1
|
Guo E, Dobrovolny HM. Mathematical Modeling of Oncolytic Virus Therapy Reveals Role of the Immune Response. Viruses 2023; 15:1812. [PMID: 37766219 PMCID: PMC10536413 DOI: 10.3390/v15091812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Oncolytic adenoviruses (OAds) present a promising path for cancer treatment due to their selectivity in infecting and lysing tumor cells and their ability to stimulate the immune response. In this study, we use an ordinary differential equation (ODE) model of tumor growth inhibited by oncolytic virus activity to parameterize previous research on the effect of genetically re-engineered OAds in A549 lung cancer tumors in murine models. We find that the data are best fit by a model that accounts for an immune response, and that the immune response provides a mechanism for elimination of the tumor. We also find that parameter estimates for the most effective OAds share characteristics, most notably a high infection rate and low viral clearance rate, that might be potential reasons for these viruses' efficacy in delaying tumor growth. Further studies observing E1A and P19 recombined viruses in different tumor environments may further illuminate the extent of the effects of these genetic modifications.
Collapse
Affiliation(s)
| | - Hana M. Dobrovolny
- Department of Physics & Astronomy, Texas Christian University, Fort Worth, TX 76109, USA
| |
Collapse
|
2
|
Han Z, Joo Y, Lee J, Ko S, Xu R, Oh GH, Choi S, Hong JA, Choi HJ, Song JJ. High levels of Daxx due to low cellular levels of HSP25 in murine cancer cells result in inefficient adenovirus replication. Exp Mol Med 2019; 51:1-20. [PMID: 31615977 PMCID: PMC6802665 DOI: 10.1038/s12276-019-0321-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 07/17/2019] [Accepted: 07/22/2019] [Indexed: 11/25/2022] Open
Abstract
When the adenoviral protein E1B55K binds death domain-associated protein (Daxx), the proteasome-dependent degradation of Daxx is initiated, and adenoviral replication is effectively maintained. Here, we show that the cellular levels of Daxx differ between human and mouse cancer cell lines. Specifically, we observed higher cellular Daxx levels and the diminished replication of oncolytic adenovirus in mouse cancer cell lines, suggesting that cellular Daxx levels limit the replication of oncolytic adenoviruses that lack E1B55K in murine cells. Indeed, the replication of oncolytic adenoviruses that lack E1B55K was significantly increased following infection with oncolytic adenovirus expressing Daxx-specific shRNA. Cellular Daxx levels were decreased in mouse cells expressing heat shock protein 25 (HSP25; homolog of human HSP27) following heat shock or stable transfection with HSP25-bearing plasmids. Furthermore, Daxx expression in murine cell lines was primarily regulated at the transcriptional level via HSP25-mediated inhibition of the nuclear translocation of the signal transducer and activator of transcription 3 (stat3) protein, which typically upregulates Daxx transcription. Conversely, human HSP27 enhanced stat3 activity to increase Daxx transcription. Interestingly, human Daxx, but not mouse Daxx, was degraded as normal by ubiquitin-dependent lysosomal degradation; however, HSP27 downregulation induced the ubiquitin-independent proteasomal degradation of Daxx. Cancer therapies that use a virus to kill tumor cells may get a boost by suppressing a common, ubiquitously expressed protein called Daxx. The relatively new field of virotherapy uses engineered adenoviruses, which usually cause fevers, coughs, or sore throats, to attack tumor cells, enabling treatment of advanced stage cancers, or those that have spread through the body. However, the immune system can attack the therapeutic virus, preventing it from replicating and reducing its effectiveness. Hye Jin Choi and Jae Song at Yonsei University, Seoul, South Korea, and coworkers have been investigating ways to maximize replication of the therapeutic virus. They found that suppressing Daxx improved viral replication; further testing showed that suppressing Daxx acted via different mechanisms in mouse and human cancer cells. These results will help develop more effective virus-based cancer therapies.
Collapse
Affiliation(s)
- Zhezhu Han
- Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Korea.,Department of Oncology, Affiliated Hospital of Yanbian University, Yanji, Jilin Province, PR China
| | - Yeonsoo Joo
- Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Jihyun Lee
- Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Suwan Ko
- Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Rong Xu
- Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Korea
| | - Geun-Hyeok Oh
- Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Soojin Choi
- Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Jeong A Hong
- Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Hye Jin Choi
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea.
| | - Jae J Song
- Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Korea. .,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
3
|
González-Pastor R, Ashshi AM, El-Shemi AG, Dmitriev IP, Kashentseva EA, Lu ZH, Goedegebuure SP, Podhajcer OL, Curiel DT. Defining a murine ovarian cancer model for the evaluation of conditionally-replicative adenovirus (CRAd) virotherapy agents. J Ovarian Res 2019; 12:18. [PMID: 30767772 PMCID: PMC6376676 DOI: 10.1186/s13048-019-0493-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 02/05/2019] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Virotherapy represents a promising approach for ovarian cancer. In this regard, conditionally replicative adenovirus (CRAd) has been translated to the context of human clinical trials. Advanced design of CRAds has sought to exploit their capacity to induce anti-tumor immunization by configuring immunoregulatory molecule within the CRAd genome. Unfortunately, employed murine xenograft models do not allow full analysis of the immunologic activity linked to CRAd replication. RESULTS We developed CRAds based on the Ad5/3-Delta24 design encoding cytokines. Whereas the encoded cytokines did not impact adversely CRAd-induced oncolysis in vitro, no gain in anti-tumor activity was noted in immune-incompetent murine models with human ovarian cancer xenografts. On this basis, we explored the potential utility of the murine syngeneic immunocompetent ID8 ovarian cancer model. Of note, the ID8 murine ovarian cancer cell lines exhibited CRAd-mediated cytolysis. The use of this model now enables the rational design of oncolytic agents to achieve anti-tumor immunotherapy. CONCLUSIONS Limits of widely employed murine xenograft models of ovarian cancer limit their utility for design and study of armed CRAd virotherapy agents. The ID8 model exhibited CRAd-induced oncolysis. This feature predicate its potential utility for the study of CRAd-based virotherapy agents.
Collapse
Affiliation(s)
- Rebeca González-Pastor
- The Division of Cancer Biology and Biologic Therapeutics Center, Department of Radiation Oncology, School of Medicine, Washington University in Saint Louis, 660 South Euclid Avenue, Campus Box 8224, St. Louis, MO, 63110, USA
| | - Ahmad Mohammad Ashshi
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, PO Box 7607, Holy Makkah, Saudi Arabia
| | - Adel Galal El-Shemi
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, PO Box 7607, Holy Makkah, Saudi Arabia.,Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Igor P Dmitriev
- The Division of Cancer Biology and Biologic Therapeutics Center, Department of Radiation Oncology, School of Medicine, Washington University in Saint Louis, 660 South Euclid Avenue, Campus Box 8224, St. Louis, MO, 63110, USA
| | - Elena A Kashentseva
- The Division of Cancer Biology and Biologic Therapeutics Center, Department of Radiation Oncology, School of Medicine, Washington University in Saint Louis, 660 South Euclid Avenue, Campus Box 8224, St. Louis, MO, 63110, USA
| | - Zhi Hong Lu
- The Division of Cancer Biology and Biologic Therapeutics Center, Department of Radiation Oncology, School of Medicine, Washington University in Saint Louis, 660 South Euclid Avenue, Campus Box 8224, St. Louis, MO, 63110, USA
| | - S Peter Goedegebuure
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO, 63110, USA.,Alvin J. Siteman Cancer Center, 660 S. Euclid Avenue, St. Louis, MO, 63110, USA
| | - Osvaldo L Podhajcer
- Laboratory of Molecular and Cellular Therapy, Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina
| | - David T Curiel
- The Division of Cancer Biology and Biologic Therapeutics Center, Department of Radiation Oncology, School of Medicine, Washington University in Saint Louis, 660 South Euclid Avenue, Campus Box 8224, St. Louis, MO, 63110, USA.
| |
Collapse
|
4
|
Garza-Morales R, Yaddanapudi K, Perez-Hernandez R, Riedinger E, McMasters KM, Shirwan H, Yolcu E, Montes de Oca-Luna R, Gomez-Gutierrez JG. Temozolomide renders murine cancer cells susceptible to oncolytic adenovirus replication and oncolysis. Cancer Biol Ther 2018; 19:188-197. [PMID: 29252087 PMCID: PMC5836815 DOI: 10.1080/15384047.2017.1416274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 12/07/2017] [Accepted: 12/07/2017] [Indexed: 12/25/2022] Open
Abstract
The preclinical evaluation of oncolytic adenoviruses (OAds) has been limited to cancer xenograft mouse models because OAds replicate poorly in murine cancer cells. The alkylating agent temozolomide (TMZ) has been shown to enhance oncolytic virotherapy in human cancer cells; therefore, we investigated whether TMZ could increase OAd replication and oncolysis in murine cancer cells. To test our hypothesis, three murine cancer cells were infected with OAd (E1b-deleted) alone or in combination with TMZ. TMZ increased OAd-mediated oncolysis in all three murine cancer cells tested. This increased oncolysis was, at least in part, due to productive virus replication, apoptosis, and autophagy induction. Most importantly, murine lung non-cancerous cells were not affected by OAd+TMZ. Moreover, TMZ increased Ad transduction efficiency. However, TMZ did not increase coxsackievirus and adenovirus receptor; therefore, other mechanism could be implicated on the transduction efficiency. These results showed, for the first time, that TMZ could render murine tumor cells more susceptible to oncolytic virotherapy. The proposed combination of OAds with TMZ presents an attractive approach towards the evaluation of OAd potency and safety in syngeneic mouse models using these murine cancer cell-lines in vivo.
Collapse
Affiliation(s)
- Rodolfo Garza-Morales
- The Hiram C. Polk Jr, MD, Department of Surgery, University of Louisville School of Medicine, Louisville, KY, USA
- Department of Histology, School of Medicine, Autonomous University of Nuevo León, Monterrey, N.L. México
| | - Kavitha Yaddanapudi
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA
| | - Rigoberto Perez-Hernandez
- The Hiram C. Polk Jr, MD, Department of Surgery, University of Louisville School of Medicine, Louisville, KY, USA
| | - Eric Riedinger
- The Hiram C. Polk Jr, MD, Department of Surgery, University of Louisville School of Medicine, Louisville, KY, USA
| | - Kelly M. McMasters
- The Hiram C. Polk Jr, MD, Department of Surgery, University of Louisville School of Medicine, Louisville, KY, USA
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA
| | - Haval Shirwan
- Department of Microbiology and Immunology, Institute for Cellular Therapeutics, University of Louisville, Louisville, KY, USA
| | - Esma Yolcu
- Department of Microbiology and Immunology, Institute for Cellular Therapeutics, University of Louisville, Louisville, KY, USA
| | - Roberto Montes de Oca-Luna
- Department of Histology, School of Medicine, Autonomous University of Nuevo León, Monterrey, N.L. México
| | - Jorge G. Gomez-Gutierrez
- The Hiram C. Polk Jr, MD, Department of Surgery, University of Louisville School of Medicine, Louisville, KY, USA
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA
| |
Collapse
|
5
|
Martinez-Jaramillo E, Garza-Morales R, Wechman SL, Montes de Oca-Luna R, Saucedo-Cardenas O, Shirwan H, Yolcu E, McMasters KM, Gomez-Gutierrez JG. Adenovirus Lacking E1b Efficiently Induces Cytopathic Effect in HPV-16-Positive Murine Cancer Cells via Virus Replication and Apoptosis. Cancer Invest 2018; 36:19-27. [PMID: 29388837 DOI: 10.1080/07357907.2018.1430812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Conditionally replicative adenoviruses (CRAds) replicate poorly in murine cancer cells; however, E1b-deleted CRAds may replicate effectively in HPV16-E6/E7-positive murine cancer cells (TC-1). The HPV16 E7 open reading frame encodes functions analogous to these deleted adenovirus E1 proteins. In this study, an E1b-deleted CRAd (Adhz60) was evaluated for its ability to replicate and induce oncolysis in TC-1 cells. Adhz60-mediated oncolysis was similar in TC-1 and HeLa cells. Productive viral replication was evident based on expression of E1A and hexon, production of infectious virus progeny, and Adhz60-induced apoptosis. The results suggest that TC-1 murine cancer cells allow Adhz60 replication and oncolysis.
Collapse
Affiliation(s)
- Elvis Martinez-Jaramillo
- a The Hiram C. Polk Jr., MD, Department of Surgery , University of Louisville School of Medicine , Louisville , USA.,b Department of Histology, School of Medicine , Autonomous University of Nuevo León , Monterrey , N.L. México
| | - Rodolfo Garza-Morales
- a The Hiram C. Polk Jr., MD, Department of Surgery , University of Louisville School of Medicine , Louisville , USA.,b Department of Histology, School of Medicine , Autonomous University of Nuevo León , Monterrey , N.L. México
| | - Stephen L Wechman
- a The Hiram C. Polk Jr., MD, Department of Surgery , University of Louisville School of Medicine , Louisville , USA
| | - Roberto Montes de Oca-Luna
- b Department of Histology, School of Medicine , Autonomous University of Nuevo León , Monterrey , N.L. México
| | - Odila Saucedo-Cardenas
- b Department of Histology, School of Medicine , Autonomous University of Nuevo León , Monterrey , N.L. México.,e Department of Molecular Genetics, Northeast Biomedical Research Center , Mexican Institute of Social Security (IMSS) , Monterrey , N.L. México
| | - Haval Shirwan
- c Department of Microbiology and Immunology, Institute for Cellular Therapeutics , University of Louisville , Louisville , USA
| | - Esma Yolcu
- c Department of Microbiology and Immunology, Institute for Cellular Therapeutics , University of Louisville , Louisville , USA
| | - Kelly M McMasters
- a The Hiram C. Polk Jr., MD, Department of Surgery , University of Louisville School of Medicine , Louisville , USA.,d James Graham Brown Cancer Center , University of Louisville School of Medicine , Louisville , USA
| | - Jorge G Gomez-Gutierrez
- a The Hiram C. Polk Jr., MD, Department of Surgery , University of Louisville School of Medicine , Louisville , USA.,d James Graham Brown Cancer Center , University of Louisville School of Medicine , Louisville , USA
| |
Collapse
|
6
|
Kim SY, Kang D, Choi HJ, Joo Y, Kim JH, Song JJ. Prime-boost immunization by both DNA vaccine and oncolytic adenovirus expressing GM-CSF and shRNA of TGF-β2 induces anti-tumor immune activation. Oncotarget 2017; 8:15858-15877. [PMID: 28178658 PMCID: PMC5362529 DOI: 10.18632/oncotarget.15008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 12/31/2016] [Indexed: 12/21/2022] Open
Abstract
A successful DNA vaccine for the treatment of tumors should break established immune tolerance to tumor antigen. However, due to the relatively low immunogenicity of DNA vaccines, compared to other kinds of vaccines using live virus or protein, a recombinant viral vector was used to enhance humoral and cellular immunity. In the current study, we sought to develop a novel anti-cancer agent as a complex of DNA and oncolytic adenovirus for the treatment of malignant melanoma in the C57BL/6 mouse model. MART1, a human melanoma-specific tumor antigen, was used to induce an increased immune reaction, since a MART1-protective response is required to overcome immune tolerance to the melanoma antigen MelanA. Because GM-CSF is a potent inducer of anti-tumor immunity and TGF-β2 is involved in tumor survival and host immune suppression, mouse GM-CSF (mGM-CSF) and shRNA of mouse TGF-β2 (shmTGF-β2) genes were delivered together with MART1 via oncolytic adenovirus. MART1 plasmid was also used for antigen-priming. To compare the anti-tumor effect of oncolytic adenovirus expressing both mGM-CSF and shmTGF-β2 (AdGshT) with that of oncolytic adenovirus expressing mGM-CSF only (AdG), each virus was intratumorally injected into melanoma-bearing C57BL/6 mice. As a result, mice that received AdGshT showed delayed tumor growth than those that received AdG. Heterologous prime-boost immunization was combined with oncolytic AdGshT and MART1 expression to result in further delayed tumor growth. This regression is likely due to the following 4 combinations: MART1-derived mouse melanoma antigen-specific immune reaction, immune stimulation by mGM-CSF/shmTGF-β2, tumor growth inhibition by shmTGF-β2, and tumor cell-specific lysis via an oncolytic adenovirus. Immune activation was mainly induced by mature tumor-infiltrating dendritic cell (TIDC) and lowered regulatory T cells in tumor-infiltrating lymphocytes (TIL). Taken together, these findings demonstrate that human MART1 induces a mouse melanoma antigen-specific immune reaction. In addition, the results also indicate that combination therapy of MART1 plasmid, together with an oncolytic adenovirus expressing MART1, mGM-CSF, and shmTGF-β2, is a promising candidate for the treatment of malignant melanoma.
Collapse
Affiliation(s)
- So Young Kim
- Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Korea
| | - Dongxu Kang
- Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Korea.,Department of Oncology, Affiliated Hospital of Yanbian University, Yanji, Jilin Province, P.R. China
| | - Hye Jin Choi
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Yeonsoo Joo
- Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Joo-Hang Kim
- CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Jae J Song
- Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
7
|
Yamauchi S, Zhong B, Kawamura K, Yang S, Kubo S, Shingyoji M, Sekine I, Tada Y, Tatsumi K, Shimada H, Hiroshima K, Tagawa M. Cytotoxicity of replication-competent adenoviruses powered by an exogenous regulatory region is not linearly correlated with the viral infectivity/gene expression or with the E1A-activating ability but is associated with the p53 genotypes. BMC Cancer 2017; 17:622. [PMID: 28874135 PMCID: PMC5584036 DOI: 10.1186/s12885-017-3621-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 08/28/2017] [Indexed: 12/26/2022] Open
Abstract
Background Replication-competent adenoviruses (Ad) produced cytotoxic effects on infected tumors and have been examined for the clinical applicability. A biomarkers to predict the cytotoxicity is valuable in a clinical setting. Methods We constructed type 5 Ad (Ad5) of which the expression of E1A gene was activated by a 5′ regulatory sequences of survivin, midkine or cyclooxygenase-2, which were highly expressed in human tumors. We also produced the same replication-competent Ad of which the fiber-knob region was replaced by that of Ad35 (AdF35). The cytotoxicity was examined by a colorimetric assay with human tumor cell lines, 4 kinds of pancreatic, 9 esophageal carcinoma and 5 mesothelioma. Ad infectivity and Ad-mediated gene expression were examined with replication-incompetent Ad5 and AdF35 which expressed the green fluorescence protein gene. Expression of cellular receptors for Ad5 and AdF35 was also examined with flow cytometry. A transcriptional activity of the regulatory sequences was investigated with a luciferase assay in the tumor cells. We then investigated a possible correlation between Ad-mediated cytotoxicity and the infectivity/gene expression, the transcriptional activity or the p53 genotype. Results We found that the cytotoxicity was greater with AdF35 than with Ad5 vectors, but was not correlated with the Ad infectivity/gene expression irrespective of the fiber-knob region or the E1A-activating transcriptional activity. In contrast, replication-competent Ad produced greater cytotoxicity in p53 mutated than in wild-type esophageal carcinoma cells, suggesting a possible association between the cytotoxicity and the p53 genotype. Conclusions Sensitivity to Ad-mediated cytotoxic activity was linked with the p53 genotype but was not lineally correlated with the infectivity/gene expression or the E1A expression. Electronic supplementary material The online version of this article (10.1186/s12885-017-3621-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Suguru Yamauchi
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, Chiba, Japan.,Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Boya Zhong
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, Chiba, Japan.,Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kiyoko Kawamura
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Shan Yang
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, Chiba, Japan.,Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shuji Kubo
- Department of Genetics, Hyogo College of Medicine, Nishinomiya, Japan
| | | | - Ikuo Sekine
- Department of Medical Oncology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yuji Tada
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Koichiro Tatsumi
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hideaki Shimada
- Department of Surgery, School of Medicine, Toho University, Tokyo, Japan
| | - Kenzo Hiroshima
- Department of Pathology, Tokyo Women's Medical University Yachiyo Medical Center, Yachiyo, Japan
| | - Masatoshi Tagawa
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, Chiba, Japan. .,Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan.
| |
Collapse
|
8
|
Agarwal P, Gammon EA, Sajib AM, Sandey M, Smith BF. Cell-Surface Integrins and CAR Are Both Essential for Adenovirus Type 5 Transduction of Canine Cells of Lymphocytic Origin. PLoS One 2017; 12:e0169532. [PMID: 28068367 PMCID: PMC5222425 DOI: 10.1371/journal.pone.0169532] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 12/19/2016] [Indexed: 11/19/2022] Open
Abstract
Adenoviruses are the most widely used vectors in cancer gene therapy. Adenoviruses vectors are well characterized and are easily manipulated. Adenovirus serotype 5 (Ad5) is the most commonly used human serotype. Ad5 internalization into host cells is a combined effect of binding of Ad5 fiber knob with the coxsackie virus and adenovirus receptor (CAR) and binding of RGD motifs in viral penton to cell surface integrins (αvβ3, αvβ5). Ad5’s wide range of host-cell transduction and lack of integration into the host genome have made it an excellent choice for cancer therapeutics. However, Ad5 has limited ability to transduce cells of hematopoietic origin. It has been previously reported that low or no expression of CAR is a potential obstacle to Ad5 infection in hematopoietic origin cells. In addition, we have previously reported that low levels of cell surface integrins (αvβ3, αvβ5) may inhibit Ad5 infection in canine lymphoma cell lines. In the current report we have examined the ability of an Ad5 vector to infect human (HEK293) and canine non-cancerous (NCF and PBMC), canine non-hematopoietic origin cancer (CMT28, CML7, and CML10), and canine hematopoietic origin cancer (DH82, 17–71, OSW, MPT-1, and BR) cells. In addition, we have quantified CAR, αvβ3 and αvβ5 integrin transcript expression in these cells by using quantitative reverse transcriptase PCR (q-RT-PCR). Low levels of integrins were present in MPT1, 17–71, OSW, and PBMC cells in comparison to CMT28, DH82, and BR cells. CAR mRNA levels were comparatively higher in MPT1, 17–71, OSW, and PBMC cells. This report confirms and expands the finding that low or absent expression of cell surface integrins may be the primary reason for the inability of Ad5-based vectors to transduce cells of lymphocytic origin and some myeloid cells but this is not true for all hematopoietic origin cells. For efficient use of Ad5-based therapeutic vectors in cancers of lymphocytic origin, it is important to address the defects in cell surface integrins.
Collapse
Affiliation(s)
- Payal Agarwal
- Scott Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, Alabama, United States of America
| | - Elizabeth A. Gammon
- Scott Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, Alabama, United States of America
| | - Abdul Mohin Sajib
- Scott Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, Alabama, United States of America
| | - Maninder Sandey
- Scott Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, Alabama, United States of America
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, United States of America
| | - Bruce F. Smith
- Scott Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, Alabama, United States of America
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, United States of America
- * E-mail:
| |
Collapse
|
9
|
Han Z, Lee S, Je S, Eom CY, Choi HJ, Song JJ, Kim JH. Survivin silencing and TRAIL expression using oncolytic adenovirus increase anti-tumorigenic activity in gemcitabine-resistant pancreatic cancer cells. Apoptosis 2015; 21:351-64. [DOI: 10.1007/s10495-015-1208-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|