- Nutrition, School of Public Health, Sun Yat-Sen Univ., Guangzhou, Guangdong, 510605, China
| |
Collapse
|
7
|
Liang XP, Zhang DQ, Chen YY, Guo R, Wang J, Wang CZ, Shi YH. Effects of alfalfa saponin extract on mRNA expression of Ldlr, LXRα, and FXR in BRL cells. J Zhejiang Univ Sci B 2016; 16:479-86. [PMID: 26055909 DOI: 10.1631/jzus.b1400343] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We studied the effects of alfalfa saponin extract (ASE) on low density lipoprotein receptor (Ldlr), liver X receptor α (LXRα), and farnesoid X receptor (FXR) in normal and hyperlipidemic Buffalo rat liver (BRL) cells. Normal and hyperlipidemic BRL cells were divided into eight groups: normal, or normal cells treated with 50, 100, and 150 mg/L ASE, hyperlipidemic, or hyperlipidemic cells treated with 50, 100, and 150 mg/L ASE. After treatment for 24 h, Ldlr, LXRα, and FXR mRNA expression levels were measured by quantitative real-time polymerase chain reaction (qRT-PCR). Data showed that mRNA expression of Ldlr in normal BRL cells was significantly up-regulated by ASE treatment and mRNA expressions of LXRα and FXR were significantly down-regulated both in normal and hyperlipidemic BRL cells after ASE treatment. Thus, ASE might ameliorate hepatic steatosis by regulating genes involved in cholesterol metabolism, including up-regulation of Ldlr as well as down-regulation of LXRα and FXR.
Collapse
Affiliation(s)
- Xin-ping Liang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | | | | | | | | | | | | |
Collapse
|
8
|
Lv O, Wang L, Li J, Ma Q, Zhao W. Effects of pomegranate peel polyphenols on lipid accumulation and cholesterol metabolic transformation in L-02 human hepatic cells via the PPARγ-ABCA1/CYP7A1 pathway. Food Funct 2016; 7:4976-4983. [DOI: 10.1039/c6fo01261b] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PPPs, PC and PEA in different concentrations were found to decrease the total cholesterol (TC) content and increase the total bile acid (TBA) content of a human hepatic cell model, and so possess a lipid-lowering effect.
Collapse
Affiliation(s)
- Ou Lv
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an
- P. R. China
| | - Lifang Wang
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an
- P. R. China
| | - Jianke Li
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an
- P. R. China
- University Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization
| | - Qianqian Ma
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an
- P. R. China
| | - Wei Zhao
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an
- P. R. China
| |
Collapse
|
9
|
Pioglitazone reduces lipid droplets in cholesterolosis of the gallbladder by increasing ABCA1 and NCEH1 expression. Mol Cell Biochem 2014; 399:7-15. [DOI: 10.1007/s11010-014-2225-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Accepted: 09/27/2014] [Indexed: 01/12/2023]
|