1
|
Okouakoua FY, Kayath CA, Mokemiabeka SN, Moukala DCR, Kaya-Ongoto MD, Nguimbi E. Involvement of the Bacillus SecYEG Pathway in Biosurfactant Production and Biofilm Formation. Int J Microbiol 2024; 2024:6627190. [PMID: 38725978 PMCID: PMC11081756 DOI: 10.1155/2024/6627190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/02/2024] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
With Bacillus species, about 30% of extracellular proteins are translocated through the cytoplasmic membrane, coordinated by the Sec translocase. This system mainly consists of the cytoplasmic ATPase SecA and the membrane-embedded SecYEG channel. The purpose of this work was to investigate the effects of the SecYEG export system on the production of industrial biomolecules, such as biosurfactants, proteases, amylases, and cellulases. Fifty-two isolates of Bacillus species were obtained from traditional fermented foods and then characterized using molecular microbiology methods. The isolates secreted exoenzymes that included cellulases, amylases, and proteases. We present evidence that a biosurfactant-like molecule requires the SecA ATPase and the SecYEG membrane channel for its secretion. In addition, we showed that biomolecules involved in biofilm formation required the SecYEG pathway. This work presents a novel seven-target fragment multiplex PCR assay capable of identification at the species level of Bacillus through a unique SecDF chromosomal gene. The bacterial membrane protein SecDF allowed the discrimination of Bacillus subtilis, B. licheniformis, B. amyloliquefaciens, and B. sonorensis. SecA was able to interact with AprE, AmyE, and TasA. The Rose Bengal inhibitor of SecA crucially affected the interaction of AprE, AmyE, TapA, and TasA with recombinant Gst-SecA. The Rose Bengal prevented Bacillus species from secreting and producing proteases, cellulases, amylases, and biosurfactant-like molecules. It also inhibited the formation of biofilm cell communities. The data support, for the first time, that the SecYEG translocon mediates the secretion of a biosurfactant-like molecule.
Collapse
Affiliation(s)
- Frédéric Yannick Okouakoua
- Laboratoire de Biologie Cellulaire et Moléculaire (BCM), Faculté des Sciences et Techniques, Université Marien N'GOUABI, BP. 69, Brazzaville, Congo
- Institut National de Recherche en Sciences Exactes et Naturelles (IRSEN), Avenue de l'Auberge Gascogne, B.P 2400, Brazzaville, Congo
| | - Christian Aimé Kayath
- Laboratoire de Biologie Cellulaire et Moléculaire (BCM), Faculté des Sciences et Techniques, Université Marien N'GOUABI, BP. 69, Brazzaville, Congo
- Institut National de Recherche en Sciences Exactes et Naturelles (IRSEN), Avenue de l'Auberge Gascogne, B.P 2400, Brazzaville, Congo
| | - Saturnin Nicaise Mokemiabeka
- Laboratoire de Biologie Cellulaire et Moléculaire (BCM), Faculté des Sciences et Techniques, Université Marien N'GOUABI, BP. 69, Brazzaville, Congo
- Institut National de Recherche en Sciences Exactes et Naturelles (IRSEN), Avenue de l'Auberge Gascogne, B.P 2400, Brazzaville, Congo
| | - David Charles Roland Moukala
- Laboratoire de Biologie Cellulaire et Moléculaire (BCM), Faculté des Sciences et Techniques, Université Marien N'GOUABI, BP. 69, Brazzaville, Congo
- Institut National de Recherche en Sciences Exactes et Naturelles (IRSEN), Avenue de l'Auberge Gascogne, B.P 2400, Brazzaville, Congo
| | - Moïse Doria Kaya-Ongoto
- Laboratoire de Biologie Cellulaire et Moléculaire (BCM), Faculté des Sciences et Techniques, Université Marien N'GOUABI, BP. 69, Brazzaville, Congo
- Institut National de Recherche en Sciences Exactes et Naturelles (IRSEN), Avenue de l'Auberge Gascogne, B.P 2400, Brazzaville, Congo
| | - Etienne Nguimbi
- Laboratoire de Biologie Cellulaire et Moléculaire (BCM), Faculté des Sciences et Techniques, Université Marien N'GOUABI, BP. 69, Brazzaville, Congo
- Institut National de Recherche en Sciences Exactes et Naturelles (IRSEN), Avenue de l'Auberge Gascogne, B.P 2400, Brazzaville, Congo
| |
Collapse
|
2
|
Ding M, Zhao W, Zhang X, Song L, Luan S. Charge-switchable MOF nanocomplex for enhanced biofilm penetration and eradication. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129594. [PMID: 35850068 DOI: 10.1016/j.jhazmat.2022.129594] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Bacterial biofilm is notorious for causing chronic infections, whose antibiotic treatment is bringing about severe multidrug resistance and environmental contamination. Stimuli-responsive nanocarriers have become encouraging materials to combat biofilm infections with high efficiency and low side effect. Herein, a charge-switchable and pH-responsive nanocomplex is fabricated via a facile aqueous one-pot zeolitic imidazolate framework-8 (ZIF-8) encapsulation of proteinase K (PK) and photosensitizer Rose Bengal (RB), for enzymatic and photodynamic therapies (PDT) against biofilm infections. Once encountering in acidic microenvironment, the surface charge of nanocomplex can switch self-adaptively from negative to positive, hence remarkably facilitating the biofilm penetration of nanocomplex. After acid-induced decomposition of nanocomplex, the released PK degrades biofilm matrix and loosens its structure, promoting diffusion of RB inside the biofilm. Afterwards, upon visible light illumination, the RB generates highly reactive oxygen species (ROS), which can readily and efficiently kill the remained bacteria even in the biofilm core. The charge-assisted penetration makes PK and RB fully functional, resulting in a cooperative effect concerning high biofilm eradication capacity, as testified by biofilm models both in vitro and in vivo. The green synthesis and good therapeutic performance of the nanocomplex manifests its considerable potential as a nontoxic and effective platform for biofilm treatment.
Collapse
Affiliation(s)
- Meng Ding
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; College of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Wei Zhao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xu Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Lingjie Song
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Shifang Luan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; College of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
3
|
Ali S, Alam M, Hasan GM, Hassan MI. Potential therapeutic targets of Klebsiella pneumoniae: a multi-omics review perspective. Brief Funct Genomics 2021; 21:63-77. [PMID: 34448478 DOI: 10.1093/bfgp/elab038] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 11/15/2022] Open
Abstract
The multidrug resistance developed in many organisms due to the prolonged use of antibiotics has been an increasing global health crisis. Klebsiella pneumoniae is a causal organism for various infections, including respiratory, urinary tract and biliary diseases. Initially, immunocompromised individuals are primarily affected by K. pneumoniae. Due to the emergence of hypervirulent strains recently, both healthy and immunocompetent individuals are equally susceptible to K. pneumoniae infections. The infections caused by multidrug-resistant and hypervirulent K. pneumoniae strains are complicated to treat, illustrating an urgent need to develop novel and more practical approaches to combat the pathogen. We focused on the previously performed high-throughput analyses by other groups to discover several novel enzymes that may be considered attractive drug targets of K. pneumoniae. These targets qualify most of the selection criteria for drug targeting, including an absence of its homolog's gene in the host. The capsule, lipopolysaccharide, fimbriae, siderophores and essential virulence factors facilitate the pathogen entry, infection and survival inside the host. This review discusses K. pneumoniae pathophysiology, including its virulence determinants and further the potential drug targets that might facilitate the discovery of novel drugs and effective treatment regimens shortly.
Collapse
Affiliation(s)
- Sabeeha Ali
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar New Delhi 110025, India
| | - Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar New Delhi 110025, India
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar New Delhi 110025, India
| |
Collapse
|
4
|
Cui PL, Zhang D, Guo XM, Ji SJ, Jiang QM. Synthesis, antibacterial activities and molecular docking study of thiouracil derivatives containing oxadiazole moiety. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1904990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Peng-Lei Cui
- College of Science, Hebei Agricultural University, Baoding, China
| | - Di Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Xiu-Min Guo
- College of Science, Hebei Agricultural University, Baoding, China
| | - Shu-Jing Ji
- College of Science, Hebei Agricultural University, Baoding, China
| | - Qing-Mei Jiang
- College of Science, Hebei Agricultural University, Baoding, China
| |
Collapse
|
5
|
|
6
|
Nakonechny F, Barel M, David A, Koretz S, Litvak B, Ragozin E, Etinger A, Livne O, Pinhasi Y, Gellerman G, Nisnevitch M. Dark Antibacterial Activity of Rose Bengal. Int J Mol Sci 2019; 20:E3196. [PMID: 31261890 PMCID: PMC6651402 DOI: 10.3390/ijms20133196] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 11/27/2022] Open
Abstract
The global spread of bacterial resistance to antibiotics promotes a search for alternative approaches to eradication of pathogenic bacteria. One alternative is using photosensitizers for inhibition of Gram-positive and Gram-negative bacteria under illumination. Due to low penetration of visible light into tissues, applications of photosensitizers are currently limited to treatment of superficial local infections. Excitation of photosensitizers in the dark can be applied to overcome this problem. In the present work, dark antibacterial activity of the photosensitizer Rose Bengal alone and in combination with antibiotics was studied. The minimum inhibitory concentrations (MIC) value of Rose Bengal against S. aureus dropped in the presence of sub-MIC concentrations of ciprofloxacin, levofloxacin, methicillin, and gentamicin. Free Rose Bengal at sub-MIC concentrations can be excited in the dark by ultrasound at 38 kHz. Rose Bengal immobilized onto silicon showed good antibacterial activity in the dark under ultrasonic activation, probably because of Rose Bengal leaching from the polymer during the treatment. Exposure of bacteria to Rose Bengal in the dark under irradiation by electromagnetic radio frequency waves in the 9 to 12 GHz range caused a decrease in the bacterial concentration, presumably due to resonant absorption of electromagnetic energy, its transformation into heat and subsequent excitation of Rose Bengal.
Collapse
Affiliation(s)
- Faina Nakonechny
- Department of Chemical Engineering, Biotechnology and Materials, Ariel University, Ariel 4070000, Israel
| | - Margarita Barel
- Department of Chemical Engineering, Biotechnology and Materials, Ariel University, Ariel 4070000, Israel
| | - Arad David
- Department of Chemical Engineering, Biotechnology and Materials, Ariel University, Ariel 4070000, Israel
| | - Simor Koretz
- Department of Chemical Engineering, Biotechnology and Materials, Ariel University, Ariel 4070000, Israel
| | - Boris Litvak
- Department of Electrical and Electronics Engineering, Ariel University, Ariel 4070000, Israel
| | - Elena Ragozin
- Department of Chemical Sciences, Ariel University, Ariel 4070000, Israel
| | - Ariel Etinger
- Department of Electrical and Electronics Engineering, Ariel University, Ariel 4070000, Israel
| | - Oz Livne
- Department of Electrical and Electronics Engineering, Ariel University, Ariel 4070000, Israel
| | - Yosef Pinhasi
- Department of Electrical and Electronics Engineering, Ariel University, Ariel 4070000, Israel
| | - Gary Gellerman
- Department of Chemical Sciences, Ariel University, Ariel 4070000, Israel
| | - Marina Nisnevitch
- Department of Chemical Engineering, Biotechnology and Materials, Ariel University, Ariel 4070000, Israel.
| |
Collapse
|
7
|
Van Puyenbroeck V, Vermeire K. Inhibitors of protein translocation across membranes of the secretory pathway: novel antimicrobial and anticancer agents. Cell Mol Life Sci 2018; 75:1541-1558. [PMID: 29305616 PMCID: PMC5897483 DOI: 10.1007/s00018-017-2743-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/15/2017] [Accepted: 12/27/2017] [Indexed: 12/22/2022]
Abstract
Proteins routed to the secretory pathway start their journey by being transported across biological membranes, such as the endoplasmic reticulum. The essential nature of this protein translocation process has led to the evolution of several factors that specifically target the translocon and block translocation. In this review, various translocation pathways are discussed together with known inhibitors of translocation. Properties of signal peptide-specific systems are highlighted for the development of new therapeutic and antimicrobial applications, as compounds can target signal peptides from either host cells or pathogens and thereby selectively prevent translocation of those specific proteins. Broad inhibition of translocation is also an interesting target for the development of new anticancer drugs because cancer cells heavily depend on efficient protein translocation into the endoplasmic reticulum to support their fast growth.
Collapse
Affiliation(s)
- Victor Van Puyenbroeck
- Laboratory of Virology and Chemotherapy, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven - University of Leuven, 3000, Leuven, Belgium
| | - Kurt Vermeire
- Laboratory of Virology and Chemotherapy, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven - University of Leuven, 3000, Leuven, Belgium.
| |
Collapse
|
8
|
Hsieh YH, Zhang H, Jin J, Dai C, Jiang C, Wang B, Tai PC. Biphasic actions of SecA inhibitors on Prl/Sec suppressors: Possible physiological roles of SecA-only channels. Biochem Biophys Res Commun 2017; 482:296-300. [PMID: 27856243 DOI: 10.1016/j.bbrc.2016.11.057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 11/11/2016] [Indexed: 11/30/2022]
Abstract
SecA is an essential component in the bacterial Sec-dependent protein translocation process. We previously showed that in addition to the ubiquitous, high-affinity SecYEG-SecDF·YajC protein translocation channel, there is a low-affinity SecA-only channel that elicits ion channel activity and promotes protein translocation. The SecA-only channels are less efficient, and like Prl suppressors, lack signal peptide specificity; they function in the absence of signal peptides. The presence of SecYEG-SecDF·YajC alters the sensitivity of ATPase inhibitor Rose Bengal. In this study, we found that the suppressor membranes are much more resistant to inhibition by Rose Bengal. Similar results have been found for a SecA-specific inhibitor. Moreover, biphasic responses of inhibition of ion current and protein translocation activities were observed for many PrlA/SecY and PrlG/SecE suppressor membranes, with a low IC50 value similar to that of the SecA-only channels and a very high IC50. However, the suppressor strains are as sensitive to the inhibitor as the parental strain, suggesting that SecA-only channels have some essential physiological function(s) in the cells that are inhibited by the specific SecA inhibitor.
Collapse
Affiliation(s)
- Ying-Hsin Hsieh
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Hao Zhang
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Jinshan Jin
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Chaofeng Dai
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Chun Jiang
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Binghe Wang
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Phang C Tai
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; Center for Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
9
|
Jin J, Hsieh YH, Cui J, Damera K, Dai C, Chaudhary AS, Zhang H, Yang H, Cao N, Jiang C, Vaara M, Wang B, Tai PC. Using Chemical Probes to Assess the Feasibility of Targeting SecA for Developing Antimicrobial Agents against Gram-Negative Bacteria. ChemMedChem 2016; 11:2511-2521. [PMID: 27753464 PMCID: PMC5189635 DOI: 10.1002/cmdc.201600421] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 09/25/2016] [Indexed: 11/07/2022]
Abstract
With the widespread emergence of drug resistance, there is an urgent need to search for new antimicrobials, especially those against Gram-negative bacteria. Along this line, the identification of viable targets is a critical first step. The protein translocase SecA is commonly believed to be an excellent target for the development of broad-spectrum antimicrobials. In recent years, we developed three structural classes of SecA inhibitors that have proven to be very effective against Gram-positive bacteria. However, we have not achieved the same level of success against Gram-negative bacteria, despite the potent inhibition of SecA in enzyme assays by the same inhibitors. In this study, we use representative inhibitors as chemical probes to gain an understanding as to why these inhibitors were not effective against Gram-negative bacteria. The results validate our initial postulation that the major difference in effectiveness against Gram-positive and Gram-negative bacteria is in the additional permeability barrier posed by the outer membrane of Gram-negative bacteria. We also found that the expression of efflux pumps, which are responsible for multidrug resistance (MDR), have no effect on the effectiveness of these SecA inhibitors. Identification of an inhibitor-resistant mutant and complementation tests of the plasmids containing secA in a secAts mutant showed that a single secA-azi-9 mutation increased the resistance, providing genetic evidence that SecA is indeed the target of these inhibitors in bacteria. Such results strongly suggest SecA as an excellent target for developing effective antimicrobials against Gram-negative bacteria with the intrinsic ability to overcome MDR. A key future research direction should be the optimization of membrane permeability.
Collapse
Affiliation(s)
- Jinshan Jin
- Department of Biology, Center for Biotechnology and Drug Design, and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303
| | - Ying-Hsin Hsieh
- Department of Biology, Center for Biotechnology and Drug Design, and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303
| | - Jianmei Cui
- Department of Chemistry, Center for Biotechnology and Drug Design, and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303
| | - Krishna Damera
- Department of Chemistry, Center for Biotechnology and Drug Design, and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303
| | - Chaofeng Dai
- Department of Chemistry, Center for Biotechnology and Drug Design, and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303
| | - Arpana S. Chaudhary
- Department of Chemistry, Center for Biotechnology and Drug Design, and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303
| | - Hao Zhang
- Department of Biology, Center for Biotechnology and Drug Design, and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303
| | - Hsiuchin Yang
- Department of Biology, Center for Biotechnology and Drug Design, and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303
| | - Nannan Cao
- Department of Biology, Center for Biotechnology and Drug Design, and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303
| | - Chun Jiang
- Department of Biology, Center for Biotechnology and Drug Design, and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303
| | - Martti Vaara
- Division of Clinical Microbiology, Helsinki University Hospital, FI-00029 HUSLAB, Helsinki, Finland, and Northern Antibiotics Ltd, FI-00720, Helsinki, Finland
| | - Binghe Wang
- Department of Chemistry, Center for Biotechnology and Drug Design, and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303
| | - Phang C. Tai
- Department of Biology, Center for Biotechnology and Drug Design, and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303
| |
Collapse
|
10
|
Abstract
There is a consensus in the medical profession of the pressing need for novel antimicrobial agents due to issues related to drug resistance. In practice, solutions to this problem to a large degree lie with the identification of new and vital targets in bacteria and subsequently designing their inhibitors. We consider SecA a very promising antimicrobial target. In this review, we compile and analyze information available on SecA to show that inhibition of SecA has a multitude of consequences. Furthermore, we discuss issues critical to the design and evaluation of SecA inhibitors.
Collapse
|
11
|
Cui J, Jin J, Chaudhary AS, Hsieh YH, Zhang H, Dai C, Damera K, Chen W, Tai PC, Wang B. Design, Synthesis and Evaluation of Triazole-Pyrimidine Analogues as SecA Inhibitors. ChemMedChem 2016; 11:43-56. [PMID: 26607404 PMCID: PMC4778717 DOI: 10.1002/cmdc.201500447] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Indexed: 01/15/2023]
Abstract
SecA, a key component of the bacterial Sec-dependent secretion pathway, is an attractive target for the development of new antimicrobial agents. Through a combination of virtual screening and experimental exploration of the surrounding chemical space, we identified a hit bistriazole SecA inhibitor, SCA-21, and studied a series of analogues by systematic dissections of the core scaffold. Evaluation of these analogues allowed us to establish an initial structure-activity relationship in SecA inhibition. The best compounds in this group are potent inhibitors of SecA-dependent protein-conducting channel activity and protein translocation activity at low- to sub-micromolar concentrations. They also have minimal inhibitory concentration (MIC) values against various strains of bacteria that correlate well with the SecA and protein translocation inhibition data. These compounds are effective against methicillin-resistant Staphylococcus aureus strains with various levels of efflux pump activity, indicating the capacity of SecA inhibitors to null the effect of multidrug resistance. Results from studies of drug-affinity-responsive target stability and protein pull-down assays are consistent with SecA as a target for these compounds.
Collapse
Affiliation(s)
- Jianmei Cui
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Jinshan Jin
- Department of Biology, Center for Biotechnology and Drug Design, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, 30303, USA
| | | | - Ying-hsin Hsieh
- Department of Biology, Center for Biotechnology and Drug Design, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, 30303, USA
| | - Hao Zhang
- Department of Biology, Center for Biotechnology and Drug Design, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, 30303, USA
| | - Chaofeng Dai
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Krishna Damera
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Weixuan Chen
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Phang C Tai
- Department of Biology, Center for Biotechnology and Drug Design, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, 30303, USA.
| | - Binghe Wang
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA.
| |
Collapse
|