1
|
de Morais SV, Calado GP, Carvalho RC, Garcia JBS, de Queiroz TM, Cantanhede Filho AJ, Lopes AJO, Cartágenes MDSDS, Domingues GRDS. Impact of Cuminaldehyde and Indomethacin Co-Administration on Inflammatory Responses in MIA-Induced Osteoarthritis in Rats. Pharmaceuticals (Basel) 2024; 17:630. [PMID: 38794200 PMCID: PMC11125240 DOI: 10.3390/ph17050630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Osteoarthritis (OA) remains a chronic incurable condition, presenting substantial challenges in treatment. This study explores a novel strategy by investigating the concurrent use of cuminaldehyde, a natural compound, with indomethacin in animal models of MIA-induced OA. Our results demonstrate that the co-administration of cuminaldehyde and indomethacin does indeed produce a superior effect when compared to these compounds individually, significantly enhancing therapeutic outcomes. This effect is evidenced by a marked reduction in pro-inflammatory cytokines IL-6 and IFN-γ, alongside a significant increase in the anti-inflammatory cytokine IL-10, compared to treatments with each compound alone. Radiographic analyses further confirm the preservation of joint integrity and a reduction in osteoarthritic damage, highlighting the association's efficacy in cartilage-reducing damage. These findings suggests that the association of cuminaldehyde and indomethacin not only slows OA progression but also offers enhanced cartilage-reducing damage and fosters the production of protective cytokines. This study underscores the potential benefits of integrating natural products with pharmaceuticals in OA management and stresses the importance of further research to fully understand the mechanisms underlying the observed potentiated effects.
Collapse
Affiliation(s)
- Sebastião Vieira de Morais
- Biological and Health Sciences Center, Federal University of Maranhão, São Luís 65085-580, Brazil; (R.C.C.); (J.B.S.G.); (M.d.S.d.S.C.)
| | - Gustavo Pereira Calado
- Programa de Pós-graduação em Ciências Farmacêuticas—PPGCF, Departamento de Farmácia, Universidade de Brasília-UnB Brasília-DF, Brasilia 70910-900, Brazil
| | - Rafael Cardoso Carvalho
- Biological and Health Sciences Center, Federal University of Maranhão, São Luís 65085-580, Brazil; (R.C.C.); (J.B.S.G.); (M.d.S.d.S.C.)
| | - João Batista Santos Garcia
- Biological and Health Sciences Center, Federal University of Maranhão, São Luís 65085-580, Brazil; (R.C.C.); (J.B.S.G.); (M.d.S.d.S.C.)
| | - Thyago Moreira de Queiroz
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco, Vitória de Santo Antão 55608-680, Brazil;
| | - Antonio José Cantanhede Filho
- Chemistry Postgraduate Program, Federal Institute of Science Education and Technology of Maranhão, São Luís 65030-005, Brazil
| | - Alberto Jorge Oliveira Lopes
- Chemistry Postgraduate Program, Federal Institute of Science Education and Technology of Maranhão, São Luís 65030-005, Brazil
- Bacabal Science Center (CCBa), Federal University of Maranhão, Bacabal 65700-000, Brazil
| | | | | |
Collapse
|
2
|
Zhou Y, Zhang Y, Qian Y, Tang L, Zhou T, Xie Y, Hu L, Ma C, Dong Q, Sun P. Ziyuglycoside II attenuated OVX mice bone loss via inflammatory responses and regulation of gut microbiota and SCFAs. Int Immunopharmacol 2024; 132:112027. [PMID: 38603860 DOI: 10.1016/j.intimp.2024.112027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/28/2024] [Accepted: 04/04/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND AND PURPOSE Osteoporosis (OP) is a frequent clinical problem for the elderly. Traditional Chinese Medicine (TCM) has achieved beneficial results in the treatment of OP. Ziyuglycoside II (ZGS II) is a major active compound of Sanguisorba officinalis L. that has shown anti-inflammation and antioxidation properties, but little information concerning its anti-OP potential is available. Our research aims to investigate the mechanism of ZGS II in ameliorating bone loss by inflammatory responses and regulation of gut microbiota and short chain fatty acids (SCFAs) in ovariectomized (OVX) mice. METHODS We predicted the mode of ZGS II action on OP through network pharmacology and molecular docking, and an OVX mouse model was employed to validate its anti-OP efficacy. Then we analyzed its impact on bone microstructure, the levels of inflammatory cytokines and pain mediators in serum, inflammation in colon, intestinal barrier, gut microbiota composition and SCFAs in feces. RESULTS Network pharmacology identified 55 intersecting targets of ZGS II related to OP. Of these, we predicted IGF1 may be the core target, which was successfully docked with ZGS II and showed excellent binding ability. Our in vivo results showed that ZGS II alleviated bone loss in OVX mice, attenuated systemic inflammation, enhanced intestinal barrier, reduced the pain threshold, modulated the abundance of gut microbiota involving norank_f__Muribaculaceae and Dubosiella, and increased the content of acetic acid and propanoic acid in SCFAs. CONCLUSIONS Our data indicated that ZGS II attenuated bone loss in OVX mice by relieving inflammation and regulating gut microbiota and SCFAs.
Collapse
Affiliation(s)
- Yilin Zhou
- Department of Endocrinology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510000, China
| | - Yingtong Zhang
- Department of Endocrinology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510000, China
| | - Yafei Qian
- Department of Endocrinology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510000, China
| | - Lin Tang
- Department of Endocrinology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510000, China
| | - Tianyu Zhou
- Department of Endocrinology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510000, China
| | - Youhong Xie
- Department of Endocrinology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510000, China
| | - Li Hu
- Department of Endocrinology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510000, China
| | - Chenghong Ma
- Department of Endocrinology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510000, China
| | - Qunwei Dong
- Department of Orthopedics, Yunfu Hospital of Traditional Chinese Medicine, Yunfu, Guangdong 527300, China.
| | - Ping Sun
- Department of Endocrinology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510000, China.
| |
Collapse
|
3
|
Xu L, Li H, Liu B, Han X, Sun H. Systemic Inflammatory Regulators Associated with Osteoporosis: A Bidirectional Mendelian Randomization Study. Calcif Tissue Int 2024; 114:490-501. [PMID: 38528199 DOI: 10.1007/s00223-024-01200-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/20/2024] [Indexed: 03/27/2024]
Abstract
To elucidate the precise upstream and downstream regulatory mechanisms of inflammatory factors in osteoporosis (OP) progression and to establish a causal relationship between inflammatory factors and OP. We conducted bidirectional Mendelian randomization (MR) analyses using data for 41 cytokines obtained from three independent cohorts comprising 8293 Finnish individuals. Estimated bone mineral density (eBMD) data were derived from 426,824 UK Biobank White British individuals (55% female) and fracture data from 416,795 UK Biobank participants of European ancestry. The inverse variance-weighted method was the primary MR analysis approach. We employed other methods as complementary approaches for mutual corroboration. To test for pleiotropy and heterogeneity, we used the MR-Egger regression, MR-pleiotropy residual sum and outlier global test, and the Cochrane Q test. Macrophage inflammatory protein (MIP)-1α and interleukin (IL)-12p70 expression associated negatively and causally with eBMD (β = -0.017 [MIP-1α], β = -0.011 [IL-12p70]). Conversely, tumor necrosis factor-related apoptosis-inducing ligand was associated with a decreased risk of fractures (Odds Ratio: 0.980). Additionally, OP influenced the expression of multiple inflammatory factors, including growth-regulated oncogene-α, interferon-gamma, IL-6, beta nerve growth factor, and IL-2. Finally, we discovered complex bidirectional causal relationships between IL-8, IL-10, and OP. Specific inflammatory factors may contribute to OP development or may be causally affected by OP. We identified a bidirectional causal relationship between certain inflammatory factors and OP. These findings provide new perspectives for early prediction and targeted treatment of OP. Larger cohort studies are necessary in the future to further validate these findings.
Collapse
Affiliation(s)
- Lei Xu
- Department of Orthopedics, The First Hospital of Shanxi Medical University, Taiyuan, 030000, China
- The First Clinical Medical College, Shanxi Medical University, Taiyuan, 030000, China
| | - Hui Li
- Department of Orthopedics, The First Hospital of Shanxi Medical University, Taiyuan, 030000, China
- The First Clinical Medical College, Shanxi Medical University, Taiyuan, 030000, China
| | - Bin Liu
- Department of Orthopedics, The First Hospital of Shanxi Medical University, Taiyuan, 030000, China
- The First Clinical Medical College, Shanxi Medical University, Taiyuan, 030000, China
| | - Xiaoqiang Han
- Department of Orthopedics, The First Hospital of Shanxi Medical University, Taiyuan, 030000, China
| | - Haibiao Sun
- Department of Orthopedics, The First Hospital of Shanxi Medical University, Taiyuan, 030000, China.
| |
Collapse
|
4
|
Zhao Z, Du Y, Yan K, Zhang L, Guo Q. Exercise and osteoimmunology in bone remodeling. FASEB J 2024; 38:e23554. [PMID: 38588175 DOI: 10.1096/fj.202301508rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 02/20/2024] [Accepted: 02/28/2024] [Indexed: 04/10/2024]
Abstract
Bones can form the scaffolding of the body, support the organism, coordinate somatic movements, and control mineral homeostasis and hematopoiesis. The immune system plays immune supervisory, defensive, and regulatory roles in the organism, which mainly consists of immune organs (spleen, bone marrow, tonsils, lymph nodes, etc.), immune cells (granulocytes, platelets, lymphocytes, etc.), and immune molecules (immune factors, interferons, interleukins, tumor necrosis factors, etc.). Bone and the immune system have long been considered two distinct fields of study, and the bone marrow, as a shared microenvironment between the bone and the immune system, closely links the two. Osteoimmunology organically combines bone and the immune system, elucidates the role of the immune system in bone, and creatively emphasizes its interdisciplinary characteristics and the function of immune cells and factors in maintaining bone homeostasis, providing new perspectives for skeletal-related field research. In recent years, bone immunology has gradually become a hot spot in the study of bone-related diseases. As a new branch of immunology, bone immunology emphasizes that the immune system can directly or indirectly affect bones through the RANKL/RANK/OPG signaling pathway, IL family, TNF-α, TGF-β, and IFN-γ. These effects are of great significance for understanding inflammatory bone loss caused by various autoimmune or infectious diseases. In addition, as an external environment that plays an important role in immunity and bone, this study pays attention to the role of exercise-mediated bone immunity in bone reconstruction.
Collapse
Affiliation(s)
- Zhonghan Zhao
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Yuxiang Du
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Kai Yan
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Lingli Zhang
- College of Athletic Performance, Shanghai University of Sport, Shanghai, China
| | - Qiang Guo
- Department of Orthopaedics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
5
|
Zhou L, Xing Y, Ou Y, Ding J, Han Y, Lin D, Chen J. Prolonged release of an antimicrobial peptide GL13K-loaded thermosensitive hydrogel on a titanium surface improves its antibacterial and anti-inflammatory properties. RSC Adv 2023; 13:23308-23319. [PMID: 37538512 PMCID: PMC10395452 DOI: 10.1039/d3ra03414c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/17/2023] [Indexed: 08/05/2023] Open
Abstract
The application of titanium in the orthopedic and dental fields is associated with bacterial infection and chronic inflammation, especially in the early stages after its implantation. In the present study, we investigated the antibacterial and anti-inflammatory activities of a titanium surface that was immobilized in a thermosensitive PLGA-PEG-PLGA hydrogel containing the antimicrobial peptide GL13K. The FTIR results confirmed the successful loading of GL13K. The degradation of the hydrogel and release of GL13K persisted for two weeks. The modified titanium surface exhibited a significant inhibitory effect on Porphyromonas gingivalis in contact with its surface, as well as an inhibitory effect on P.g in the surrounding environment by releasing GL13K antimicrobial peptides. The modified titanium surfaces were biocompatible with RAW264.7. Furthermore, the expression of pro-inflammatory cytokines IL-1β, TNF-α and iNOS was down-regulated, whereas anti-inflammatory cytokines Arg-1, IL-10 and VEGF-A were up-regulated on the modified titanium surfaces on days 3 and 5. This effect was attributed to the polarization of macrophages from the M1 to M2 phenotype, which was confirmed by the detection of macrophage M1/M2 biomarkers via immunofluorescence staining and flow cytometry. Thus, the thermosensitive PLGA-PEG-PLGA hydrogel release system carrying the antimicrobial peptide GL13K on a titanium surface exhibited antibacterial and anti-inflammatory properties and promoted macrophage polarization from the M1 to M2 phenotype, which may help create a favourable niche for bone formation under infective condition.
Collapse
Affiliation(s)
- Lin Zhou
- Affiliated Stomatological Hospital of Fujian Medical University, Fujian Medical University Fujian China
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University Fuzhou China
| | - Yifeng Xing
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University Fuzhou China
- Fujian Biological Materials Engineering and Technology Center of Stomatology, Fujian Medical University Fuzhou China
| | - Yanjin Ou
- Affiliated Stomatological Hospital of Fujian Medical University, Fujian Medical University Fujian China
- Fujian Biological Materials Engineering and Technology Center of Stomatology, Fujian Medical University Fuzhou China
| | - Jiamin Ding
- Department of Oral Mucosa, Affiliated Stomatological Hospital of Fujian Medical University Fuzhou China
| | - Yu Han
- Division of Craniofacial Development and Tissue Biology, Graduate School of Dentistry, Tohoku University Sendai City Japan
| | - Dong Lin
- Affiliated Stomatological Hospital of Fujian Medical University, Fujian Medical University Fujian China
| | - Jiang Chen
- Affiliated Stomatological Hospital of Fujian Medical University, Fujian Medical University Fujian China
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University Fuzhou China
| |
Collapse
|
6
|
Ni S, Shan F, Geng J. Interleukin-10 family members: Biology and role in the bone and joint diseases. Int Immunopharmacol 2022; 108:108881. [PMID: 35623292 DOI: 10.1016/j.intimp.2022.108881] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/05/2022]
Abstract
Interleukin (IL)-10 family cytokines include IL-10, IL-19, IL-20, IL-22, IL-24, IL-26, IL-28A, IL-28B, and IL-29. These cytokines play crucial regulatory roles in various biological reactions and diseases. In recent years, several studies have shown that the IL-10 family plays a vital role in bone and joint diseases, including bone metabolic diseases, fractures, osteoarthritis, rheumatoid arthritis, and bone tumors. Herein, the recent progress on the regulatory role of IL-10 family of cytokines in the occurrence and development of bone and joint diseases has been summarized. This review will provide novel directions for immunotherapy of bone and joint diseases.
Collapse
Affiliation(s)
- Shenghui Ni
- Department of Orthopaedics, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, Liaoning, China
| | - Fengping Shan
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang 110122, Liaoning, China
| | - Jin Geng
- Department of Ophthalmology, the First Hospital of China Medical University, Shenyang, 110001, Liaoning, China.
| |
Collapse
|
7
|
Yan FF, Wang WC, Cheng HW. Bacillus subtilis-based probiotic promotes bone growth by inhibition of inflammation in broilers subjected to cyclic heating episodes. Poult Sci 2020; 99:5252-5260. [PMID: 33142440 PMCID: PMC7647906 DOI: 10.1016/j.psj.2020.08.051] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/19/2020] [Accepted: 08/19/2020] [Indexed: 01/03/2023] Open
Abstract
Heat stress as an environmental stressor causes abnormal bone remodeling and microarchitectural deterioration. The objective of this study was to investigate the effects of a Bacillus subtilis–based probiotic on bone mass of broilers subjected to cycling high ambient temperature. One hundred and twenty 1-day-old Ross 708 male broiler chicks were randomly assigned to 2 dietary treatments (12 pens per treatment): control diet and the control diet plus 250-ppm probiotic consisting of 3 strains of Bacillus subtilis. Room temperature was gradually decreased from 35°C on day 1 by 0.5°C/d until day 15, when ambient temperature was increased from 28°C to 32°C for 10 h (07:00 h–17:00 h) daily until day 44. Samples of blood, leg bones (tibia and femur), and brains (raphe nuclei and hypothalamus) were collected at day 43, while latency to lie test was conducted at day 44. Compared with controls, probiotic supplementation increased bone mineral content, weight, size, weight to length index, and reduced robusticity index in the tibia and femur (P < 0.05) of broilers subjected to heat stress. Serum concentrations of c-terminal telopeptide of type I collagen (CTX) were reduced (P = 0.02) by the probiotic supplementation, while ionized calcium, phosphate, and osteocalcin were not affected (P > 0.05). Moreover, tumor necrosis factor-α (TNF-α) in probiotic fed broilers was decreased (P = 0.003) without changes of plasma interleukin (IL)-6, IL-10, interferon-γ, and corticosterone concentrations. There were no treatment effects on the concentrations of peripheral serotonin and central serotonin and catecholamines (norepinephrine, epinephrine, and dopamine) as well as their metabolites. These results may indicate that dietary supplementation of Bacillus subtilis–based probiotic increases bone growth in broilers under a cyclic heating episode probably via inhibition of bone resorption, resulting from downregulation of the circulating TNF-α and CTX. Dietary probiotic supplementation may be a management strategy for increasing skeletal health of broilers under hot weather.
Collapse
Affiliation(s)
- Fei-Fei Yan
- College of Animal Science and Technology College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China.
| | - Wei-Chao Wang
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Heng-Wei Cheng
- USDA-ARS, Livestock Behavior Research Unit, West Lafayette, IN 47907, USA.
| |
Collapse
|
8
|
Shen H, Shi J, Zhi Y, Yang X, Yuan Y, Si J, Shen SGF. Improved BMP2-CPC-stimulated osteogenesis in vitro and in vivo via modulation of macrophage polarization. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111471. [PMID: 33255051 DOI: 10.1016/j.msec.2020.111471] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 08/17/2020] [Accepted: 08/27/2020] [Indexed: 12/13/2022]
Abstract
This study aimed to explore the in vitro and in vivo roles of macrophages in the osteogenesis stimulated by BMP2-CPC. In vitro, the alteration of macrophage polarization and cytokine secretion induced by BMP2-CPC or CPC was investigated. The influence of conditioned medium derived from BMP2-CPC- or CPC-stimulated macrophages on the migration and osteogenic differentiation of MSCs were evaluated. The in vivo relationship between macrophage polarization and osteogenesis was examined in a rabbit calvarial defect model. The in vitro results indicated that BMP2-CPC and CPC induced different patterns of macrophage polarization and subsequently resulted in distinct patterns of cytokine expression and secretion. Conditioned medium derived from BMP2-CPC- or CPC-stimulated macrophages both exhibited apparent osteogenic effect on MSCs. Notably, BMP2-CPC induced more M2-phenotype polarization and higher expression of anti-inflammatory cytokines and growth factors than did CPC, which led to the better osteogenic effect of conditioned medium derived from BMP2-CPC-stimulated macrophages. The rabbit calvarial defect model further confirmed that BMP2-CPC facilitated more bone regeneration than CPC did by enhancing M2-phenotype polarization in local macrophages and then alleviating inflammatory reaction. In conclusion, this study revealed that the favorable immunoregulatory property of BMP2-CPC contributed to the strong osteogenic capability of BMP2-CPC by modulating macrophage polarization.
Collapse
Affiliation(s)
- Hongzhou Shen
- Department of Oral and Craniomaxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China; Laboratory for Digitized Stomatology, Research Center for Craniofacial Anomalies, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, People's Republic of China
| | - Jun Shi
- Department of Oral and Craniomaxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China; Laboratory for Digitized Stomatology, Research Center for Craniofacial Anomalies, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, People's Republic of China
| | - Yin Zhi
- Department of Oral and Craniomaxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Xiaoyan Yang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing 100020, People's Republic of China
| | - Yuan Yuan
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Jiawen Si
- Department of Oral and Craniomaxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China.
| | - Steve G F Shen
- Department of Oral and Craniomaxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China; Laboratory for Digitized Stomatology, Research Center for Craniofacial Anomalies, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, People's Republic of China.
| |
Collapse
|
9
|
Wang Y, Qi H, Miron RJ, Zhang Y. Modulating macrophage polarization on titanium implant surface by poly(dopamine)-assisted immobilization of IL4. Clin Implant Dent Relat Res 2019; 21:977-986. [PMID: 31373150 DOI: 10.1111/cid.12819] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 05/14/2019] [Accepted: 06/29/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND In the past few decades, very little research has been carried out to modify implant surfaces to improve osteointegration through the regulation of immune cells. PURPOSE The aim of this study is to investigate whether the poly(dopamine) (pDA)-assisted immobilization of IL4 on titanium surfaces could modulate the inflammatory profile of macrophages in vitro and search for the possibility of enhancing implant integration in this way. MATERIAL AND METHODS The surface composition, topography, and roughness of SLA, SLA-pDA, and SLA-pDA-IL4 discs were examined by scanning electron microscope (SEM) and energy dispersive spectrometer (EDS). Then the releasing profile of the SLA-pDA-IL4 implants was recorded for 1 week and the bioactivity of released IL4 was investigated by ELISA. Then macrophage polarization was investigated via three methods including: (a) surface marker via immunofluorescence; (b) mRNA levels of M1 and M2 polarization markers via real-time PCR, and (c) cytokine release via ELISA. RESULTS SEM and EDS revealed that pDA and IL4 were coated successfully on SLA surfaces. The ELISA results showed that IL4 remained its bioactivity on SLA surface and were immobilized on the SLA surface. The immobilization of IL4 through pDA has no significant influence on the attachment, morphology, and proliferation of macrophages, while it increased the M2/M1 proportion in human macrophages revealed by immunofluorescence. The real-time PCR and ELISA results demonstrated that SLA-pDA-IL4 surface reduced the pro-inflammatory profile compared with SLA-pDA and SLA surfaces. CONCLUSIONS The SLA-pDA-IL4 surfaces described here is able to activate adherent macrophages into M2 phenotype and reduce the release of pro-inflammatory cytokines. Immobilization of IL4 via pDA is convenient and effective, thus providing an applicable way to control macrophage behavior upon implant insertion and is anticipated to accelerating further bone integration.
Collapse
Affiliation(s)
- Yulan Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Haoning Qi
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Richard J Miron
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Yufeng Zhang
- Department of Oral Implantology, School of Stomatology, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
10
|
Shi M, Wang C, Wang Y, Tang C, Miron RJ, Zhang Y. Deproteinized bovine bone matrix induces osteoblast differentiation via macrophage polarization. J Biomed Mater Res A 2018; 106:1236-1246. [PMID: 29280261 DOI: 10.1002/jbm.a.36321] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 12/20/2017] [Accepted: 12/21/2017] [Indexed: 12/17/2022]
Abstract
Bone grafts are widely used in bone regeneration to increase the speed and quality of new bone formation. While they are routinely characterized based on their biocompatible and bioactive properties, they also exert a profound impact on host immune responses, which in turn can display a significant effect on the healing and repair process. In this study, we investigated the role of macrophage behavior on deproteinized bovine bone matrix (DBBM, BioOss) to investigate their impact on creating either a pro- or anti-inflammatory microenvironment for tissue integration. RT-PCR and immunofluorescence staining results demonstrated the ability for RAW 264.7 cells to polarize toward M2 wound-healing macrophages in response to DBBM and positive control (IL-4). Interestingly, significantly higher expression of interleukin-10 and higher number of multinucleated giant cells (MNGCs) was observed in the DBBM group. Thereafter, conditioned media (CM) from macrophages cultured with DBBM seeded with MC3T3-E1 cells demonstrated a marked increase in osteoblast differentiation. Noteworthy, this effect was reversed by blocking IL10 with addition of IL10 antibody to CM from the DBBM macrophages. Furthermore, the use of dendritic cell specific transmembrane protein (DC-STAMP)-knockout to inhibit MNGC formation in the DBBM group resulted in a significant reduction in osteoblast differentiation, indication a pivotal role for MNGCs in biomaterials-induced osteogenesis. The results from this study indicate convincingly that the immune response of macrophages towards DBBM has a potent effect on osteoblast differentiation. Furthermore, DBBM promoted macrophage fusion and polarization towards an M2 wound-healing phenotype, further created a microenvironment favoring biomaterial-induced osteogenesis. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1236-1246, 2018.
Collapse
Affiliation(s)
- Miusi Shi
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, 430079, People's Republic of China.,Department of Dental Implantology, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, 430079, People's Republic of China
| | - Can Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, 430079, People's Republic of China
| | - Yulan Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, 430079, People's Republic of China
| | - Cuizhu Tang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, 430079, People's Republic of China
| | - Richard J Miron
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Yufeng Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, 430079, People's Republic of China.,Department of Dental Implantology, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, 430079, People's Republic of China
| |
Collapse
|
11
|
Chen Z, Bachhuka A, Wei F, Wang X, Liu G, Vasilev K, Xiao Y. Nanotopography-based strategy for the precise manipulation of osteoimmunomodulation in bone regeneration. NANOSCALE 2017; 9:18129-18152. [PMID: 29143002 DOI: 10.1039/c7nr05913b] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Immune cells play vital roles in regulating bone dynamics. Successful bone regeneration requires a favourable osteo-immune environment. The high plasticity and diversity of immune cells make it possible to manipulate the osteo-immune response of immune cells, thus modulating the osteoimmune environment and regulating bone regeneration. With the advancement in nanotechnology, nanotopographies with different controlled surface properties can be fabricated. On tuning the surface properties, the osteo-immune response can be precisely modulated. This highly tunable characteristic and immunomodulatory effects make nanotopography a promising strategy to precisely manipulate osteoimmunomdulation for bone tissue engineering applications. This review first summarises the effects of the immune response during bone healing to show the importance of regulating the immune response for the bone response. The plasticity of immune cells is then reviewed to provide rationales for manipulation of the osteoimmune response. Subsequently, we highlight the current types of nanotopographies applied in bone biomaterials and their fabrication techniques, and explain how these nanotopographies modulate the immune response and the possible underlying mechanisms. The effects of immune cells on nanotopography-mediated osteogenesis are emphasized, and we propose the concept of "nano-osteoimmunomodulation" to provide a valuable strategy for the development of nanotopographies with osteoimmunomodulatory properties that can precisely regulate bone dynamics.
Collapse
Affiliation(s)
- Zetao Chen
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, Guangdong, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
12
|
Mingomataj EÇ, Bakiri AH. Regulator Versus Effector Paradigm: Interleukin-10 as Indicator of the Switching Response. Clin Rev Allergy Immunol 2016; 50:97-113. [PMID: 26450621 DOI: 10.1007/s12016-015-8514-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The interleukin-10 (IL-10) is generally considered as the most important cytokine with anti-inflammatory properties and one of the key cytokines preventing inflammation-mediated tissue damage. In this respect, IL-10 producing cells play a crucial role in the outcome of infections, allergy, autoimmune reactions, tumor development, and transplant tolerance. Based on recent findings with regard to the mentioned clinical conditions, this review attempts to shed some light on the IL-10 functions, considering this cytokine as inherent inducer of the switching immunity. While acute infections and vaccinations are associated by IL-10 enhanced during few weeks, chronic parasitoses, tumor diseases, allergen-specific immunotherapy, transplants, and use of immune-suppressor drugs show an increased IL-10 level along months or years. With regard to autoimmune pathologies, the IL-10 increase is prevalently observed during early stages, whereas the successive stages are characterized by reaching of immune equilibrium independently to disease's activity. Together, these findings indicate that IL-10 is mainly produced during transient immune conditions and the persistent IL-10-related effect is the indication/prediction (and maybe effectuation) of the switching immunity. Actual knowledge emphasizes that any manipulation of the IL-10 response for treatment purposes should be considered very cautiously due to its potential hazards to the immune system. Probably, the IL-10 as potential switcher of immunity response should be used in association with co-stimulatory immune effectors that are necessary to determine the appropriate deviation during treatment of respective pathologies. Hopefully, further findings would open new avenues to study the biology of this "master switch" cytokine and its therapeutic potential.
Collapse
Affiliation(s)
- Ervin Ç Mingomataj
- Department of Allergy & Clinical Immunology, "Mother Theresa" School of Medicine, Tirana, Albania. .,Faculty of Technical Medical Sciences, Department of Preclinical Disciplines, University of Medicine, Tirana, Albania.
| | - Alketa H Bakiri
- Hygeia Hospital Tirana, Outpatients Service, Allergology Consulting Room, Tirana, Albania.,Faculty of Medical Sciences, Department of Preclinical Disciplines, Albanian University, Tirana, Albania
| |
Collapse
|
13
|
Michalski MN, Koh AJ, Weidner S, Roca H, McCauley LK. Modulation of Osteoblastic Cell Efferocytosis by Bone Marrow Macrophages. J Cell Biochem 2016; 117:2697-2706. [PMID: 27061191 DOI: 10.1002/jcb.25567] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 04/05/2016] [Indexed: 01/22/2023]
Abstract
Apoptosis occurs at an extraordinary rate in the human body and the effective clearance of dead cells (efferocytosis) is necessary to maintain homeostasis and promote healing, yet the contribution and impact of this process in bone is unclear. Bone formation requires that bone marrow stromal cells (BMSCs) differentiate into osteoblasts which direct matrix formation and either become osteocytes, bone lining cells, or undergo apoptosis. A series of experiments were performed to identify the regulators and consequences of macrophage efferocytosis of apoptotic BMSCs (apBMSCs). Bone marrow derived macrophages treated with the anti-inflammatory cytokine interleukin-10 (IL-10) exhibited increased efferocytosis of apBMSCs compared to vehicle treated macrophages. Additionally, IL-10 increased anti-inflammatory M2-like macrophages (CD206+ ), and further enhanced efferocytosis within the CD206+ population. Stattic, an inhibitor of STAT3 phosphorylation, reduced the IL-10-mediated shift in M2 macrophage polarization and diminished IL-10-directed efferocytosis of apBMSCs by macrophages implicating the STAT3 signaling pathway. Cell culture supernatants and RNA from macrophages co-cultured with apoptotic bone cells showed increased secretion of monocyte chemotactic protein 1/chemokine (C-C motif) ligand 2 (MCP-1/CCL2) and transforming growth factor beta 1 (TGF-β1) and increased ccl2 gene expression. In conclusion, IL-10 increases M2 macrophage polarization and enhances macrophage-mediated engulfment of apBMSCs in a STAT3 phosphorylation-dependent manner. After engulfment of apoptotic bone cells, macrophages secrete TGF-β1 and MCP-1/CCL2, factors which fuel the remodeling process. A better understanding of the role of macrophage efferocytosis as it relates to normal and abnormal bone turnover will provide vital information for future therapeutic approaches to treat bone related diseases. J. Cell. Biochem. 117: 2697-2706, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Megan N Michalski
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, 48109
| | - Amy J Koh
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, 48109
| | - Savannah Weidner
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, 48109
| | - Hernan Roca
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, 48109
| | - Laurie K McCauley
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, 48109. .,Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, 48109.
| |
Collapse
|
14
|
Kotrych D, Dziedziejko V, Safranow K, Sroczynski T, Staniszewska M, Juzyszyn Z, Pawlik A. TNF-α and IL10 gene polymorphisms in women with postmenopausal osteoporosis. Eur J Obstet Gynecol Reprod Biol 2016; 199:92-5. [PMID: 26914399 DOI: 10.1016/j.ejogrb.2016.01.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 01/09/2016] [Accepted: 01/29/2016] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Postmenopausal osteoporosis is a common disorder characterized by decreased bone mineral density (BMD). Proinflammatory cytokines are among the significant factors involved in bone turnover. They are the stimulants of bone resorption, acting directly on osteoclasts and osteoclast precursors. In this study, we examined the TNF-α (-308G>A) (rs1800629) and IL10 (-1082G>A) (rs1800896), (-592C>A) (rs1800872) polymorphisms in postmenopausal women with BMD T-scores less than and greater than or equal to -2.5 SD. STUDY DESIGN This study included 224 postmenopausal women with BMD T-scores lower than -2.5 SD (mean: -3.02±0.53) and 238 postmenopausal women with BMD T-scores -2.5 SD and greater (mean: -1.33±0.51). RESULTS There was a decrease in the frequency of IL10 1082 G allele carriers (GG and GA genotypes) in women with T-scores below -2.5 SD (GG+GA vs AA: OR=0.65, 95% CI=0.44-0.97, p=0.037). With regard to the TNF-α -308 G>A polymorphism, in the women with T-scores below -2.5 SD, the increased frequency of GG homozygotes and G allele carriers was detected (AA+GA vs GG: OR=0.54, 95% CI=0.35-0.82, p=0.004). CONCLUSIONS The results of our study suggest an association between TNF-α -308G>A and IL10 -1082G>A polymorphisms and postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Daniel Kotrych
- Department of Orthopaedics, Traumatology and Orthopaedic Oncology, Pomeranian Medical University, Szczecin, Poland
| | - Violetta Dziedziejko
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Szczecin, Poland
| | - Krzysztof Safranow
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Szczecin, Poland
| | - Tomasz Sroczynski
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | | | - Zygmunt Juzyszyn
- Faculty of Physical Culture and Health Promotion, University of Szczecin, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland.
| |
Collapse
|