1
|
Wang JL, Zhang L, Xu CZ, Qin XQ, Liu SJ, Wen BJ, Ren HZ. KRT17 serves as an oncogene biomarker of poor survival in patients with hepatocellular carcinoma. BIOMEDICAL TECHNOLOGY 2023; 3:18-25. [DOI: 10.1016/j.bmt.2022.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
|
2
|
Takenaka W, Yokoyama Y, Ikehata K, Kouda S, Hirose H, Minami K, Hamada Y, Mori S, Koizumi M, Yamamoto H. KRT13 is upregulated in pancreatic cancer stem-like cells and associated with radioresistance. JOURNAL OF RADIATION RESEARCH 2023; 64:284-293. [PMID: 36610719 PMCID: PMC10036105 DOI: 10.1093/jrr/rrac091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 11/11/2022] [Indexed: 06/17/2023]
Abstract
Pancreatic cancer is one of the most aggressive cancers and the seventh leading cause of cancer-associated death in the world. Radiation is performed as an adjuvant therapy as well as anti-cancer drugs. Because cancer stem-like cells (CSCs) are considered to be radioresistant and cause recurrence and metastasis, understanding their properties is required for the development of novel therapeutic strategies. To investigate the CSC properties of pancreatic cancer cells, we used a pancreatic CSC model, degron (++) cells, which have low proteasome activity. Degron (++) cells displayed radioresistance in comparison with control cells. Using Ribonucleic acid (RNA) sequencing, we successfully identified KRT13 as a candidate gene responsible for radioresistance. Knockdown of KRT13 sensitized the degron (++) cells to radiation. Furthermore, a database search revealed that KRT13 is upregulated in pancreatic cancer cell lines and that high expression of KRT13 is associated with poorer prognosis. These results indicate that a combination therapy of KRT13 knockdown and radiation could hold therapeutic promise in pancreatic cancer.
Collapse
Affiliation(s)
- Wataru Takenaka
- Department of Medical Physics and Engineering, Division of Health Sciences, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita city, Osaka, 565-0871, Japan
| | - Yuhki Yokoyama
- Corresponding author. Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita city, Osaka, 565-0871, Japan. Tel: +81-6-6879-2595; Fax: +81-6-6879-2595; E-mail:
| | - Katsuya Ikehata
- Department of Medical Physics and Engineering, Division of Health Sciences, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita city, Osaka, 565-0871, Japan
| | - Shihori Kouda
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita city, Osaka, 565-0871, Japan
| | - Haruka Hirose
- Department of Systems Biology, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya city, Nagoya, 466-8550, Japan
| | - Kazumasa Minami
- Department of Medical Physics and Engineering, Division of Health Sciences, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita city, Osaka, 565-0871, Japan
| | - Yoshinosuke Hamada
- Department of Health Economics and Management, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita city, Osaka, 565-0871, Japan
- Department of Pediatric Dentistry, School of Dentistry, Osaka Dental University, 8-1 Kuzuhahanazono-cho, Hirakata city, Osaka, 573-1121, Japan
| | - Seiji Mori
- Department of Medical Technology, Faculty of Health Sciences, Morinomiya University of Medical Sciences, 1-26-16 Nankokita, Suminoe-ku, Osaka city, Osaka, 559-8611, Japan
| | - Masahiko Koizumi
- Department of Medical Physics and Engineering, Division of Health Sciences, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita city, Osaka, 565-0871, Japan
| | - Hirofumi Yamamoto
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita city, Osaka, 565-0871, Japan
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita city, Osaka, 565-0871, Japan
| |
Collapse
|
3
|
Mani C, Tripathi K, Chaudhary S, Somasagara RR, Rocconi RP, Crasto C, Reedy M, Athar M, Palle K. Hedgehog/GLI1 Transcriptionally Regulates FANCD2 in Ovarian Tumor Cells: Its Inhibition Induces HR-Deficiency and Synergistic Lethality with PARP Inhibition. Neoplasia 2021; 23:1002-1015. [PMID: 34380074 PMCID: PMC8361230 DOI: 10.1016/j.neo.2021.06.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/10/2021] [Accepted: 06/10/2021] [Indexed: 11/04/2022]
Abstract
Ovarian cancer (OC) is one of the most lethal type of cancer in women due to a lack of effective targeted therapies and high rates of treatment resistance and disease recurrence. Recently Poly (ADP-ribose) polymerase inhibitors (PARPi) have shown promise as chemotherapeutic agents; however, their efficacy is limited to a small fraction of patients with BRCA mutations. Here we show a novel function for the Hedgehog (Hh) transcription factor Glioma associated protein 1 (GLI1) in regulation of key Fanconi anemia (FA) gene, FANCD2 in OC cells. GLI1 inhibition in HR-proficient OC cells induces HR deficiency (BRCAness), replication stress and synergistic lethality when combined with PARP inhibition. Treatment of OC cells with combination of GLI1 and PARP inhibitors shows enhanced DNA damage, synergy in cytotoxicity, and strong in vivo anticancer responses.
Collapse
Affiliation(s)
- Chinnadurai Mani
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Kaushlendra Tripathi
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Al 36904, USA
| | - Sandeep Chaudhary
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Al 35294, USA
| | - Ranganatha R Somasagara
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Al 36904, USA
| | - Rodney P Rocconi
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Al 36904, USA
| | - Chiquito Crasto
- Center for BioTechnology and Genomics, Texas Tech University, Lubbock, TX 79409, USA
| | - Mark Reedy
- Department of Obstetrics and Gynecology, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Mohammad Athar
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Al 35294, USA
| | - Komaraiah Palle
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
4
|
CircRNA-1926 Promotes the Differentiation of Goat SHF Stem Cells into Hair Follicle Lineage by miR-148a/b-3p/ CDK19 Axis. Animals (Basel) 2020; 10:ani10091552. [PMID: 32887226 PMCID: PMC7552268 DOI: 10.3390/ani10091552] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/18/2020] [Accepted: 08/26/2020] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Cashmere is the fiber derived from cashmere goats. Its textiles have been favored by consumers due to their typical features, like fine, light, softness, and comfort. Circular RNAs (circRNAs) are thought to play roles in cashmere growth of cashmere goats. CircRNA-1926 was previously identified in cashmere goats, but its functional roles are unclear. In this study, we firstly confirmed the expression of circRNA-1926 in secondary hair follicle bulge of cashmere goats with a significantly higher level at anagen than the counterpart of telogen. Next, we showed that circRNA-1926 promotes the differentiation of hair follicle stem cell into hair follicle lineage in cashmere goats. Mechanistically, we found that circRNA-1926 regulated the CDK19 expression via sponging miR-148a/b-3p. Our results have demonstrated that circRNA-1926 promotes the differentiation of secondary hair follicle stem cells into hair follicle lineages in cashmere goats through sponging miR-148a/b-3p to promote the expression of the CDK19 gene. The results from this study provided novel insight into the functional roles of circRNA-1926 in hair follicle regeneration and cashmere growth. Abstract Circular RNAs (CircRNAs) are a type of non-coding RNAs, which contain a covalently closed loop structure without 5′ to 3′ free ends. CircRNAs play essential roles in the regeneration of secondary hair follicle (SHF) and cashmere growth in goats. CircRNA-1926 was previously identified in SHF of cashmere goats, but its potential roles are unclear. In this study, we confirmed the expression of circRNA-1926 in SHF bulge of nine cashmere goats with a significantly higher level at anagen than that of telogen. Through the use of both overexpression and siRNA interference, we showed that circRNA-1926 promoted the differentiation of SHF stem cell into hair follicle lineage in cashmere goats which was evaluated via indictor genes Keratin 7 and Keratin 17. Using RNA pull-down, we found that circRNA-1926 bound with miR-148a/b-3p. Additionally, our data indicated that circRNA-1926 promoted the expression of the CDK19 gene. Using dual-luciferase reporter assays, it was revealed that circRNA-1926 positively regulated the CDK19 expression through miR-148a/b-3p. The results from this study demonstrated that circRNA-1926 contributes the differentiation of SHF stem cells into hair follicle lineages in cashmere goats via sponging miR-148a/b-3p to enhance CDK19 expression.
Collapse
|
5
|
Li C, Mishra B, Kashyap M, Weng Z, Andrabi SA, Mukhtar SM, Kim AL, Bickers DR, Kopelovich L, Athar M. Patched1 haploinsufficiency severely impacts intermediary metabolism in the skin of Ptch1 +/-/ODC transgenic mice. Sci Rep 2019; 9:13072. [PMID: 31506465 PMCID: PMC6737076 DOI: 10.1038/s41598-019-49470-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/20/2019] [Indexed: 12/22/2022] Open
Abstract
The study of dominantly heritable cancers has provided insights about tumor development. Gorlin syndrome (GS) is an autosomal dominant disorder wherein affected individuals develop multiple basal cell carcinomas (BCCs) of the skin. We developed a murine model of Ptch1 haploinsufficiency on an ornithine decarboxylase (ODC) transgenic background (Ptch1+/−/ODCt/C57BL/6) that is more sensitive to BCCs growth as compared with Ptch1+/+/ODCt/C57BL/6 littermates. Ptch1+/−/ODCt/C57BL/6 mice show an altered metabolic landscape in the phenotypically normal skin, including restricted glucose availability, restricted ribose/deoxyribose flow and NADPH production, an accumulation of α-ketoglutarate, aconitate, and citrate that is associated with reversal of the tricarboxylic acid cycle, coupled with increased ketogenic/lipogenic activity via acetyl-CoA, 3-hydroybutyrate, and cholesterol metabolites. Also apparent was an increased content/acetylation of amino-acids, glutamine and glutamate, in particular. Accordingly, metabolic alterations due to a single copy loss of Ptch1 in Ptch1+/−/ODCt/C57BL/6 heterozygous mice may provide insights about the cancer prone phenotype of BCCs in GS patients, including biomarkers/targets for early intervention.
Collapse
Affiliation(s)
- Changzhao Li
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Bharat Mishra
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mahendra Kashyap
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Zhiping Weng
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shaida A Andrabi
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA.,Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shahid M Mukhtar
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Arianna L Kim
- Department of Dermatology, Columbia University, New York, NY, USA
| | - David R Bickers
- Department of Dermatology, Columbia University, New York, NY, USA
| | - Levy Kopelovich
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
| | - Mohammad Athar
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
6
|
Peled A, Sarig O, Samuelov L, Bertolini M, Ziv L, Weissglas-Volkov D, Eskin-Schwartz M, Adase CA, Malchin N, Bochner R, Fainberg G, Goldberg I, Sugawara K, Baniel A, Tsuruta D, Luxenburg C, Adir N, Duverger O, Morasso M, Shalev S, Gallo RL, Shomron N, Paus R, Sprecher E. Mutations in TSPEAR, Encoding a Regulator of Notch Signaling, Affect Tooth and Hair Follicle Morphogenesis. PLoS Genet 2016; 12:e1006369. [PMID: 27736875 PMCID: PMC5065119 DOI: 10.1371/journal.pgen.1006369] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 09/16/2016] [Indexed: 11/19/2022] Open
Abstract
Despite recent advances in our understanding of the pathogenesis of ectodermal dysplasias (EDs), the molecular basis of many of these disorders remains unknown. In the present study, we aimed at elucidating the genetic basis of a new form of ED featuring facial dysmorphism, scalp hypotrichosis and hypodontia. Using whole exome sequencing, we identified 2 frameshift and 2 missense mutations in TSPEAR segregating with the disease phenotype in 3 families. TSPEAR encodes the thrombospondin-type laminin G domain and EAR repeats (TSPEAR) protein, whose function is poorly understood. TSPEAR knock-down resulted in altered expression of genes known to be regulated by NOTCH and to be involved in murine hair and tooth development. Pathway analysis confirmed that down-regulation of TSPEAR in keratinocytes is likely to affect Notch signaling. Accordingly, using a luciferase-based reporter assay, we showed that TSPEAR knock-down is associated with decreased Notch signaling. In addition, NOTCH1 protein expression was reduced in patient scalp skin. Moreover, TSPEAR silencing in mouse hair follicle organ cultures was found to induce apoptosis in follicular epithelial cells, resulting in decreased hair bulb diameter. Collectively, these observations indicate that TSPEAR plays a critical, previously unrecognized role in human tooth and hair follicle morphogenesis through regulation of the Notch signaling pathway. Ectodermal dysplasias refer to a large group of inherited disorders characterized by developmental defects in tissues of ectodermal origin. The study of these conditions has been instrumental in the discovery of biological pathways involved in the regulation of epithelial tissue morphogenesis. In this report, through the delineation of the molecular basis of a novel form of autosomal recessive ectodermal dysplasia, we identified a new key player in ectodermal development. We detected a number of mutations in TSPEAR co-segregating with abnormal hair and tooth development in three families. TSPEAR encodes the thrombospondin-type laminin G domain and EAR repeats (TSPEAR) protein, whose function is poorly understood. TSPEAR was found to be strongly expressed in murine hair and tooth. Using a reporter assay, we showed that it regulates Notch activity. Accordingly, NOTCH1 expression was altered in patient skin, and NOTCH1, as well as many of its known targets, was down-regulated in TSPEAR deficient keratinocytes. Moreover, Tspear silencing in mouse hair follicle organ cultures was found to induce apoptosis in follicular epithelial cells, resulting in decreased hair bulb diameter. Collectively, these observations indicate that TSPEAR plays a critical, previously unrecognized role in human tooth and hair follicle morphogenesis through regulation of the Notch pathway. As such, these new data are likely to lead to further investigations aimed at characterizing the role of Notch signaling pathway in other forms of ectodermal dysplasias as well as acquired hair and tooth pathologies.
Collapse
Affiliation(s)
- Alon Peled
- Department of Dermatology, Tel Aviv Medical Center, Tel Aviv, Israel
- Department of Human Molecular Genetics and Biochemistry, Tel-Aviv University, Tel Aviv, Israel
| | - Ofer Sarig
- Department of Dermatology, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Liat Samuelov
- Department of Dermatology, Tel Aviv Medical Center, Tel Aviv, Israel
- Division of Dermatology, University of California, San Diego, San Diego, California, United States of America
| | - Marta Bertolini
- Department of Dermatology, University of Münster, Münster, Germany
| | - Limor Ziv
- Sheba Medical Center, Ramat Gan, Israel
| | | | - Marina Eskin-Schwartz
- Department of Dermatology, Tel Aviv Medical Center, Tel Aviv, Israel
- Department of Human Molecular Genetics and Biochemistry, Tel-Aviv University, Tel Aviv, Israel
| | - Christopher A. Adase
- Division of Dermatology, University of California, San Diego, San Diego, California, United States of America
| | - Natalia Malchin
- Department of Dermatology, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Ron Bochner
- Department of Dermatology, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Gilad Fainberg
- Department of Dermatology, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Ilan Goldberg
- Department of Dermatology, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Koji Sugawara
- Department of Dermatology, Osaka City University, Osaka, Japan
| | - Avital Baniel
- Department of Dermatology, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Daisuke Tsuruta
- Department of Dermatology, Osaka City University, Osaka, Japan
| | - Chen Luxenburg
- Department of Cell and Developmental Biology, Tel Aviv University, Tel Aviv, Israel
| | - Noam Adir
- Faculty of Chemistry, Technion, Haifa, Israel
| | - Olivier Duverger
- Laboratory of Skin Biology, National Institute of Health, Bethesda, Maryland, United States of America
| | - Maria Morasso
- Laboratory of Skin Biology, National Institute of Health, Bethesda, Maryland, United States of America
| | - Stavit Shalev
- Institute of Human Genetics, Haemek Medical Center, Afula, Israel
- Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Richard L. Gallo
- Division of Dermatology, University of California, San Diego, San Diego, California, United States of America
| | - Noam Shomron
- Department of Cell and Developmental Biology, Tel Aviv University, Tel Aviv, Israel
| | - Ralf Paus
- Department of Dermatology, University of Münster, Münster, Germany
- Centre for Dermatology Research, Institute of Inflammation and Repair, University of Manchester, Manchester, United Kingdom
| | - Eli Sprecher
- Department of Dermatology, Tel Aviv Medical Center, Tel Aviv, Israel
- Department of Human Molecular Genetics and Biochemistry, Tel-Aviv University, Tel Aviv, Israel
- * E-mail:
| |
Collapse
|
7
|
Hu J, Zhang LC, Song X, Lu JR, Jin Z. KRT6 interacting with notch1 contributes to progression of renal cell carcinoma, and aliskiren inhibits renal carcinoma cell lines proliferation in vitro. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:9182-9188. [PMID: 26464664 PMCID: PMC4583896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 07/29/2015] [Indexed: 06/05/2023]
Abstract
Notch signaling is a conserved and widely expressed signaling pathway, which mediates various physiological processes including tumorigenesis. This study aims to explore the potential role and mechanism of notch1 interacting with KRT6B in the progression of RCC. The results indicated that the mRNA and protein expression of notch1 and KRT6 were significantly increased in tumor tissues, and highly positive correlation existed between notch1 and KRT6. Moreover, the patients with high notch1 expression had a significantly poorer prognosis than those of low expression patients. In vitro, KRT6 loss-of-function could inhibit the expression of notch1 and induce renal carcinoma cell death. Eventually, we found that renin inhibitor, aliskiren, could inhibit cell proliferation and decrease the expression of notch1 and KRT6 as well as regulate apoptosis-related protein expression in 786-O and ACHN renal carcinoma cell lines. These results suggested that the upregulation of notch1 and KRT6B might be involved in the development, progression and prognosis of human RCC, and aliskiren could suppress renal carcinoma cell proliferation, at least partially, through downregulation the expression of notch1 and KRT6.
Collapse
Affiliation(s)
- Jing Hu
- Department of Nephrology, Shanghai Seventh People’s HospitalShanghai 200137, China
| | - Li-Chao Zhang
- Department of Pharmacy, Shanghai Seventh People’s HospitalShanghai 200137, China
| | - Xu Song
- Department of Nephrology, Shanghai Seventh People’s HospitalShanghai 200137, China
| | - Jian-Rao Lu
- Department of Nephrology, Shanghai Seventh People’s HospitalShanghai 200137, China
| | - Zhu Jin
- Department of Nephrology, Shanghai Seventh People’s HospitalShanghai 200137, China
| |
Collapse
|