1
|
Domínguez-Ruiz M, Murillo-Cuesta S, Contreras J, Cantero M, Garrido G, Martín-Bernardo B, Gómez-Rosas E, Fernández A, Del Castillo FJ, Montoliu L, Varela-Nieto I, Del Castillo I. A murine model for the del(GJB6-D13S1830) deletion recapitulating the phenotype of human DFNB1 hearing impairment: generation and functional and histopathological study. BMC Genomics 2024; 25:359. [PMID: 38605287 PMCID: PMC11007912 DOI: 10.1186/s12864-024-10289-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/07/2024] [Indexed: 04/13/2024] Open
Abstract
Inherited hearing impairment is a remarkably heterogeneous monogenic condition, involving hundreds of genes, most of them with very small (< 1%) epidemiological contributions. The exception is GJB2, the gene encoding connexin-26 and underlying DFNB1, which is the most frequent type of autosomal recessive non-syndromic hearing impairment (ARNSHI) in most populations (up to 40% of ARNSHI cases). DFNB1 is caused by different types of pathogenic variants in GJB2, but also by large deletions that keep the gene intact but remove an upstream regulatory element that is essential for its expression. Such large deletions, found in most populations, behave as complete loss-of-function variants, usually associated with a profound hearing impairment. By using CRISPR-Cas9 genetic edition, we have generated a murine model (Dfnb1em274) that reproduces the most frequent of those deletions, del(GJB6-D13S1830). Dfnb1em274 homozygous mice are viable, bypassing the embryonic lethality of the Gjb2 knockout, and present a phenotype of profound hearing loss (> 90 dB SPL) that correlates with specific structural abnormalities in the cochlea. We show that Gjb2 expression is nearly abolished and its protein product, Cx26, is nearly absent all throughout the cochlea, unlike previous conditional knockouts in which Gjb2 ablation was not obtained in all cell types. The Dfnb1em274 model recapitulates the clinical presentation of patients harbouring the del(GJB6-D13S1830) variant and thus it is a valuable tool to study the pathological mechanisms of DFNB1 and to assay therapies for this most frequent type of human ARNSHI.
Collapse
Affiliation(s)
- María Domínguez-Ruiz
- Servicio de Genética, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), Madrid, Spain
| | - Silvia Murillo-Cuesta
- Institute for Biomedical Research "Sols-Morreale", Spanish National Research Council-Autonomous University of Madrid, Madrid, Spain
- Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), Madrid, Spain
| | - Julio Contreras
- Institute for Biomedical Research "Sols-Morreale", Spanish National Research Council-Autonomous University of Madrid, Madrid, Spain
- Anatomy and Embryology Department, Faculty of Veterinary, Universidad Complutense de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), Madrid, Spain
| | - Marta Cantero
- Department of Molecular and Cellular Biology, National Centre for Biotechnology (CNB-CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), Madrid, Spain
| | - Gema Garrido
- Servicio de Genética, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
- Department of Molecular and Cellular Biology, National Centre for Biotechnology (CNB-CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), Madrid, Spain
| | - Belén Martín-Bernardo
- Institute for Biomedical Research "Sols-Morreale", Spanish National Research Council-Autonomous University of Madrid, Madrid, Spain
- Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), Madrid, Spain
| | - Elena Gómez-Rosas
- Servicio de Genética, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
| | - Almudena Fernández
- Department of Molecular and Cellular Biology, National Centre for Biotechnology (CNB-CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), Madrid, Spain
| | - Francisco J Del Castillo
- Servicio de Genética, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), Madrid, Spain
| | - Lluís Montoliu
- Department of Molecular and Cellular Biology, National Centre for Biotechnology (CNB-CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), Madrid, Spain
| | - Isabel Varela-Nieto
- Institute for Biomedical Research "Sols-Morreale", Spanish National Research Council-Autonomous University of Madrid, Madrid, Spain
- Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), Madrid, Spain
| | - Ignacio Del Castillo
- Servicio de Genética, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), Madrid, Spain.
| |
Collapse
|
2
|
Ohlemiller KK, Dwyer N, Henson V, Fasman K, Hirose K. A critical evaluation of "leakage" at the cochlear blood-stria-barrier and its functional significance. Front Mol Neurosci 2024; 17:1368058. [PMID: 38486963 PMCID: PMC10937559 DOI: 10.3389/fnmol.2024.1368058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/16/2024] [Indexed: 03/17/2024] Open
Abstract
The blood-labyrinth-barrier (BLB) is a semipermeable boundary between the vasculature and three separate fluid spaces of the inner ear, the perilymph, the endolymph and the intrastrial space. An important component of the BLB is the blood-stria-barrier, which shepherds the passage of ions and metabolites from strial capillaries into the intrastrial space. Some investigators have reported increased "leakage" from these capillaries following certain experimental interventions, or in the presence of inflammation or genetic variants. This leakage is generally thought to be harmful to cochlear function, principally by lowering the endocochlear potential (EP). Here, we examine evidence for this dogma. We find that strial capillaries are not exclusive, and that the asserted detrimental influence of strial capillary leakage is often confounded by hair cell damage or intrinsic dysfunction of the stria. The vast majority of previous reports speculate about the influence of strial vascular barrier function on the EP without directly measuring the EP. We argue that strial capillary leakage is common across conditions and species, and does not significantly impact the EP or hearing thresholds, either on evidentiary or theoretical grounds. Instead, strial capillary endothelial cells and pericytes are dynamic and allow permeability of varying degrees in response to specific conditions. We present observations from mice and demonstrate that the mechanisms of strial capillary transport are heterogeneous and inconsistent among inbred strains.
Collapse
Affiliation(s)
- Kevin K. Ohlemiller
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO, United States
- Program in Communication Sciences and Audiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Noël Dwyer
- Program in Communication Sciences and Audiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Veronica Henson
- Program in Communication Sciences and Audiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Kaela Fasman
- Program in Communication Sciences and Audiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Keiko Hirose
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
3
|
Liu LM, Liang C, Chen J, Fang S, Zhao HB. Cx26 heterozygous mutations cause hyperacusis-like hearing oversensitivity and increase susceptibility to noise. SCIENCE ADVANCES 2023; 9:eadf4144. [PMID: 36753545 PMCID: PMC9908021 DOI: 10.1126/sciadv.adf4144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/10/2023] [Indexed: 06/18/2023]
Abstract
Gap junction gene GJB2 (Cx26) mutations cause >50% of nonsyndromic hearing loss. Its recessive hetero-mutation carriers, who have no deafness, occupy ~10 to 20% of the general population. Here, we report an unexpected finding that these heterozygote carriers have hearing oversensitivity, and active cochlear amplification increased. Mouse models show that Cx26 hetero-deletion reduced endocochlear potential generation in the cochlear lateral wall and caused outer hair cell electromotor protein prestin compensatively up-regulated to increase active cochlear amplification and hearing sensitivity. The increase of active cochlear amplification also increased sensitivity to noise; exposure to daily-level noise could cause Cx26+/- mice permanent hearing threshold shift, leading to hearing loss. This study demonstrates that Cx26 recessive heterozygous mutations are not "harmless" for hearing as previously considered and can cause hyperacusis-like hearing oversensitivity. The data also indicate that GJB2 hetero-mutation carriers are vulnerable to noise and should avoid noise exposure in daily life.
Collapse
Affiliation(s)
- Li-Man Liu
- Department of Otolaryngology, University of Kentucky Medical Center, 800 Rose Street, Lexington, KY 40536, USA
- Department of Surgery–Otolaryngology, Yale University Medical School, 310 Cedar Street, New Haven, CT 06510, USA
| | - Chun Liang
- Department of Otolaryngology, University of Kentucky Medical Center, 800 Rose Street, Lexington, KY 40536, USA
- Hearing Function Testing Center, Shenzhen Maternity and Child Healthcare Hospital, 3012 Fuqiang Road, Shenzhen 518017, China
| | - Jin Chen
- Department of Otolaryngology, University of Kentucky Medical Center, 800 Rose Street, Lexington, KY 40536, USA
| | - Shu Fang
- Department of Otolaryngology, University of Kentucky Medical Center, 800 Rose Street, Lexington, KY 40536, USA
| | - Hong-Bo Zhao
- Department of Otolaryngology, University of Kentucky Medical Center, 800 Rose Street, Lexington, KY 40536, USA
- Department of Surgery–Otolaryngology, Yale University Medical School, 310 Cedar Street, New Haven, CT 06510, USA
| |
Collapse
|
4
|
Chen P, Wu W, Zhang J, Chen J, Li Y, Sun L, Hou S, Yang J. Pathological mechanisms of connexin26-related hearing loss: Potassium recycling, ATP-calcium signaling, or energy supply? Front Mol Neurosci 2022; 15:976388. [PMID: 36187349 PMCID: PMC9520402 DOI: 10.3389/fnmol.2022.976388] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
Hereditary deafness is one of the most common human birth defects. GJB2 gene mutation is the most genetic etiology. Gap junction protein 26 (connexin26, Cx26) encoded by the GJB2 gene, which is responsible for intercellular substance transfer and signal communication, plays a critical role in hearing acquisition and maintenance. The auditory character of different Connexin26 transgenic mice models can be classified into two types: profound congenital deafness and late-onset progressive hearing loss. Recent studies demonstrated that there are pathological changes including endocochlear potential reduction, active cochlear amplification impairment, cochlear developmental disorders, and so on, in connexin26 deficiency mice. Here, this review summarizes three main hypotheses to explain pathological mechanisms of connexin26-related hearing loss: potassium recycling disruption, adenosine-triphosphate-calcium signaling propagation disruption, and energy supply dysfunction. Elucidating pathological mechanisms underlying connexin26-related hearing loss can help develop new protective and therapeutic strategies for this common deafness. It is worthy of further study on the detailed cellular and molecular upstream mechanisms to modify connexin (channel) function.
Collapse
Affiliation(s)
- Penghui Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Wenjin Wu
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Jifang Zhang
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Junmin Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Yue Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Lianhua Sun
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Shule Hou
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
- *Correspondence: Shule Hou,
| | - Jun Yang
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
- Jun Yang,
| |
Collapse
|
5
|
Jang MW, Lim J, Park MG, Lee JH, Lee CJ. Active role of glia-like supporting cells in the organ of Corti: Membrane proteins and their roles in hearing. Glia 2022; 70:1799-1825. [PMID: 35713516 DOI: 10.1002/glia.24229] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/23/2022] [Accepted: 05/30/2022] [Indexed: 12/13/2022]
Abstract
The organ of Corti, located in the cochlea in the inner ear, is one of the major sensory organs involved in hearing. The organ of Corti consists of hair cells, glia-like supporting cells, and the cochlear nerve, which work in harmony to receive sound from the outer ear and transmit auditory signals to the cochlear nucleus in the auditory ascending pathway. In this process, maintenance of the endocochlear potential, with a high potassium gradient and clearance of electrolytes and biochemicals in the inner ear, is critical for normal sound transduction. There is an emerging need for a thorough understanding of each cell type involved in this process to understand the sophisticated mechanisms of the organ of Corti. Hair cells have long been thought to be active, playing a primary role in the cochlea in actively detecting and transmitting signals. In contrast, supporting cells are thought to be silent and function to support hair cells. However, growing lines of evidence regarding the membrane proteins that mediate ionic movement in supporting cells have demonstrated that supporting cells are not silent, but actively play important roles in normal signal transduction. In this review, we summarize studies that characterize diverse membrane proteins according to the supporting cell subtypes involved in cochlear physiology and hearing. This review contributes to a better understanding of supporting cell functions and facilitates the development of potential therapeutic tools for hearing loss.
Collapse
Affiliation(s)
- Minwoo Wendy Jang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea.,Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Jiwoon Lim
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea.,IBS School, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Mingu Gordon Park
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea.,Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Jae-Hun Lee
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - C Justin Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea.,Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea.,IBS School, University of Science and Technology (UST), Daejeon, Republic of Korea
| |
Collapse
|
6
|
Connexin Mutations and Hereditary Diseases. Int J Mol Sci 2022; 23:ijms23084255. [PMID: 35457072 PMCID: PMC9027513 DOI: 10.3390/ijms23084255] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/04/2022] [Accepted: 04/09/2022] [Indexed: 02/01/2023] Open
Abstract
Inherited diseases caused by connexin mutations are found in multiple organs and include hereditary deafness, congenital cataract, congenital heart diseases, hereditary skin diseases, and X-linked Charcot–Marie–Tooth disease (CMT1X). A large number of knockout and knock-in animal models have been used to study the pathology and pathogenesis of diseases of different organs. Because the structures of different connexins are highly homologous and the functions of gap junctions formed by these connexins are similar, connexin-related hereditary diseases may share the same pathogenic mechanism. Here, we analyze the similarities and differences of the pathology and pathogenesis in animal models and find that connexin mutations in gap junction genes expressed in the ear, eye, heart, skin, and peripheral nerves can affect cellular proliferation and differentiation of corresponding organs. Additionally, some dominant mutations (e.g., Cx43 p.Gly60Ser, Cx32 p.Arg75Trp, Cx32 p.Asn175Asp, and Cx32 p.Arg142Trp) are identified as gain-of-function variants in vivo, which may play a vital role in the onset of dominant inherited diseases. Specifically, patients with these dominant mutations receive no benefits from gene therapy. Finally, the complete loss of gap junctional function or altered channel function including permeability (ions, adenosine triphosphate (ATP), Inositol 1,4,5-trisphosphate (IP3), Ca2+, glucose, miRNA) and electric activity are also identified in vivo or in vitro.
Collapse
|
7
|
Prospective cohort study reveals MMP-9, a neuroplasticity regulator, as a prediction marker of cochlear implantation outcome in prelingual deafness treatment. Mol Neurobiol 2022; 59:2190-2203. [PMID: 35061219 PMCID: PMC9262127 DOI: 10.1007/s12035-022-02732-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 01/04/2022] [Indexed: 11/11/2022]
Abstract
Because of vast variability of cochlear implantation outcomes in
prelingual deafness treatment, identification of good and poor performers remains a
challenging task. To address this issue, we investigated genetic variants of matrix
metalloproteinase 9 (MMP9) and brain-derived
neurotrophic factor (BDNF) and plasma levels of
MMP-9, BDNF, and pro-BDNF that have all been implicated in neuroplasticity after
sensory deprivation in the auditory pathway. We recruited a cohort of prelingually
deaf children, all implanted before the age of 2, and carried out a prospective
observation (N = 61). Next, we analyzed the
association between (i) functional MMP9 (rs20544,
rs3918242, rs2234681) and BDNF (rs6265) gene
variants (and their respective protein levels) and (ii) the child’s auditory
development as measured with the LittlEARS Questionnaire (LEAQ) before cochlear
implant (CI) activation and at 8 and 18 months post-CI activation. Statistical
analyses revealed that the plasma level of MMP-9 measured at implantation in
prelingually deaf children was significantly correlated with the LEAQ score
18 months after CI activation. In the subgroup of DFNB1-related deafness (N = 40), rs3918242 of MMP9 was significantly associated with LEAQ score at 18 months after
CI activation; also, according to a multiple regression model, the ratio of plasma
levels of pro-BDNF/BDNF measured at implantation was a significant predictor of
overall LEAQ score at follow-up. In the subgroup with DFNB1-related deafness, who
had CI activation after 1 year old (N = 22), a
multiple regression model showed that rs3918242 of MMP9 was a significant predictor of overall LEAQ score at
follow-up.
Collapse
|
8
|
Chen J, Chen P, He B, Gong T, Li Y, Zhang J, Lv J, Mammano F, Hou S, Yang J. Connexin30-Deficiency Causes Mild Hearing Loss With the Reduction of Endocochlear Potential and ATP Release. Front Cell Neurosci 2022; 15:819194. [PMID: 35110999 PMCID: PMC8802669 DOI: 10.3389/fncel.2021.819194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 12/22/2021] [Indexed: 12/26/2022] Open
Abstract
GJB2 and GJB6 are adjacent genes encoding connexin 26 (Cx26) and connexin 30 (Cx30), respectively, with overlapping expressions in the inner ear. Both genes are associated with the commonest monogenic hearing disorder, recessive isolated deafness DFNB1. Cx26 plays an important role in auditory development, while the role of Cx30 in hearing remains controversial. Previous studies found that Cx30 knockout mice had severe hearing loss along with a 90% reduction in Cx26, while another Cx30 knockout mouse model showed normal hearing with nearly half of Cx26 preserved. In this study, we used CRISPR/Cas9 technology to establish a new Cx30 knockout mouse model (Cx30−/−), which preserves approximately 70% of Cx26. We found that the 1, 3, and 6-month-old Cx30−/− mice showed mild hearing loss at full frequency. Immunofluorescence and HE staining suggested no significant differences in microstructure of the cochlea between Cx30−/− mice and wild-type mice. However, transmission electron microscopy showed slight cavity-like damage in the stria vascularis of Cx30−/− mice. And Cx30 deficiency reduced the production of endocochlear potential (EP) and the release of ATP, which may have induced hearing loss. Taken together, this study showed that lack of Cx30 can lead to hearing loss with an approximately 30% reduction of Cx26 in the present Cx30 knockout model. Hence, Cx30 may play an important rather than redundant role in hearing development.
Collapse
Affiliation(s)
- Junmin Chen
- Department of Otorhinolaryngology—Head & Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Penghui Chen
- Department of Otorhinolaryngology—Head & Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Baihui He
- Department of Otorhinolaryngology—Head & Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Tianyu Gong
- Department of Otorhinolaryngology—Head & Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Yue Li
- Department of Otorhinolaryngology—Head & Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Jifang Zhang
- Department of Otorhinolaryngology—Head & Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Jingrong Lv
- Department of Otorhinolaryngology—Head & Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Fabio Mammano
- Department of Physics and Astronomy “G. Galilei”, University of Padua, Padua, Italy
- Department of Biomedical Sciences, Institute of Cell Biology and Neurobiology, Italian National Research Council, Monterotondo, Italy
| | - Shule Hou
- Department of Otorhinolaryngology—Head & Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
- *Correspondence: Shule Hou Jun Yang
| | - Jun Yang
- Department of Otorhinolaryngology—Head & Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
- *Correspondence: Shule Hou Jun Yang
| |
Collapse
|
9
|
Hosoya M, Fujioka M, Murayama AY, Ogawa K, Okano H, Ozawa H. Dynamic Spatiotemporal Expression Changes in Connexins of the Developing Primate's Cochlea. Genes (Basel) 2021; 12:genes12071082. [PMID: 34356098 PMCID: PMC8307058 DOI: 10.3390/genes12071082] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 01/03/2023] Open
Abstract
Connexins are gap junction components that are essential for acquiring normal hearing ability. Up to 50% of congenital, autosomal-recessive, non-syndromic deafness can be attributed to variants in GJB2, the gene that encodes connexin 26. Gene therapies modifying the expression of connexins are a feasible treatment option for some patients with genetic hearing losses. However, the expression patterns of these proteins in the human fetus are not fully understood due to ethical concerns. Recently, the common marmoset was used as a primate animal model for the human fetus. In this study, we examined the expression patterns of connexin 26 and connexin 30 in the developing cochlea of this primate. Primate-specific spatiotemporal expression changes were revealed, which suggest the existence of primate-specific control of connexin expression patterns and specific functions of these gap junction proteins. Moreover, our results indicate that treatments for connexin-related hearing loss established in rodent models may not be appropriate for human patients, underscoring the importance of testing these treatments in primate models before applying them in human clinical trials.
Collapse
Affiliation(s)
- Makoto Hosoya
- Department of Otorhinolaryngology, Head and Neck Surgery, Keio University School of Medicine, 35 Shinanomachi Shinjuku-ku, Tokyo 160-8582, Japan; (M.H.); (K.O.); (H.O.)
| | - Masato Fujioka
- Department of Otorhinolaryngology, Head and Neck Surgery, Keio University School of Medicine, 35 Shinanomachi Shinjuku-ku, Tokyo 160-8582, Japan; (M.H.); (K.O.); (H.O.)
- Correspondence: ; Tel.: +81-3-5363-3827
| | - Ayako Y. Murayama
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi Shinjuku-ku, Tokyo 160-8582, Japan; (A.Y.M.); (H.O.)
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako 351-0198, Japan
| | - Kaoru Ogawa
- Department of Otorhinolaryngology, Head and Neck Surgery, Keio University School of Medicine, 35 Shinanomachi Shinjuku-ku, Tokyo 160-8582, Japan; (M.H.); (K.O.); (H.O.)
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi Shinjuku-ku, Tokyo 160-8582, Japan; (A.Y.M.); (H.O.)
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako 351-0198, Japan
| | - Hiroyuki Ozawa
- Department of Otorhinolaryngology, Head and Neck Surgery, Keio University School of Medicine, 35 Shinanomachi Shinjuku-ku, Tokyo 160-8582, Japan; (M.H.); (K.O.); (H.O.)
| |
Collapse
|
10
|
Abstract
Congenital hearing loss is the most common birth defect, estimated to affect 2-3 in every 1000 births. Currently there is no cure for hearing loss. Treatment options are limited to hearing aids for mild and moderate cases, and cochlear implants for severe and profound hearing loss. Here we provide a literature overview of the environmental and genetic causes of congenital hearing loss, common animal models and methods used for hearing research, as well as recent advances towards developing therapies to treat congenital deafness. © 2021 The Authors.
Collapse
Affiliation(s)
- Justine M Renauld
- Department of Otolaryngology, Head & Neck Surgery, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Martin L Basch
- Department of Otolaryngology, Head & Neck Surgery, Case Western Reserve University School of Medicine, Cleveland, Ohio.,Department of Genetics and Genome Sciences, Case Western Reserve School of Medicine, Cleveland, Ohio.,Department of Biology, Case Western Reserve University, Cleveland, Ohio.,Department of Otolaryngology, Head & Neck Surgery, University Hospitals, Cleveland, Ohio
| |
Collapse
|
11
|
Matusiak M, Oziębło D, Obrycka A, Ołdak M, Kaczmarek L, Skarżyński P, Skarżyński H. Functional Polymorphism of MMP9 and BDNF as Potential Biomarker of Auditory Neuroplasticity in Prelingual Deafness Treatment With Cochlear Implantation-A Retrospective Cohort Analysis. Trends Hear 2021; 25:23312165211002140. [PMID: 33787399 PMCID: PMC8020743 DOI: 10.1177/23312165211002140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Genetic biomarkers of neuroplasticity in deaf children treated with cochlear implantation (CI) might facilitate their clinical management, especially giving them better chances of developing proficient spoken language. We investigated whether carrying certain variants of the genes encoding matrix metalloproteinase MMP9 and neurotrophin brain-derived neurotrophic factor (BDNF), involved in synaptic plasticity, can be taken as prognostic markers of how well auditory skills might be acquired. Association analysis of functional MMP9 rs3918242 and BDNF rs6265 variants and the child’s auditory development measured at CI activation and 1, 5, 9, 14, and 24 months post CI activation with LittlEARS Questionnaire (LEAQ) was conducted in a group of 100 children diagnosed with DFNB1-related deafness, unilaterally implanted before the age of 2 years. Statistical analysis in the subgroup implanted after 1 year of life (n = 53) showed significant association between MMP9 rs3918242 and LEAQ scores at 1 month (p = .01), at 5 months (p = .01), at 9 months (p = .01), and at 24 months (p = .01) after CI activation. No significant associations in the subgroup implanted before 1 year of life were observed. No significant associations between the BDNF rs6265 and LEAQ score were found. Multiple regression analysis (R2 = .73) in the subgroup implanted after 1 year of life revealed that MMP9 rs3918242 was a significant predictor of treatment outcome. In conclusion, C/C rs3918242 MMP9 predisposes their deaf carriers to better CI outcomes, especially when implanted after the first birthday, than carriers of C/T rs3918242MMP9.
Collapse
Affiliation(s)
- Monika Matusiak
- Otorhinolaryngosurgery Clinic, Institute of Physiology and Pathology of Hearing, Warsaw, Poland.,World Hearing Centre, Nadarzyn, Poland
| | - Dominika Oziębło
- World Hearing Centre, Nadarzyn, Poland.,Department of Genetics, Institute of Physiology and Pathology of Hearing, Warsaw, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Anita Obrycka
- World Hearing Centre, Nadarzyn, Poland.,Department of Implants and Auditory Perception, Institute of Physiology and Pathology of Hearing, Warsaw, Poland
| | - Monika Ołdak
- World Hearing Centre, Nadarzyn, Poland.,Department of Genetics, Institute of Physiology and Pathology of Hearing, Warsaw, Poland
| | - Leszek Kaczmarek
- BRAINCITY, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Piotr Skarżyński
- Department of Teleaudiology and Screening, World Hearing Center, Institute of Physiology and Pathology of Hearing, Warsaw, Poland.,Heart Failure and Cardiac Rehabilitation Department, 2nd Faculty of Medicine, Medical University of Warsaw, Warsaw, Poland.,Institute of Sensory Organs, Kajetany, Poland
| | - Henryk Skarżyński
- Otorhinolaryngosurgery Clinic, Institute of Physiology and Pathology of Hearing, Warsaw, Poland.,World Hearing Centre, Nadarzyn, Poland
| |
Collapse
|
12
|
Nijjar S, Maddison D, Meigh L, de Wolf E, Rodgers T, Cann MJ, Dale N. Opposing modulation of Cx26 gap junctions and hemichannels by CO 2. J Physiol 2020; 599:103-118. [PMID: 33022747 DOI: 10.1113/jp280747] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 10/02/2020] [Indexed: 01/21/2023] Open
Abstract
KEY POINTS A moderate increase in P C O 2 (55 mmHg) closes Cx26 gap junctions. This effect of CO2 is independent of changes in intra- or extracellular pH. The CO2 -dependent closing effect depends on the same residues (K125 and R104) that are required for the CO2 -dependent opening of Cx26 hemichannels. Pathological mutations of Cx26 abolish the CO2 -dependent closing of the gap junction. Elastic network modelling suggests that the effect of CO2 on Cx26 hemichannels and gap junctions is mediated through changes in the lowest entropy state of the protein. ABSTRACT Cx26 hemichannels open in response to moderate elevations of CO2 ( P C O 2 55 mmHg) via a carbamylation reaction that depends on residues K125 and R104. Here we investigate the action of CO2 on Cx26 gap junctions. Using a dye transfer assay, we found that an elevated P C O 2 of 55 mmHg greatly delayed the permeation of a fluorescent glucose analogue (NBDG) between HeLa cells coupled by Cx26 gap junctions. However, the mutations K125R or R104A abolished this effect of CO2 . Whole cell recordings demonstrated that elevated CO2 reduced the Cx26 gap junction conductance (median reduction 66.7%, 95% CI, 50.5-100.0%) but had no effect on Cx26K125R or Cx31 gap junctions. CO2 can cause intracellular acidification. Using 30 mm propionate, we found that acidification in the absence of a change in P C O 2 caused a median reduction in the gap junction conductance of 41.7% (95% CI, 26.6-53.7%). This effect of propionate was unaffected by the K125R mutation (median reduction 48.1%, 95% CI, 28.0-86.3%). pH-dependent and CO2 -dependent closure of the gap junction are thus mechanistically independent. Mutations of Cx26 associated with the keratitis ichthyosis deafness syndrome (N14K, A40V and A88V), in combination with the mutation M151L, also abolished the CO2 -dependent gap junction closure. Elastic network modelling suggests that the lowest entropy state when CO2 is bound is the closed configuration for the gap junction but the open state for the hemichannel. The opposing actions of CO2 on Cx26 gap junctions and hemichannels thus depend on the same residues and presumed carbamylation reaction.
Collapse
Affiliation(s)
- Sarbjit Nijjar
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Daniel Maddison
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Louise Meigh
- School of Life Sciences, University of Warwick, Coventry, UK
| | | | - Thomas Rodgers
- School of Chemical Engineering and Analytical Science, University of Manchester, Manchester, UK
| | - Martin J Cann
- Department of Biosciences, Durham University, Durham, UK
| | - Nicholas Dale
- School of Life Sciences, University of Warwick, Coventry, UK
| |
Collapse
|
13
|
Cisplatin-Induced Stria Vascularis Damage Is Associated with Inflammation and Fibrosis. Neural Plast 2020; 2020:8851525. [PMID: 33029120 PMCID: PMC7527906 DOI: 10.1155/2020/8851525] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 08/05/2020] [Accepted: 09/03/2020] [Indexed: 12/20/2022] Open
Abstract
The stria vascularis (SV) generates the endocochlear potential (EP) in the inner ear and is necessary for proper hair cell (HC) mechanotransduction and hearing. Cell junctions are indispensable for the establishment of compositionally distinct fluid compartments in the inner ear. Ototoxic drug cisplatin can damage SV and cause sensorineural hearing loss; however, the underlying mechanisms behind such injury are unclear. In this study, after the intraperitoneal injection of cisplatin (3 mg/kg/day for 7 days) in mice, we determined the auditory function by EP recording and auditory brainstem response (ABR) analysis, observed the ultrastructure of SV by transmission electron microscopy (TEM), and examined the expression and distribution of cell junction proteins by western blot, PCR, and immunofluorescence staining. We discovered that the EP was significantly reduced while ABR thresholds were significantly elevated in cisplatin-treated mice; cisplatin induced ultrastructural changes in marginal cells (MCs), endothelial cells (ECs), pericytes, etc. We found that cisplatin insulted auditory function not only by reducing the expression of zonula occludens protein-1 (ZO-1) in MCs of the SV but also by decreasing the expression of connexin 26 (Cx26) and connexin 43 (Cx43) in MCs and basal cells (BCs). More importantly, cisplatin induced activations of perivascular-resident macrophage-like melanocytes (PVM/Ms) and interleukin-1beta (IL-1β) as well as increased expressions of profibrotic proteins such as laminin and collagen IV in SV. Thus, our results firstly showed that cisplatin induced fibrosis, inflammation, and the complex expression change of cell junctions in SV.
Collapse
|
14
|
Zhang L, Wu X, Lin X. Gene therapy for genetic mutations affecting non-sensory cells in the cochlea. Hear Res 2020; 394:107858. [PMID: 31791650 DOI: 10.1016/j.heares.2019.107858] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/13/2019] [Accepted: 11/22/2019] [Indexed: 01/15/2023]
Abstract
Congenital hearing loss (HL) affects about 1 in every 500 infants. Among those affected more than half are caused by genetic mutations. According to the cellular sites affected by mutations in the cochlea, deafness genes could be classified into three major groups: those affecting the function of hair cells and synapses, cochlear supporting cells, and cells in the stria vascularis (SV) as well as in the lateral wall. The second and third groups account for more than half of all sensorineural hearing loss (SNHL) cases caused by genetic mutations. Current major treatment options for SNHL patients are hearing aids and cochlear implants (CIs). Hearing aids can only help patients with moderate to severe HL. Resolution of CIs is still improving and these devices are quite expensive especially when lifetime rehabilitation and maintenance costs are included. Tremendous efforts have been made to find novel treatments that are expected to restore hearing with higher-resolution and more natural quality, and to have a significantly lower cost over the lifetime of uses. Gene therapy studies have made impressive progresses in preclinical trials. This review focuses on deafness genes that affect supporting cells and cells in the SV of the cochlea. We will discuss recent progresses and remaining challenges for gene therapies targeting mutations in deafness genes belonging to this category.
Collapse
Affiliation(s)
- Li Zhang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Department of Otolaryngology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322-3030, USA
| | - Xuewen Wu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital of Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China; Department of Otolaryngology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322-3030, USA
| | - Xi Lin
- Department of Otolaryngology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322-3030, USA.
| |
Collapse
|
15
|
Hearing Phenotypes of Patients with Hearing Loss Homozygous for the GJB2 c.235delc Mutation. Neural Plast 2020; 2020:8841522. [PMID: 32802038 PMCID: PMC7416285 DOI: 10.1155/2020/8841522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/18/2020] [Accepted: 06/30/2020] [Indexed: 01/17/2023] Open
Abstract
Hereditary hearing loss is characterized by remarkable phenotypic heterogeneity. Patients with the same pathogenic mutations may exhibit various hearing loss phenotypes. In the Chinese population, the c.235delC mutation is the most common pathogenic mutation of GJB2 and is closely related to hereditary recessive hearing loss. Here, we investigated the hearing phenotypes of patients with hearing loss associated with the homozygous c.235delC mutation, paying special attention to asymmetric interaural hearing loss. A total of 244 patients with the GJB2 c.235delC homozygous mutation encountered from 2007 to 2015 were enrolled. The severity of hearing loss was scaled with the American Speech-Language-Hearing Association (ASHA). Auditory phenotypes were analyzed, and three types of interaural asymmetry were defined based on audiograms: Type A (asymmetry of hearing loss severity), Type B (asymmetry of audiogram shape), and Type C (Type A plus Type B). Of the 488 ears (244 cases) examined, 71.93% (351) presented with profound hearing loss, 14.34% (70) with severe hearing loss, and 9.43% (46) with moderate to severe hearing loss. The most common audiogram shapes were descending (31.15%) and flat (24.18%). A total of 156 (63.93%) of the 244 patients exhibited asymmetric interaural hearing loss in terms of severity and/or audiogram shape. Type A was evident in 14 of these cases, Type B in 106, and Type C in 36. In addition, 211 of 312 ears (67.63%) in the interaural hearing asymmetry group showed profound hearing loss, and 59 (18.91%) exhibited severe hearing loss, with the most common audiogram shapes being flat (27.88%) and descending (22.12%). By contrast, in the interaural hearing symmetry group, profound hearing loss was observed in 140 ears (79.55%), and the most common audiograms were descending (46.59%) and residual (21.59%). Hearing loss associated with the GJB2 c.235delC homozygous mutation shows diverse phenotypes, and a considerable proportion of patients show bilateral hearing loss asymmetry.
Collapse
|
16
|
Pandya A, O'Brien A, Kovasala M, Bademci G, Tekin M, Arnos KS. Analyses of del(GJB6-D13S1830) and del(GJB6-D13S1834) deletions in a large cohort with hearing loss: Caveats to interpretation of molecular test results in multiplex families. Mol Genet Genomic Med 2020; 8:e1171. [PMID: 32067424 PMCID: PMC7196463 DOI: 10.1002/mgg3.1171] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 01/24/2020] [Accepted: 01/30/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Mutations involving the closely linked GJB2 and GJB6 at the DFNB1 locus are a common genetic cause of profound congenital hearing loss in many populations. In some deaf GJB2 heterozygotes, a 309 kb deletion involving the GJB6 has been found to be the cause for hearing loss when inherited in trans to a GJB2 mutation. METHODS We screened 2,376 probands from a National DNA Repository of deaf individuals. RESULTS Fifty-two of 318 heterozygous probands with pathogenic GJB2 sequence variants had a GJB6 deletion. Additionally, eight probands had an isolated heterozygous GJB6 deletion that did not explain their hearing loss. In two deaf subjects, including one proband, a homozygous GJB6 deletion was the cause for their hearing loss, a rare occurrence not reported to date. CONCLUSION This study represents the largest US cohort of deaf individuals harboring GJB2 and GJB6 variants, including unique subsets of families with deaf parents. Testing additional members to clarify the phase of GJB2/GJB6 variants in multiplex families was crucial in interpreting clinical significance of the variants in the proband. It highlights the importance of determining the phase of GJB2/GJB6 variants when interpreting molecular test results especially in multiplex families with assortative mating.
Collapse
Affiliation(s)
- Arti Pandya
- Department of Pediatrics, Division of Genetics and Metabolism, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Alexander O'Brien
- Department of Pediatrics, Division of Genetics and Metabolism, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Michael Kovasala
- Department of Pediatrics, Division of Genetics and Metabolism, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Guney Bademci
- Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
| | - Mustafa Tekin
- Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
| | - Kathleen S Arnos
- Department of Science, Technology, & Mathematics, Gallaudet University, Washington, DC, USA
| |
Collapse
|
17
|
Cochlear Implantation Outcome in Children with DFNB1 locus Pathogenic Variants. J Clin Med 2020; 9:jcm9010228. [PMID: 31952308 PMCID: PMC7019930 DOI: 10.3390/jcm9010228] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 11/30/2022] Open
Abstract
Almost 60% of children with profound prelingual hearing loss (HL) have a genetic determinant of deafness, most frequently two DFNB1 locus (GJB2/GJB6 genes) recessive pathogenic variants. Only few studies combine HL etiology with cochlear implantation (CI) outcome. Patients with profound prelingual HL who received a cochlear implant before 24 months of age and had completed DFNB1 genetic testing were enrolled in the study (n = 196). LittlEARS questionnaire scores were used to assess auditory development. Our data show that children with DFNB1-related HL (n = 149) had good outcome from the CI (6.85, 22.24, and 28 scores at 0, 5, and 9 months post-CI, respectively). A better auditory development was achieved in patients who receive cochlear implants before 12 months of age. Children without residual hearing presented a higher rate of auditory development than children with responses in hearing aids over a wide frequency range prior to CI, but both groups reached a similar level of auditory development after 9 months post-CI. Our data shed light upon the benefits of CI in the homogenous group of patients with HL due to DFNB1 locus pathogenic variants and clearly demonstrate that very early CI is the most effective treatment method in this group of patients.
Collapse
|
18
|
Farooq R, Hussain K, Tariq M, Farooq A, Mustafa M. CRISPR/Cas9: targeted genome editing for the treatment of hereditary hearing loss. J Appl Genet 2020; 61:51-65. [PMID: 31912450 DOI: 10.1007/s13353-019-00535-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/17/2019] [Accepted: 12/27/2019] [Indexed: 02/07/2023]
Abstract
Hereditary hearing loss (HHL) is a neurosensory disorder that affects every 1/500 newborns worldwide and nearly 1/3 people over the age of 65. Congenital deafness is inherited as monogenetic or polygenic disorder. The delicacy, tissue heterogeneity, deep location of the inner ear down the brainstem, and minute quantity of cells present in cochlea are the major challenges for current therapeutic approaches to cure deafness. Targeted genome editing is considered a suitable approach to treat HHL since it can target defective molecular components of auditory transduction to restore normal cochlear function. With the advent of CRISPR/Cas9 technique, targeted genome editing and biomedical research have been revolutionized. The robustness and simplicity of this technology lie in its design and delivery methods. It can directly deliver a complex of Cas9 endonuclease and single guide RNA (sgRNA) into zygote using either vector-mediated stable transfection or transient delivery of ribonucleoproteins complexes. This strategy induces DNA double strand breaks (DSBs) at target site followed by endogenous DNA repairing mechanisms of the cell. CRISPR/Cas9 has been successfully used in model animals to edit hearing genes like calcium and integrin-binding protein 2, myosin VIIA, Xin-actin binding repeat containing 2, leucine-zipper and sterile-alpha motif kinase Zak, epiphycan, transmembrane channel-like protein 1, and cadherin 23. This review discusses the utility of lipid-mediated transient delivery of Cas9/sgRNA complexes, an efficient way to restore hearing in humans, suffering from HHL. Notwithstanding, challenges like PAM requirement, HDR efficiency, off-target activity, and optimized delivery systems need to be addressed.
Collapse
Affiliation(s)
- Rimsha Farooq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan.,Department of Biological Sciences, Forman Christian College University Lahore, Lahore, Pakistan
| | - Khadim Hussain
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan.
| | - Muhammad Tariq
- National Institute for Biotechnology and Genetic Engineering (NIBGE) College Faisalabad, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Ali Farooq
- Primary and Secondary Healthcare Department, Lahore, Government of Punjab, Pakistan
| | - Muhammad Mustafa
- Department of Biological Sciences, Forman Christian College University Lahore, Lahore, Pakistan
| |
Collapse
|
19
|
Wu X, Zhang W, Li Y, Lin X. Structure and Function of Cochlear Gap Junctions and Implications for the Translation of Cochlear Gene Therapies. Front Cell Neurosci 2019; 13:529. [PMID: 31827424 PMCID: PMC6892400 DOI: 10.3389/fncel.2019.00529] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 11/13/2019] [Indexed: 12/23/2022] Open
Abstract
Connexins (Cxs) are ubiquitous membrane proteins that are found throughout vertebrate organs, acting as building blocks of the gap junctions (GJs) known to play vital roles in the normal function of many organs. Mutations in Cx genes (particularly GJB2, which encodes Cx26) cause approximately half of all cases of congenital hearing loss in newborns. Great progress has been made in understanding GJ function and the molecular mechanisms for the role of Cxs in the cochlea. Data reveal that multiple types of Cxs work together to ensure normal development and function of the cochlea. These findings include many aspects not proposed in the classic K+ recycling theory, such as the formation of normal cochlear morphology (e.g., the opening of the tunnel of Corti), the fine-tuning of the innervation of nerve fibers to the hair cells (HCs), the maturation of the ribbon synapses, and the initiation of the endocochlear potential (EP). New data, especially those collected from targeted modification of major Cx genes in the mouse cochlea, have demonstrated that Cx26 plays an essential role in the postnatal maturation of the cochlea. Studies also show that Cx26 and Cx30 assume very different roles in the EP generation, given that only Cx26 is required for normal hearing. This article will review our current understanding of the molecular structure, cellular distribution, and major functions of cochlear GJs. Potential implications of the knowledge of cochlear GJs on the design and implementation of translational studies of cochlear gene therapies for Cx mutations are also discussed.
Collapse
Affiliation(s)
- Xuewen Wu
- Department of Otolaryngology, Head-Neck and Surgery, Xiangya Hospital of Central South University, Changsha, China
- Department of Otolaryngology, Emory University School of Medicine, Atlanta, GA, United States
| | - Wenjuan Zhang
- Department of Otolaryngology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yihui Li
- Department of Pharmacy, Changsha Hospital of Traditional Medicine, Changsha, China
| | - Xi Lin
- Department of Otolaryngology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
20
|
Wang H, Stahl F, Scheper T, Steffens M, Warnecke A, Zeilinger C. Microarray-based screening system identifies temperature-controlled activity of Connexin 26 that is distorted by mutations. Sci Rep 2019; 9:13543. [PMID: 31537823 PMCID: PMC6753059 DOI: 10.1038/s41598-019-49423-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 08/24/2019] [Indexed: 11/09/2022] Open
Abstract
Here, we show that human Connexin 26 (hCx26 or Cx26WT) hemichannel opening rapidly enables the transport of small molecules when triggered by temperature and by compensation of the Ca2+ blockade with EDTA. Point mutations within Cx26 were analysed by a novel optical microarray-based Lucifer Yellow uptake assay or by two electrode voltage clamp (TEVC) on frog oocytes to monitor simultaneous activities of channel proteins. Point mutations L90P, F161S, R184P or K188N influenced the temperature-dependent activity drastically. Since several mutations blocked trafficking, the temperature-dependent activity of the recombinant synthesized and purified wild-type Cx26WT and Cx26K188N hemichannel was tested by liposome flux assay (LFA) and on a microarray-based Lucifer Yellow uptake assay under warm conditions (>30 °C). The data from TEVC measurements and dye flux experiments showed that the mutations gave no or only a weak activity at increased temperature (>30 °C). We conclude that the position K188 in the Cx26WT forms a temperature-sensitive salt bridge with E47 whereas the exchange to K188N destabilizes the network loop- gating filter, which was recently identified as a part of the flexible Ca2+ binding site. We assume that the temperature sensitivity of Cx26 is required to protect cells from uncontrolled release or uptake activities through Cx26 hemichannels.
Collapse
Affiliation(s)
- Hongling Wang
- Hannover Medical School, Department of Otorhinolaryngology, Head- and Neck-Surgery, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.,Gottfried-Wilhelm-Leibniz University of Hannover, BMWZ (Zentrum für Biomolekulare Wirkstoffe), Schneiderberg 38, 30167, Hannover, Germany
| | - Frank Stahl
- Gottfried-Wilhelm-Leibniz University of Hannover, Institut für Technische Chemie/BMWZ (Zentrum für Biomolekulare Wirkstoffe), Callinstr. 5, 30167, Hannover, Germany.,Gottfried-Wilhelm-Leibniz University of Hannover, BMWZ (Zentrum für Biomolekulare Wirkstoffe), Schneiderberg 38, 30167, Hannover, Germany
| | - Thomas Scheper
- Gottfried-Wilhelm-Leibniz University of Hannover, Institut für Technische Chemie/BMWZ (Zentrum für Biomolekulare Wirkstoffe), Callinstr. 5, 30167, Hannover, Germany.,Gottfried-Wilhelm-Leibniz University of Hannover, BMWZ (Zentrum für Biomolekulare Wirkstoffe), Schneiderberg 38, 30167, Hannover, Germany
| | - Melanie Steffens
- Hannover Medical School, Department of Otorhinolaryngology, Head- and Neck-Surgery, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Athanasia Warnecke
- Hannover Medical School, Department of Otorhinolaryngology, Head- and Neck-Surgery, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.,Cluster of Excellence EXC1077 "Hearing4all", German Research Foundation (DFG; "Deutsche Forschungsgemeinschaft"), Hannover, Germany
| | - Carsten Zeilinger
- Gottfried-Wilhelm-Leibniz University of Hannover, BMWZ (Zentrum für Biomolekulare Wirkstoffe), Schneiderberg 38, 30167, Hannover, Germany.
| |
Collapse
|
21
|
Xie L, Chen S, Xu K, Cao HY, Du AN, Bai X, Sun Y, Kong WJ. Reduced postnatal expression of cochlear Connexin26 induces hearing loss and affects the developmental status of pillar cells in a dose-dependent manner. Neurochem Int 2019; 128:196-205. [PMID: 31034913 DOI: 10.1016/j.neuint.2019.04.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/17/2019] [Accepted: 04/19/2019] [Indexed: 10/26/2022]
Abstract
Mutations in the GJB2 gene (which encodes Connexin26 (Cx26)) are the most common cause of non-syndromic deafness. Previous studies showed that an extensive knockout of the Gjb2 gene in cochlear epithelium can cause severe deafness, significant hair cell (HC) loss and failure of pillar cells (a type of supporting cell, PCs) to differentiate in mice. This study aimed to establish different mouse models with gradient reductions of cochlear Cx26 expression and to investigate the effect of different reduced levels of cochlear Cx26 expression on hearing and development of PCs. According to the reduction in the levels of cochlear Cx26, these models were named high knockdown (KD), middle KD and low KD group. In the low KD group, the mice showed normal hearing and well-developed PCs. In the high KD group, up to 90 percent of supporting cells (SCs) lost Cx26 expression. These mice exhibited severe deafness, rapid hair cell degeneration and juvenile PCs. In the middle KD group, nearly half of SCs lost Cx26 expression. However, these mice showed a moderate deafness and a late-onset hair cell loss. Moreover, nearly all the PCs in mice of this group were in a partially differentiated state. These results indicated that reduction of postnatal expression of cochlear Cx26 induces hearing loss in a dose-dependent manner. Null Cx26 in a few SCs affects the developmental status of PCs and the hair cell degeneration pattern. The abnormal developmental status of PCs may be a potential cause of Gjb2-related hearing loss.
Collapse
Affiliation(s)
- Le Xie
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Sen Chen
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Kai Xu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hai-Yan Cao
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - An-Na Du
- Centre of Instrumental Analysis and Metrology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Xue Bai
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Wei-Jia Kong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Otorhinolaryngology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
22
|
Xia H, Huang X, Xu H, Zhou YA, Gong L, Yang Z, Lv J, Deng H. GJB2 c.235delC variant associated with autosomal recessive nonsyndromic hearing loss and auditory neuropathy spectrum disorder. Genet Mol Biol 2019; 42:48-51. [PMID: 30816908 PMCID: PMC6428124 DOI: 10.1590/1678-4685-gmb-2017-0318] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 06/19/2018] [Indexed: 11/22/2022] Open
Abstract
Autosomal recessive nonsyndromic hearing loss (ARNSHL) is a genetically heterogeneous neurosensory disorder, usually characterized by congenital or prelingual hearing loss. We report a Han Chinese male, born to consanguineous parents, presenting with nonsyndromic sensorineural hearing loss, whose clinical phenotype was also consistent with auditory neuropathy spectrum disorder (ANSD). After exome sequencing, a gap junction protein beta 2 gene (GJB2) c.235delC variant in the homozygous state was detected in the patient. Both parents were heterozygous for this variant, as documented by Sanger sequencing. The known pathogenic GJB2 c.235delC variant was not detected in 200 healthy controls. It is predicted to be a disease-causing alteration by generating a truncated protein p.(L79Cfs*3), disturbing the appropriate folding and/or oligomerization of connexins and leading to defective gap junction channels. This study shows that the association of homozygosity of the GJB2 c.235delC variant with ARNSHL and ANSD in a patient.
Collapse
Affiliation(s)
- Hong Xia
- Third Xiangya Hospital, Center for Experimental Medicine and Department of Neurology, Central South University, Changsha, Hunan, China
| | - Xiangjun Huang
- First Affiliated Hospital, Department of General Surgery, Hunan University, Changsha, Hunan, China
| | - Hongbo Xu
- Third Xiangya Hospital, Center for Experimental Medicine and Department of Neurology, Central South University, Changsha, Hunan, China
| | - Yong-An Zhou
- Second Affiliated Hospital, Department of Blood Transfusion, Shaanxi Normal University, Taiyuan, Shanxi, China
| | - Lina Gong
- Third Xiangya Hospital, Center for Experimental Medicine and Department of Neurology, Central South University, Changsha, Hunan, China
| | - Zhijian Yang
- Third Xiangya Hospital, Center for Experimental Medicine and Department of Neurology, Central South University, Changsha, Hunan, China
| | - Jingyan Lv
- Third Xiangya Hospital, Center for Experimental Medicine and Department of Neurology, Central South University, Changsha, Hunan, China
| | - Hao Deng
- Third Xiangya Hospital, Center for Experimental Medicine and Department of Neurology, Central South University, Changsha, Hunan, China
| |
Collapse
|
23
|
Zhu C, Cheng C, Wang Y, Muhammad W, Liu S, Zhu W, Shao B, Zhang Z, Yan X, He Q, Xu Z, Yu C, Qian X, Lu L, Zhang S, Zhang Y, Xiong W, Gao X, Xu Z, Chai R. Loss of ARHGEF6 Causes Hair Cell Stereocilia Deficits and Hearing Loss in Mice. Front Mol Neurosci 2018; 11:362. [PMID: 30333726 PMCID: PMC6176010 DOI: 10.3389/fnmol.2018.00362] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 09/13/2018] [Indexed: 11/13/2022] Open
Abstract
ARHGEF6 belongs to the family of guanine nucleotide exchange factors (GEFs) for Rho GTPases, and it specifically activates Rho GTPases CDC42 and RAC1. Arhgef6 is the X-linked intellectual disability gene also known as XLID46, and clinical features of patients carrying Arhgef6 mutations include intellectual disability and, in some cases, sensorineural hearing loss. Rho GTPases act as molecular switches in many cellular processes. Their activities are regulated by binding or hydrolysis of GTP, which is facilitated by GEFs and GTPase-activating proteins, respectively. RAC1 and CDC42 have been shown to play important roles in hair cell (HC) stereocilia development. However, the role of ARHGEF6 in inner ear development and hearing function has not yet been investigated. Here, we found that ARHGEF6 is expressed in mouse cochlear HCs, including the HC stereocilia. We established Arhgef6 knockdown mice using the clustered regularly interspaced short palindromic repeat-associated Cas9 nuclease (CRISPR-Cas9) genome editing technique. We showed that ARHGEF6 was indispensable for the maintenance of outer hair cell (OHC) stereocilia, and loss of ARHGEF6 in mice caused HC stereocilia deficits that eventually led to progressive HC loss and hearing loss. However, the loss of ARHGEF6 did not affect the synapse density and did not affect the mechanoelectrical transduction currents in OHCs at postnatal day 3. At the molecular level, the levels of active CDC42 and RAC1 were dramatically decreased in the Arhgef6 knockdown mice, suggesting that ARHGEF6 regulates stereocilia maintenance through RAC1/CDC42.
Collapse
Affiliation(s)
- Chengwen Zhu
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China.,Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, China.,Research Institute of Otolaryngology, Nanjing, China
| | - Cheng Cheng
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China.,Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, China.,Research Institute of Otolaryngology, Nanjing, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yanfei Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, China.,Shandong Provincial Collaborative Innovation Center of Cell Biology, Shandong Normal University, Jinan, China
| | - Waqas Muhammad
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, China.,Department of Biotechnology, Federal Urdu University of Arts, Science and Technology, Karachi, Pakistan
| | - Shuang Liu
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Weijie Zhu
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, China
| | - Buwei Shao
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, China
| | - Zhong Zhang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, China
| | - Xiaoqian Yan
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, China
| | - Qingqing He
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Zhengrong Xu
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Chenjie Yu
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Xiaoyun Qian
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Ling Lu
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Shasha Zhang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, China.,Research Institute of Otolaryngology, Nanjing, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Yuan Zhang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, China
| | - Wei Xiong
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Xia Gao
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China.,Research Institute of Otolaryngology, Nanjing, China
| | - Zhigang Xu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, China.,Shandong Provincial Collaborative Innovation Center of Cell Biology, Shandong Normal University, Jinan, China
| | - Renjie Chai
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, China.,Research Institute of Otolaryngology, Nanjing, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
24
|
Zhang W, Kim SM, Wang W, Cai C, Feng Y, Kong W, Lin X. Cochlear Gene Therapy for Sensorineural Hearing Loss: Current Status and Major Remaining Hurdles for Translational Success. Front Mol Neurosci 2018; 11:221. [PMID: 29997477 PMCID: PMC6028713 DOI: 10.3389/fnmol.2018.00221] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/06/2018] [Indexed: 12/19/2022] Open
Abstract
Sensorineural hearing loss (SNHL) affects millions of people. Genetic mutations play a large and direct role in both congenital and late-onset cases of SNHL (e.g., age-dependent hearing loss, ADHL). Although hearing aids can help moderate to severe hearing loss the only effective treatment for deaf patients is the cochlear implant (CI). Gene- and cell-based therapies potentially may preserve or restore hearing with more natural sound perception, since their theoretical frequency resolution power is much higher than that of cochlear implants. These biologically-based interventions also carry the potential to re-establish hearing without the need for implanting any prosthetic device; the convenience and lower financial burden afforded by such biologically-based interventions could potentially benefit far more SNHL patients. Recently major progress has been achieved in preclinical studies of cochlear gene therapy. This review critically evaluates recent advances in the preclinical trials of gene therapies for SNHL and the major remaining challenges for the development and eventual clinical translation of this novel therapy. The cochlea bears many similarities to the eye for translational studies of gene therapies. Experience gained in ocular gene therapy trials, many of which have advanced to clinical phase III, may provide valuable guidance in improving the chance of success for cochlear gene therapy in human trials. A discussion on potential implications of translational knowledge gleaned from large numbers of advanced clinical trials of ocular gene therapy is therefore included.
Collapse
Affiliation(s)
- Wenjuan Zhang
- Department of Otolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sun Myoung Kim
- Department of Otolaryngology, Emory University School of Medicine, Atlanta, GA, United States
| | - Wenwen Wang
- Department of Otolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | - Yong Feng
- Xiangya School of Medicine, Changsha, China
| | - Weijia Kong
- Department of Otolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Lin
- Department of Otolaryngology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
25
|
Miller ME, Lopez IA, Linthicum FH, Ishiyama A. Connexin 26 Immunohistochemistry in Temporal Bones With Cochlear Otosclerosis. Ann Otol Rhinol Laryngol 2018; 127:536-542. [PMID: 29911391 DOI: 10.1177/0003489418779410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
HYPOTHESIS Connexin-26 (Cx26) expression is diminished in the spiral ligament of subjects with hearing loss and cochlear otosclerosis (CO). BACKGROUND Human temporal bone (HTB) studies have demonstrated that CO is associated with hyalinization of the spiral ligament. We hypothesize that hyalinization is associated with a loss of fibrocytes with a consequent decline in Cx26 expression. Cx26 and Connexin-30 (Cx30) encode gap junction proteins expressed in supporting cells of the organ of Corti, the spiral limbus, stria vascularis, and in fibrocytes of the spiral ligament. These gap junctions are critical for potassium recycling and maintenance of the endocochlear potential. Diminished expression of these proteins would likely be associated with hearing dysfunction. METHODS Histopathology and clinical characteristics of 45 HTB specimens with CO and spiral ligament hyalinization were reviewed. Those with sensorineural or mixed hearing loss but normal or near-normal hair cell counts were analyzed with light microscopy, and Cx26-immunoreactive (IR) signal was qualitatively assessed. RESULTS H&E staining demonstrated hyalinization in the spiral ligament and loss of type II and type III fibrocytes. Cx26-IR was diminished throughout the cochlea affected with CO compared with normal controls. CONCLUSIONS Cx26-IR reduction in the spiral ligament of subjects with CO likely plays a role in hearing loss.
Collapse
Affiliation(s)
| | | | - Fred H Linthicum
- 3 University of California, Los Angeles, West Los Angeles, California, USA
| | | |
Collapse
|
26
|
Knockout of Pannexin-1 Induces Hearing Loss. Int J Mol Sci 2018; 19:ijms19051332. [PMID: 29710868 PMCID: PMC5983795 DOI: 10.3390/ijms19051332] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/20/2018] [Accepted: 04/23/2018] [Indexed: 12/31/2022] Open
Abstract
Mutations of gap junction connexin genes induce a high incidence of nonsyndromic hearing loss. Pannexin genes also encode gap junctional proteins in vertebrates. Recent studies demonstrated that Pannexin-1 (Panx1) deficiency in mice and mutation in humans are also associated with hearing loss. So far, several Panx1 knockout (KO) mouse lines were established. In general, these Panx1 KO mouse lines demonstrate consistent phenotypes in most aspects, including hearing loss. However, a recent study reported that a Panx1 KO mouse line, which was created by Genentech Inc., had no hearing loss as measured by the auditory brainstem response (ABR) threshold at low-frequency range (<24 kHz). Here, we used multiple auditory function tests and re-examined hearing function in the Genentech Panx1 (Gen-Panx1) KO mouse. We found that ABR thresholds in the Gen-Panx1 KO mouse were significantly increased, in particular, in the high-frequency region. Moreover, consistent with the increase in ABR threshold, distortion product otoacoustic emission (DPOAE) and cochlear microphonics (CM), which reflect active cochlear amplification and auditory receptor current, respectively, were significantly reduced. These data demonstrated that the Gen-Panx1 KO mouse has hearing loss and further confirmed that Panx1 deficiency can cause deafness.
Collapse
|
27
|
Engraftment of Human Pluripotent Stem Cell-derived Progenitors in the Inner Ear of Prenatal Mice. Sci Rep 2018; 8:1941. [PMID: 29386634 PMCID: PMC5792596 DOI: 10.1038/s41598-018-20277-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/16/2018] [Indexed: 11/08/2022] Open
Abstract
There is, at present, no curative treatment for genetic hearing loss. We have previously reported that transuterine gene transfer of wild type CONNEXIN30 (CX30) genes into otocysts in CX30-deleted mice could restore hearing. Cell transplantation therapy might be another therapeutic option, although it is still unknown whether stem cell-derived progenitor cells could migrate into mouse otocysts. Here, we show successful cell transplantation of progenitors of outer sulcus cell-like cells derived from human-derived induced pluripotent stem cells into mouse otocysts on embryonic day 11.5. The delivered cells engrafted more frequently in the non-sensory region in the inner ear of CX30-deleted mice than in wild type mice and survived for up to 1 week after transplantation. Some of the engrafted cells expressed CX30 proteins in the non-sensory region. This is the first report that demonstrates successful engraftment of exogenous cells in prenatal developing otocysts in mice. Future studies using this mouse otocystic injection model in vivo will provide further clues for developing treatment modalities for congenital hearing loss in humans.
Collapse
|
28
|
Hanada Y, Nakamura Y, Ishida Y, Takimoto Y, Taniguchi M, Ozono Y, Koyama Y, Morihana T, Imai T, Ota Y, Sato T, Inohara H, Shimada S. Epiphycan is specifically expressed in cochlear supporting cells and is necessary for normal hearing. Biochem Biophys Res Commun 2017; 492:379-385. [DOI: 10.1016/j.bbrc.2017.08.092] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 08/23/2017] [Indexed: 12/12/2022]
|
29
|
Verselis VK. Connexin hemichannels and cochlear function. Neurosci Lett 2017; 695:40-45. [PMID: 28917982 DOI: 10.1016/j.neulet.2017.09.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 07/24/2017] [Accepted: 09/10/2017] [Indexed: 01/01/2023]
Abstract
Connexins play vital roles in hearing, including promoting cochlear development and sustaining auditory function in the mature cochlea. Mutations in connexins expressed in the cochlear epithelium, Cx26 and Cx30, cause sensorineural deafness and in the case of Cx26, is one of the most common causes of non-syndromic, hereditary deafness. Connexins function as gap junction channels and as hemichannels, which mediate intercellular and transmembrane signaling, respectively. Both channel configurations can play important, but very different roles in the cochlea. The potential roles connexin hemichannels can play are discussed both in normal cochlear function and in promoting pathogenesis that can lead to hearing loss.
Collapse
Affiliation(s)
- Vytas K Verselis
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, United States.
| |
Collapse
|
30
|
Mei L, Chen J, Zong L, Zhu Y, Liang C, Jones RO, Zhao HB. A deafness mechanism of digenic Cx26 (GJB2) and Cx30 (GJB6) mutations: Reduction of endocochlear potential by impairment of heterogeneous gap junctional function in the cochlear lateral wall. Neurobiol Dis 2017; 108:195-203. [PMID: 28823936 DOI: 10.1016/j.nbd.2017.08.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 07/12/2017] [Accepted: 08/16/2017] [Indexed: 12/19/2022] Open
Abstract
Digenic Connexin26 (Cx26, GJB2) and Cx30 (GJB6) heterozygous mutations are the second most frequent cause of recessive deafness in humans. However, the underlying deafness mechanism remains unclear. In this study, we created different double Cx26 and Cx30 heterozygous (Cx26+/-/Cx30+/-) mouse models to investigate the underlying pathological changes and deafness mechanism. We found that double Cx26+/-/Cx30+/- heterozygous mice had hearing loss. Endocochlear potential (EP), which is a driving force for hair cells producing auditory receptor current, was reduced. However, unlike Cx26 homozygous knockout (Cx26-/-) mice, the cochlea in Cx26+/-/Cx30+/- mice displayed normal development and had no apparent hair cell degeneration. Gap junctions (GJs) in the cochlea form two independent networks: the epithelial cell GJ network in the organ of Corti and the connective tissue GJ network in the cochlear lateral wall. We further found that double heterozygous deletion of Cx26 and Cx30 in the epithelial cells did not reduce EP and had normal hearing, suggesting that Cx26+/-/Cx30+/- may mainly impair gap junctional functions in the cochlear lateral wall and lead to EP reduction and hearing loss. Most of Cx26 and Cx30 in the cochlear lateral wall co-expressed in the same gap junctional plaques. Moreover, sole Cx26+/- or Cx30+/- heterozygous mice had no hearing loss. These data further suggest that digenic Cx26 and Cx30 mutations may impair heterozygous coupling of Cx26 and Cx30 in the cochlear lateral wall to reduce EP, thereby leading to hearing loss.
Collapse
Affiliation(s)
- Ling Mei
- Department of Otolaryngology, University of Kentucky Medical Center, 800 Rose Street, Lexington, KY 40536, USA; Department of Otolaryngology, Xinhua Hospital, Shanghai Jiao Tong University Medical School, Shanghai 200092, PR China
| | - Jin Chen
- Department of Otolaryngology, University of Kentucky Medical Center, 800 Rose Street, Lexington, KY 40536, USA; Department of Otolaryngology, Tongji Hospital, Huazhong University of Science & Technology, 1095 Jiefang Avenue, Wuhan 430030, PR China
| | - Liang Zong
- Department of Otolaryngology, University of Kentucky Medical Center, 800 Rose Street, Lexington, KY 40536, USA; Department of Otolaryngology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing 100853, PR China
| | - Yan Zhu
- Department of Otolaryngology, University of Kentucky Medical Center, 800 Rose Street, Lexington, KY 40536, USA
| | - Chun Liang
- Department of Otolaryngology, University of Kentucky Medical Center, 800 Rose Street, Lexington, KY 40536, USA
| | - Raleigh O Jones
- Department of Otolaryngology, University of Kentucky Medical Center, 800 Rose Street, Lexington, KY 40536, USA
| | - Hong-Bo Zhao
- Department of Otolaryngology, University of Kentucky Medical Center, 800 Rose Street, Lexington, KY 40536, USA.
| |
Collapse
|
31
|
Liu W, Li H, Edin F, Brännström J, Glueckert R, Schrott-Fischer A, Molnar M, Pacholsky D, Pfaller K, Rask-Andersen H. Molecular composition and distribution of gap junctions in the sensory epithelium of the human cochlea-a super-resolution structured illumination microscopy (SR-SIM) study. Ups J Med Sci 2017; 122:160-170. [PMID: 28513246 PMCID: PMC5649321 DOI: 10.1080/03009734.2017.1322645] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/29/2022] Open
Abstract
BACKGROUND Mutations in the GJB2 gene, which encodes the Connexin26 (Cx26) protein, are the most common cause of childhood hearing loss in American and European populations. The cochlea contains a gap junction (GJ) network in the sensory epithelium and two connective tissue networks in the lateral wall and spiral limbus. The syncytia contain the GJ proteins beta 2 (GJB2/Cx26) and beta 6 (GJB6/Cx30). Our knowledge of their expression in humans is insufficient due to the limited availability of tissue. Here, we sought to establish the molecular arrangement of GJs in the epithelial network of the human cochlea using surgically obtained samples. METHODS We analyzed Cx26 and Cx30 expression in GJ networks in well-preserved adult human auditory sensory epithelium using confocal, electron, and super-resolution structured illumination microscopy (SR-SIM). RESULTS Cx30 plaques (<5 μm) dominated, while Cx26 plaques were subtle and appeared as 'mini-junctions' (2-300 nm). 3-D volume rendering of Z-stacks and orthogonal projections from single optical sections suggested that the GJs are homomeric/homotypic and consist of assemblies of identical GJs composed of either Cx26 or Cx30. Occasionally, the two protein types were co-expressed, suggesting functional cooperation. CONCLUSIONS Establishing the molecular composition and distribution of the GJ networks in the human cochlea may increase our understanding of the pathophysiology of Cx-related hearing loss. This information may also assist in developing future strategies to treat genetic hearing loss.
Collapse
Affiliation(s)
- Wei Liu
- Department of Surgical Sciences, Head and Neck Surgery, Section of Otolaryngology, Department of Otolaryngology, Uppsala University Hospital, Uppsala, Sweden;
| | - Hao Li
- Department of Surgical Sciences, Head and Neck Surgery, Section of Otolaryngology, Department of Otolaryngology, Uppsala University Hospital, Uppsala, Sweden;
| | - Fredrik Edin
- Department of Surgical Sciences, Head and Neck Surgery, Section of Otolaryngology, Department of Otolaryngology, Uppsala University Hospital, Uppsala, Sweden;
| | - Johan Brännström
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden;
| | - Rudolf Glueckert
- Department of Otolaryngology, Medical University of Innsbruck, Innsbruck, Austria;
| | | | - Matyas Molnar
- Science for Life Laboratory, BioVis Facility, Uppsala University, Uppsala, Sweden;
| | - Dirk Pacholsky
- Science for Life Laboratory, BioVis Facility, Uppsala University, Uppsala, Sweden;
| | - Kristian Pfaller
- Department of Histology and Molecular Cell Biology, Institute of Anatomy and Histology, Medical University of Innsbruck, Innsbruck, Austria
| | - Helge Rask-Andersen
- Department of Surgical Sciences, Head and Neck Surgery, Section of Otolaryngology, Department of Otolaryngology, Uppsala University Hospital, Uppsala, Sweden;
- CONTACT Helge Rask-Andersen Department of Surgical Sciences, Head and Neck Surgery, Section of Otolaryngology, Department of Otolaryngology, Uppsala University Hospital, SE-751 85, Uppsala, Sweden
| |
Collapse
|
32
|
Zhao HB. Hypothesis of K +-Recycling Defect Is Not a Primary Deafness Mechanism for Cx26 ( GJB2) Deficiency. Front Mol Neurosci 2017; 10:162. [PMID: 28603488 PMCID: PMC5445178 DOI: 10.3389/fnmol.2017.00162] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 05/10/2017] [Indexed: 12/20/2022] Open
Abstract
K+-recycling defect is a long-standing hypothesis for deafness mechanism of Connexin26 (Cx26, GJB2) mutations, which cause the most common hereditary deafness and are responsible for >50% of nonsyndromic hearing loss. The hypothesis states that Cx26 deficiency may disrupt inner ear gap junctions and compromise sinking and recycling of expelled K+ ions after hair cell excitation, causing accumulation of K+-ions in the extracellular space around hair cells producing K+-toxicity, which eventually induces hair cell degeneration and hearing loss. However, this hypothesis has never been directly evidenced, even though it has been widely referred to. Recently, more and more experiments demonstrate that this hypothesis may not be a deafness mechanism underlying Cx26 deficiency. In this review article, we summarized recent advances on the K+-recycling and mechanisms underlying Cx26 deficiency induced hearing loss. The mechanisms underlying K+-sinking, which is the first step for K+-recycling in the cochlea, and Cx26 deficiency induced cochlear developmental disorders, which are responsible for Cx26 deficiency induced congenital deafness and associated with disruption of permeability of inner ear gap junctional channels to miRNAs, are also summarized and discussed.
Collapse
Affiliation(s)
- Hong-Bo Zhao
- Department of Otolaryngology, University of Kentucky Medical CenterLexington, KY, United States
| |
Collapse
|
33
|
Zong L, Chen J, Zhu Y, Zhao HB. Progressive age-dependence and frequency difference in the effect of gap junctions on active cochlear amplification and hearing. Biochem Biophys Res Commun 2017; 489:223-227. [PMID: 28552523 DOI: 10.1016/j.bbrc.2017.05.137] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 05/24/2017] [Indexed: 10/19/2022]
Abstract
Mutations of Connexin 26 (Cx26, GJB2), which is a predominant gap junction isoform in the cochlea, can induce high incidence of nonsyndromic hearing loss. We previously found that targeted-deletion of Cx26 in supporting Deiters cells and outer pillar cells in the cochlea can influence outer hair cell (OHC) electromotility and reduce active cochlear amplification leading to hearing loss, even though there are no gap junction connexin expressions in the auditory sensory hair cells. Here, we further report that hearing loss and the reduction of active amplification in the Cx26 targeted-deletion mice are progressive and different at high and low frequency regions, first occurring in the high frequency region and then progressively extending to the middle and low frequency regions with mouse age increased. The speed of hearing loss extending was fast in the basal high frequency region and slow in the apical low frequency region, showing a logarithmic function with mouse age. Before postnatal day 25, there were no significant hearing loss and the reduction of active cochlear amplification in the low frequency region. Hearing loss and the reduction of active cochlear amplification also had frequency difference, severe and large in the high frequency regions. These new data indicate that the effect of gap junction on active cochlear amplification is progressive, but, consistent with our previous report, exists in both high and low frequency regions in adulthood. These new data also suggest that cochlear gap junctions may have an important role in age-related hearing loss.
Collapse
Affiliation(s)
- Liang Zong
- Dept. of Otolaryngology, University of Kentucky Medical School, Lexington, KY 40536, United States; Department of Otolaryngology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, PR China
| | - Jin Chen
- Dept. of Otolaryngology, University of Kentucky Medical School, Lexington, KY 40536, United States; Department of Otolaryngology, Tongji Hospital, Huazhong University of Science & Technology, 1095 Jiefang Avenue, Wuhan 430030, PR China
| | - Yan Zhu
- Dept. of Otolaryngology, University of Kentucky Medical School, Lexington, KY 40536, United States
| | - Hong-Bo Zhao
- Dept. of Otolaryngology, University of Kentucky Medical School, Lexington, KY 40536, United States.
| |
Collapse
|
34
|
Batool A, Yasmeen S, Rashid S. T8M mutation in connexin-26 impairs the connexon topology and shifts its interaction paradigm with lipid bilayer leading to non-syndromic hearing loss. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2016.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
35
|
Chan DK, Rouse SL. Sound-Induced Intracellular Ca2+ Dynamics in the Adult Hearing Cochlea. PLoS One 2016; 11:e0167850. [PMID: 27959894 PMCID: PMC5154517 DOI: 10.1371/journal.pone.0167850] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 11/21/2016] [Indexed: 01/21/2023] Open
Abstract
Ca2+ signaling has been implicated in the initial pathophysiologic mechanisms underlying the cochlea's response to acoustic overstimulation. Intracellular Ca2+ signaling (ICS) waves, which occur in glia and retinal cells in response to injury to activate cell regulatory pathways, have been proposed as an early event in cochlear injury. Disruption of ICS activity is thought to underlie Connexin 26-associated hearing loss, the most common genetic form of deafness, and downstream sequelae of ICS wave activity, such as MAP kinase pathway activation, have been implicated in noise-induced hearing loss. However, ICS waves have only been observed in neonatal cochlear cultures and are thought to be quiescent after the onset of hearing. In this study, we employ an acute explant model of an adult, hearing cochlea that retains many in vivo physiologic features to investigate Ca2+ changes in response to sound. We find that both slow monotonic changes in intracellular Ca2+ concentration as well as discrete ICS waves occur with acoustic overstimulation. The ICS waves share many intrinsic features with their better-described neonatal counterparts, including ATP and gap-junction dependence, and propagation velocity and distance. This identification of ICS wave activity in the adult, hearing cochlea thus confirms and characterizes an important early detection mechanism for cochlear trauma and provides a target for interventions for noise-induced and Connexin 26-associated hearing loss.
Collapse
Affiliation(s)
- Dylan K. Chan
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, United States of America
- * E-mail:
| | - Stephanie L. Rouse
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, United States of America
| |
Collapse
|
36
|
GJB2 mutations in Turkish patients with nonsyndromic hearing loss. Meta Gene 2016. [DOI: 10.1016/j.mgene.2016.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
37
|
Reduced Connexin26 in the Mature Cochlea Increases Susceptibility to Noise-Induced Hearing Lossin Mice. Int J Mol Sci 2016; 17:301. [PMID: 26927086 PMCID: PMC4813165 DOI: 10.3390/ijms17030301] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 02/15/2016] [Accepted: 02/22/2016] [Indexed: 01/17/2023] Open
Abstract
Connexin26 (Cx26, encoded by GJB2) mutations are the most common cause of non-syndromic deafness. GJB2 is thought to be involved in noise-induced hearing loss (NIHL). However, the role of Cx26 in NIHL is still obscure. To explore the association between Cx26 and NIHL, we established a Cx26 knockdown (KD) mouse model by conditional knockdown of Cx26 at postnatal day 18 (P18), and then we observed the auditory threshold and morphologic changes in these mice with or without noise exposure. The Cx26 KD mice did not exhibit substantial hearing loss and hair cell degeneration, while the Cx26 KD mice with acoustic trauma experienced higher hearing loss than simple noise exposure siblings and nearly had no recovery. Additionally, extensive outer hair cell loss and more severe destruction of the basal organ of Corti were observed in Cx26 KD mice after noise exposure. These data indicate that reduced Cx26 expression in the mature mouse cochlea may increase susceptibility to noise-induced hearing loss and facilitate the cell degeneration in the organ of Corti.
Collapse
|
38
|
Wang B, Hu B, Yang S. Cell junction proteins within the cochlea: A review of recent research. J Otol 2016; 10:131-135. [PMID: 29937796 PMCID: PMC6002592 DOI: 10.1016/j.joto.2016.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 01/14/2016] [Accepted: 01/14/2016] [Indexed: 01/29/2023] Open
Abstract
Cell–cell junctions in the cochlea are highly complex and well organized. The role of these junctions is to maintain structural and functional integrity of the cochlea. In this review, we describe classification of cell junction-associated proteins identified within the cochlea and provide a brief overview of the function of these proteins in adherent junctions, gap junctions and tight junctions.
Collapse
Affiliation(s)
- Bo Wang
- Department of Otolaryngology Head & Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, PR China.,Astronaut Research and Training Center of China, 26 Beiqing Road, Beijing, 10094, PR China.,Center for Hearing and Deafness, State University of New York at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY, 14214, USA
| | - Bohua Hu
- Center for Hearing and Deafness, State University of New York at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY, 14214, USA
| | - Shiming Yang
- Department of Otolaryngology Head & Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, PR China
| |
Collapse
|
39
|
Gap junction mediated miRNA intercellular transfer and gene regulation: A novel mechanism for intercellular genetic communication. Sci Rep 2016; 6:19884. [PMID: 26814383 PMCID: PMC4728487 DOI: 10.1038/srep19884] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 12/21/2015] [Indexed: 12/01/2022] Open
Abstract
Intercellular genetic communication is an essential requirement for coordination of cell proliferation and differentiation and has an important role in many cellular processes. Gap junction channels possess large pore allowing passage of ions and small molecules between cells. MicroRNAs (miRNAs) are small regulatory RNAs that can regulate gene expression broadly. Here, we report that miRNAs can pass through gap junction channels in a connexin-dependent manner. Connexin43 (Cx43) had higher permeability, whereas Cx30 showed little permeability to miRNAs. In the tested connexin cell lines, the permeability to miRNAs demonstrated: Cx43 > Cx26/30 > Cx26 > Cx31 > Cx30 = Cx-null. However, consistent with a uniform structure of miRNAs, there was no significant difference in permeability to different miRNAs. The passage is efficient; the miRNA level in the recipient cells could be up to 30% of the donor level. Moreover, the transferred miRNA is functional and could regulate gene expression in neighboring cells. Connexin mutation and gap junctional blockers could eliminate this miRNA intercellular transfer and gene regulation. These data reveal a novel mechanism for intercellular genetic communication. Given that connexin expression is cell-specific, this connexin-dependent, miRNA intercellular genetic communication may play an important role in synchronizing and coordinating proliferation and differentiation of specific cell types during multicellular organ development.
Collapse
|
40
|
Dalamon V, Fiori MC, Figueroa VA, Oliva CA, Del Rio R, Gonzalez W, Canan J, Elgoyhen AB, Altenberg GA, Retamal MA. Gap-junctional channel and hemichannel activity of two recently identified connexin 26 mutants associated with deafness. Pflugers Arch 2016; 468:909-18. [PMID: 26769242 DOI: 10.1007/s00424-016-1788-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 12/08/2015] [Accepted: 01/05/2016] [Indexed: 01/10/2023]
Abstract
Gap-junction channels (GJCs) are formed by head-to-head association of two hemichannels (HCs, connexin hexamers). HCs and GJCs are permeable to ions and hydrophilic molecules of up to Mr ~1 kDa. Hearing impairment of genetic origin is common, and mutations of connexin 26 (Cx26) are its major cause. We recently identified two novel Cx26 mutations in hearing-impaired subjects, L10P and G109V. L10P forms functional GJCs with slightly altered voltage dependence and HCs with decrease ATP/cationic dye selectivity. G109V does not form functional GJCs, but forms functional HCs with enhanced extracellular Ca(2+) sensitivity and subtle alterations in voltage dependence and ATP/cationic dye selectivity. Deafness associated with G109V could result from decreased GJCs activity, whereas deafness associated to L10P may have a more complex mechanism that involves changes in HC permeability.
Collapse
Affiliation(s)
- Viviana Dalamon
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor N. Torres, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| | - Mariana C Fiori
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Vania A Figueroa
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Avenida Las Condes, 12438, Santiago, Chile
| | - Carolina A Oliva
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Avenida Las Condes, 12438, Santiago, Chile
| | - Rodrigo Del Rio
- Centro de Investigación Biomédica, Universidad Autónoma de Chile, Santiago, Chile
| | - Wendy Gonzalez
- Centro de Bioinformática y Simulación Molecular (CBSM), Universidad de Talca, Talca, Chile
| | - Jonathan Canan
- Centro de Bioinformática y Simulación Molecular (CBSM), Universidad de Talca, Talca, Chile
| | - Ana B Elgoyhen
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor N. Torres, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
- Departamento de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Guillermo A Altenberg
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Mauricio A Retamal
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Avenida Las Condes, 12438, Santiago, Chile.
| |
Collapse
|
41
|
Deformation of the Outer Hair Cells and the Accumulation of Caveolin-2 in Connexin 26 Deficient Mice. PLoS One 2015; 10:e0141258. [PMID: 26492081 PMCID: PMC4619622 DOI: 10.1371/journal.pone.0141258] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 10/06/2015] [Indexed: 11/23/2022] Open
Abstract
Background Mutations in GJB2, which encodes connexin 26 (Cx26), a cochlear gap junction protein, represent a major cause of pre-lingual, non-syndromic deafness. The degeneration of the organ of Corti observed in Cx26 mutant—associated deafness is thought to be a secondary pathology of hearing loss. Here we focused on abnormal development of the organ of Corti followed by degeneration including outer hair cell (OHC) loss. Methods We investigated the crucial factors involved in late-onset degeneration and loss of OHC by ultrastructural observation, immunohistochemistry and protein analysis in our Cx26-deficient mice (Cx26f/fP0Cre). Results In ultrastructural observations of Cx26f/fP0Cre mice, OHCs changed shape irregularly, and several folds or notches were observed in the plasma membrane. Furthermore, the mutant OHCs had a flat surface compared with the characteristic wavy surface structure of OHCs of normal mice. Protein analysis revealed an increased protein level of caveolin-2 (CAV2) in Cx26f/fP0Cre mouse cochlea. In immunohistochemistry, a remarkable accumulation of CAV2 was observed in Cx26f/fP0Cre mice. In particular, this accumulation of CAV2 was mainly observed around OHCs, and furthermore this accumulation was observed around the shrunken site of OHCs with an abnormal hourglass-like shape. Conclusions The deformation of OHCs and the accumulation of CAV2 in the organ of Corti may play a crucial role in the progression of, or secondary OHC loss in, GJB2-associated deafness. Investigation of these molecular pathways, including those involving CAV2, may contribute to the elucidation of a new pathogenic mechanism of GJB2-associated deafness and identify effective targets for new therapies.
Collapse
|
42
|
Zhu Y, Zong L, Mei L, Zhao HB. Connexin26 gap junction mediates miRNA intercellular genetic communication in the cochlea and is required for inner ear development. Sci Rep 2015; 5:15647. [PMID: 26490746 PMCID: PMC4614881 DOI: 10.1038/srep15647] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 10/01/2015] [Indexed: 11/18/2022] Open
Abstract
Organ development requires well-established intercellular communication to coordinate cell proliferations and differentiations. MicroRNAs (miRNAs) are small, non-coding RNAs that can broadly regulate gene expression and play a critical role in the organ development. In this study, we found that miRNAs could pass through gap junctions between native cochlear supporting cells to play a role in the cochlear development. Connexin26 (Cx26) and Cx30 are predominant isoforms and co-express in the cochlea. Cx26 deficiency but not Cx30 deficiency can cause cochlear developmental disorders. We found that associated with Cx26 deletion induced the cochlear developmental disorders, deletion of Cx26 but not Cx30 disrupted miRNA intercellular transfer in the cochlea, although inner ear gap junctions still retained permeability after deletion of Cx26. Moreover, we found that deletion of Cx26 but not Cx30 reduced miR-96 expression in the cochlea during postnatal development. The reduction is associated with the cochlear tunnel developmental disorder in Cx26 knockout (KO) mice. These data reveal that Cx26-mediated intercellular communication is required for cochlear development and that deficiency of Cx26 can impair miRNA-mediated intercellular genetic communication in the cochlea, which may lead to cochlear developmental disorders and eventually congenital deafness as previously reported.
Collapse
Affiliation(s)
- Yan Zhu
- Department of Otolaryngology, University of Kentucky Medical Center, 800 Rose Street, Lexington, KY 40536
| | - Liang Zong
- Department of Otolaryngology, University of Kentucky Medical Center, 800 Rose Street, Lexington, KY 40536
| | - Ling Mei
- Department of Otolaryngology, University of Kentucky Medical Center, 800 Rose Street, Lexington, KY 40536
| | - Hong-Bo Zhao
- Department of Otolaryngology, University of Kentucky Medical Center, 800 Rose Street, Lexington, KY 40536
| |
Collapse
|
43
|
Lee MY, Takada T, Takada Y, Kappy MD, Beyer LA, Swiderski DL, Godin AL, Brewer S, King WM, Raphael Y. Mice with conditional deletion of Cx26 exhibit no vestibular phenotype despite secondary loss of Cx30 in the vestibular end organs. Hear Res 2015; 328:102-12. [PMID: 26232528 DOI: 10.1016/j.heares.2015.07.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 07/22/2015] [Accepted: 07/23/2015] [Indexed: 01/19/2023]
Abstract
Connexins are components of gap junctions which facilitate transfer of small molecules between cells. One member of the connexin family, Connexin 26 (Cx26), is prevalent in gap junctions in sensory epithelia of the inner ear. Mutations of GJB2, the gene encoding Cx26, cause significant hearing loss in humans. The vestibular system, however, does not usually show significant functional deficits in humans with this mutation. Mouse models for loss of Cx26 function demonstrate hearing loss and cochlear pathology but the extent of vestibular dysfunction and organ pathology are less well characterized. To understand the vestibular effects of Cx26 mutations, we evaluated vestibular function and histology of the vestibular sensory epithelia in a conditional knockout (CKO) mouse with Cx26 loss of function. Transgenic C57BL/6 mice, in which cre-Sox10 drives excision of the Cx26 gene from non-sensory cells flanking the sensory epithelium of the inner ear (Gjb2-CKO), were compared to age-matched wild types. Animals were sacrificed at ages between 4 and 40 weeks and their cochlear and vestibular sensory organs harvested for histological examination. Cx26 immunoreactivity was prominent in the peripheral vestibular system and the cochlea of wild type mice, but absent in the Gjb2-CKO specimens. The hair cell population in the cochleae of the Gjb2-CKO mice was severely depleted but in the vestibular organs it was intact, despite absence of Cx26 expression. The vestibular organs appeared normal at the latest time point examined, 40 weeks. To determine whether compensation by another connexin explains survival of the normal vestibular sensory epithelium, we evaluated the presence of Cx30 in the Gjb2-CKO mouse. We found that Cx30 labeling was normal in the cochlea, but it was decreased or absent in the vestibular system. The vestibular phenotype of the mutants was not different from wild-types as determined by time on the rotarod, head stability tests and physiological responses to vestibular stimulation. Thus presence of Cx30 in the cochlea does not compensate for Cx26 loss, and the absence of both connexins from vestibular sensory epithelia is no more injurious than the absence of one of them. Further studies to uncover the physiological foundation for this difference between the cochlea and the vestibular organs may help in designing treatments for GJB2 mutations.
Collapse
Affiliation(s)
- Min Young Lee
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109-5648, USA
| | - Tomoko Takada
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109-5648, USA
| | - Yohei Takada
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109-5648, USA
| | - Michelle D Kappy
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109-5648, USA
| | - Lisa A Beyer
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109-5648, USA
| | - Donald L Swiderski
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109-5648, USA
| | - Ashley L Godin
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109-5648, USA
| | - Shannon Brewer
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109-5648, USA
| | - W Michael King
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109-5648, USA
| | - Yehoash Raphael
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109-5648, USA.
| |
Collapse
|
44
|
Pannexin1 channels dominate ATP release in the cochlea ensuring endocochlear potential and auditory receptor potential generation and hearing. Sci Rep 2015; 5:10762. [PMID: 26035172 PMCID: PMC4451810 DOI: 10.1038/srep10762] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 04/28/2015] [Indexed: 01/04/2023] Open
Abstract
Pannexin1 (Panx1) is a gap junction gene in vertebrates whose proteins mainly function as non-junctional channels on the cell surface. Panx1 channels can release ATP under physiological conditions and play critical roles in many physiological and pathological processes. Here, we report that Panx1 deficiency can reduce ATP release and endocochlear potential (EP) generation in the cochlea inducing hearing loss. Panx1 extensively expresses in the cochlea, including the cochlear lateral wall. We found that deletion of Panx1 in the cochlear lateral wall almost abolished ATP release under physiological conditions. Positive EP is a driving force for current through hair cells to produce auditory receptor potential. EP generation requires ATP. In the Panx1 deficient mice, EP and auditory receptor potential as measured by cochlear microphonics (CM) were significantly reduced. However, no apparent hair cell loss was detected. Moreover, defect of connexin hemichannels by deletion of connexin26 (Cx26) and Cx30, which are predominant connexin isoforms in the cochlea, did not reduce ATP release under physiological conditions. These data demonstrate that Panx1 channels dominate ATP release in the cochlea ensuring EP and auditory receptor potential generation and hearing. Panx1 deficiency can reduce ATP release and EP generation causing hearing loss.
Collapse
|
45
|
Wingard JC, Zhao HB. Cellular and Deafness Mechanisms Underlying Connexin Mutation-Induced Hearing Loss - A Common Hereditary Deafness. Front Cell Neurosci 2015; 9:202. [PMID: 26074771 PMCID: PMC4448512 DOI: 10.3389/fncel.2015.00202] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 05/11/2015] [Indexed: 11/30/2022] Open
Abstract
Hearing loss due to mutations in the connexin gene family, which encodes gap junctional proteins, is a common form of hereditary deafness. In particular, connexin 26 (Cx26, GJB2) mutations are responsible for ~50% of non-syndromic hearing loss, which is the highest incidence of genetic disease. In the clinic, Cx26 mutations cause various auditory phenotypes ranging from profound congenital deafness at birth to mild, progressive hearing loss in late childhood. Recent experiments demonstrate that congenital deafness mainly results from cochlear developmental disorders rather than hair cell degeneration and endocochlear potential reduction, while late-onset hearing loss results from reduction of active cochlear amplification, even though cochlear hair cells have no connexin expression. However, there is no apparent, demonstrable relationship between specific changes in connexin (channel) functions and the phenotypes of mutation-induced hearing loss. Moreover, new experiments further demonstrate that the hypothesized K+-recycling disruption is not a principal deafness mechanism for connexin deficiency induced hearing loss. Cx30 (GJB6), Cx29 (GJC3), Cx31 (GJB3), and Cx43 (GJA1) mutations can also cause hearing loss with distinct pathological changes in the cochlea. These new studies provide invaluable information about deafness mechanisms underlying connexin mutation-induced hearing loss and also provide important information for developing new protective and therapeutic strategies for this common deafness. However, the detailed cellular mechanisms underlying these pathological changes remain unclear. Also, little is known about specific mutation-induced pathological changes in vivo and little information is available for humans. Such further studies are urgently required.
Collapse
Affiliation(s)
- Jeffrey C Wingard
- Department of Otolaryngology, University of Kentucky Medical Center , Lexington, KY , USA
| | - Hong-Bo Zhao
- Department of Otolaryngology, University of Kentucky Medical Center , Lexington, KY , USA
| |
Collapse
|
46
|
Zhao HB, Zhu Y, Liang C, Chen J. Pannexin 1 deficiency can induce hearing loss. Biochem Biophys Res Commun 2015; 463:143-7. [PMID: 26002464 DOI: 10.1016/j.bbrc.2015.05.049] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 05/10/2015] [Indexed: 11/19/2022]
Abstract
Gap junctions play a critical role in hearing. Connexin gap junction gene mutations can induce a high incidence of hearing loss. Pannexin (Panx) gene also encodes gap junction proteins in vertebrates. Panx1 is a predominant pannexin isoform and has extensive expression in the cochlea. Here, we report that deletion of Panx1 in the cochlea could produce a progressive hearing loss. The auditory brainstem response (ABR) recording showed that hearing loss was moderate to severe and severe at high-frequencies. Distortion product otoacoustic emission (DPOAE), which reflects the activity of active cochlear mechanics that can amply acoustic stimulation to enhance hearing sensitivity and frequency selectivity, was also reduced. We further found that Panx1 deficiency could activate Caspase-3 cell apoptotic pathway in the cochlea to cause hair cells and other types of cells degeneration. These data indicate that like connexins Panx1 deficiency can also induce hearing loss. These data also suggest that pannexins play important rather than redundant roles in the cochlea and hearing.
Collapse
Affiliation(s)
- Hong-Bo Zhao
- Department of Otolaryngology, University of Kentucky Medical Center, 800 Rose Street, Lexington, KY 40536, United States.
| | - Yan Zhu
- Department of Otolaryngology, University of Kentucky Medical Center, 800 Rose Street, Lexington, KY 40536, United States
| | - Chun Liang
- Department of Otolaryngology, University of Kentucky Medical Center, 800 Rose Street, Lexington, KY 40536, United States
| | - Jin Chen
- Department of Otolaryngology, University of Kentucky Medical Center, 800 Rose Street, Lexington, KY 40536, United States
| |
Collapse
|
47
|
Liu WJ, Yang J. Developmental expression of inositol 1, 4, 5-trisphosphate receptor in the post-natal rat cochlea. Eur J Histochem 2015; 59:2486. [PMID: 26150157 PMCID: PMC4503970 DOI: 10.4081/ejh.2015.2486] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 04/06/2015] [Accepted: 04/06/2015] [Indexed: 11/23/2022] Open
Abstract
Inositol 1, 4, 5-trisphosphate receptor (IP3R) has been established to be essential for hearing. However, the expression of IP3R in the cochlea in the period of auditory development remains unknown. We investigated the expression of IP3R in the developing rat cochlea using immunohistochemistry and real-time reverse transcription polymerase chain reaction (RT-PCR). We observed its presence in the developing rat cochlea, and changes in IP3R protein expressions from the early post-natal period to adult. At birth (post-natal day 0, P0), IP3R expression was only found in Hensen's cell. IP3R immunoreactivity first appeared in the sensory hair cells in the organ of Corti at P2. This localization was confirmed by means of double-labeling experiments with Myosin VIIA, a marker for cochlear hair cells. Colocalization of IP3R and Myosin VIIA from P2 to the second post-natal week suggested early expression of IP3R in developing inner and outer hair cells. Claudius' cells near the spiral ligament were labelled for IP3R from P8 onwards. Transient IP3R expression was observed in the stria vascularis in early post-natal rat from P4 to P8. Spiral ganglion neurons also exhibited weaker IP3R fluorescence signals during post-natal development. The results of RT-PCR demonstrated that all three IP3R isoforms (IP3R1, IP3R2, and IP3R3) were present in rat cochlea during four different developmental stages of cochlea, from P0 to P28. Present immunohistochemical evidence for both change and maintenance of expression of IP3R during post-natal development of the rat cochlea indicated the possible involvement of IP3R-mediated calcium signaling in cochlear development.
Collapse
Affiliation(s)
- W J Liu
- Shanghai Jiaotong University.
| | | |
Collapse
|
48
|
Zhu Y, Chen J, Liang C, Zong L, Chen J, Jones RO, Zhao HB. Connexin26 (GJB2) deficiency reduces active cochlear amplification leading to late-onset hearing loss. Neuroscience 2014; 284:719-729. [PMID: 25451287 DOI: 10.1016/j.neuroscience.2014.10.061] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 10/21/2014] [Accepted: 10/26/2014] [Indexed: 12/21/2022]
Abstract
Connexin26 (Cx26, GJB2) mutations account for >50% of nonsyndromic hearing loss. The deafness is not always congenital. A large group of these patients (∼30%) demonstrate a late-onset hearing loss, starting in childhood. They have normal hearing early in life and are therefore good candidates for applying protective and therapeutic interventions. However, the underlying deafness mechanism is unclear. In this study, we used a time-controlled, inducible gene knockout technique to knockout Cx26 expression in the cochlea after birth. We found that deletion of Cx26 after postnatal day 5 (P5) in mice could lead to late-onset hearing loss. Similar to clinical observations, the mice demonstrated progressive, mild to moderate hearing loss. The hearing loss initiated at high frequencies and then extended to the middle- and low-frequency range. The cochlea showed normal development and had no apparent hair cell loss. However, distortion product otoacoustic emission (DPOAE) was reduced. The reduction was also progressive and large at high-frequencies. Consistent with DPOAE reduction, we found that outer hair cell electromotility-associated nonlinear capacitance was shifted to the right and the slope of voltage dependence was reduced. The endocochlear potential was reduced in Cx26 conditional knockout (cKO) mice but the reduction was not associated with progressive hearing loss. These data suggest that Cx26 deficiency may impair active cochlear amplification leading to late-onset hearing loss. Our study also helps develop newer protective and therapeutic interventions to this common nonsyndromic hearing loss.
Collapse
Affiliation(s)
- Y Zhu
- Dept. of Otolaryngology, University of Kentucky Medical School, Lexington, KY 40536, United States
| | - J Chen
- Dept. of Otolaryngology, University of Kentucky Medical School, Lexington, KY 40536, United States
| | - C Liang
- Dept. of Otolaryngology, University of Kentucky Medical School, Lexington, KY 40536, United States
| | - L Zong
- Dept. of Otolaryngology, University of Kentucky Medical School, Lexington, KY 40536, United States
| | - J Chen
- Dept. of Otolaryngology, University of Kentucky Medical School, Lexington, KY 40536, United States
| | - R O Jones
- Dept. of Otolaryngology, University of Kentucky Medical School, Lexington, KY 40536, United States
| | - H-B Zhao
- Dept. of Otolaryngology, University of Kentucky Medical School, Lexington, KY 40536, United States.
| |
Collapse
|
49
|
Sanchez HA, Verselis VK. Aberrant Cx26 hemichannels and keratitis-ichthyosis-deafness syndrome: insights into syndromic hearing loss. Front Cell Neurosci 2014; 8:354. [PMID: 25386120 PMCID: PMC4209889 DOI: 10.3389/fncel.2014.00354] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 10/08/2014] [Indexed: 02/01/2023] Open
Abstract
Mutation of the GJB2 gene, which encodes the connexin 26 (Cx26) gap junction (GJ) protein, is the most common cause of hereditary, sensorineural hearing loss. Cx26 is not expressed in hair cells, but is widely expressed throughout the non-sensory epithelial cells of the cochlea. Most GJB2 mutations produce non-syndromic deafness, but a subset produces syndromic deafness in which profound hearing loss is accompanied by a diverse array of infectious and neoplastic cutaneous disorders that can be fatal. Although GJ channels, which are assembled by the docking of two, so-called hemichannels (HCs), have been the main focus of deafness-associated disease models, it is now evident that the HCs themselves can function in the absence of docking and contribute to signaling across the cell membrane as a novel class of ion channel. A notable feature of syndromic deafness mutants is that the HCs exhibit aberrant behaviors providing a plausible basis for disease that is associated with excessive or altered contributions of Cx26 HCs that, in turn, lead to compromised cell integrity. Here we discuss some of the aberrant Cx26 HC properties that have been described for mutants associated with keratitis-ichthyosis-deafness (KID) syndrome, a particularly severe Cx26-associated syndrome, which shed light on genotype-phenotype relationships and causes underlying cochlear dysfunction.
Collapse
Affiliation(s)
- Helmuth A Sanchez
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine Bronx, NY, USA
| | - Vytas K Verselis
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine Bronx, NY, USA
| |
Collapse
|
50
|
Chang Q, Tang W, Kim Y, Lin X. Timed conditional null of connexin26 in mice reveals temporary requirements of connexin26 in key cochlear developmental events before the onset of hearing. Neurobiol Dis 2014; 73:418-27. [PMID: 25251605 DOI: 10.1016/j.nbd.2014.09.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 08/21/2014] [Accepted: 09/12/2014] [Indexed: 11/17/2022] Open
Abstract
Mutations in the Gjb2 gene, which encodes a gap junction protein connexin26 (Cx26), are the most prevalent form of hereditary deafness in humans and represent about half of non-syndromic congenital deafness cases in many ethnic populations. Cochlear potassium (K+) recycling in mature cochlea is required for normal hearing. It is thought that gap junctions are essential for K+ recycling and that Gjb2 mutations cause Gjb2-associated deafness by disrupting K+ recycling in mature cochlea. Here we present evidence showing that Gjb2 is required for normal development of the neonatal organ of Corti prior to the onset of the hearing in mice. In the conditional Gjb2 null (cCx26 null) mice, ribbon synapses in inner hair cells remained poorly developed, the afferent type I fibers failed to finish the refinement process to form convergent innervation to individual inner hair cells. The spontaneous depolarizing activities in the supporting cells, which normally diminish in the wild type cochleae after postnatal day 8 (P8), remained strong in the cochlea after P8 in the mutant mice. Furthermore, the deafness phenotype was readily generated only if the Cx26 expression in the organ of Corti was significantly reduced before P6. Similar amount of Cx26 reduction in more mature cochleae had a much weaker effect in damaging the hearing sensitivity. Our findings indicated that Cx26 plays essential roles in the maturation process of the organ of Corti prior to the establishment of high K+ in the endolymph and the onset of hearing. These results suggest that successful treatment of Cx26 deafness requires early intervention before the cochlea fully matures.
Collapse
Affiliation(s)
- Qing Chang
- Department of Otolaryngology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322-3030, USA
| | - Wenxue Tang
- Department of Otolaryngology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322-3030, USA
| | - Yeunjung Kim
- Department of Otolaryngology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322-3030, USA
| | - Xi Lin
- Department of Otolaryngology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322-3030, USA; Department of Cell Biology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322-3030, USA
| |
Collapse
|