1
|
Xiao T, Sun M, Zhao C, Kang J. TRPV1: A promising therapeutic target for skin aging and inflammatory skin diseases. Front Pharmacol 2023; 14:1037925. [PMID: 36874007 PMCID: PMC9975512 DOI: 10.3389/fphar.2023.1037925] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/20/2023] [Indexed: 02/17/2023] Open
Abstract
TRPV1 is a non-selective channel receptor widely expressed in skin tissues, including keratinocytes, peripheral sensory nerve fibers and immune cells. It is activated by a variety of exogenous or endogenous inflammatory mediators, triggering neuropeptide release and neurogenic inflammatory response. Previous studies have shown that TRPV1 is closely related to the occurrence and/or development of skin aging and various chronic inflammatory skin diseases, such as psoriasis, atopic dermatitis, rosacea, herpes zoster, allergic contact dermatitis and prurigo nodularis. This review summarizes the structure of the TRPV1 channel and discusses the expression of TRPV1 in the skin as well as its role of TRPV1 in skin aging and inflammatory skin diseases.
Collapse
Affiliation(s)
- Tengfei Xiao
- Department of Clinical Laboratory, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People's Hospital, Yancheng, Jiangsu, China
| | - Mingzhong Sun
- Department of Clinical Laboratory, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People's Hospital, Yancheng, Jiangsu, China
| | - Chuanxiang Zhao
- Institute of Medical Genetics and Reproductive Immunity, School of Medical Science and Laboratory Medicine, Jiangsu College of Nursing, Huai'an, Jiangsu, China
| | - Jingjing Kang
- Department of Clinical Laboratory, Affiliated Hospital of Nanjing University Medical School, Yancheng First People's Hospital, Yancheng, Jiangsu, China
| |
Collapse
|
2
|
Tokuchi K, Kitamura S, Maeda T, Watanabe M, Hatakeyama S, Kano S, Tanaka S, Ujiie H, Yanagi T. Loss of FAM83H promotes cell migration and invasion in cutaneous squamous cell carcinoma via impaired keratin distribution. J Dermatol Sci 2021; 104:112-121. [PMID: 34657752 DOI: 10.1016/j.jdermsci.2021.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/13/2021] [Accepted: 09/23/2021] [Indexed: 01/12/2023]
Abstract
BACKGROUNDS FAM83H is essential for amelogenesis, but recent reports implicate that FAM83H is involved in the tumorigenesis. We previously clarified that TRIM29 binds to FAM83H to regulate keratin distribution and squamous cell migration. However, little is known about FAM83H in normal/malignant skin keratinocytes. OBJECTIVE To investigate the expression of FAM83H in cutaneous squamous cell carcinoma (SCC) and its physiological function. METHODS Immunohistochemical analysis and RT-PCR of human SCC tissues were performed. Next, we examined the effect of FAM83H knockdown/overexpression in SCC cell lines using cell proliferation, migration, and invasion assay. To investigate the molecular mechanism, immunoprecipitation of FAM83H was examined. Further, Immunofluorescence staining was performed. Finally, we examined the correlation between the expressions of FAM83H and the keratin distribution. RESULTS FAM83H expression was lower in SCC lesions than in normal epidermis and correlated with differentiation grade. The mRNA expression levels of FAM83H in SCC tumors were also lower than in normal epidermis. The knockdown of FAM83H enhanced SCC cell migration and invasion, whereas the overexpression of FAM83H led to decreases in both. Furthermore, the knockdown of FAM83H enhanced the cancer cell metastasis in vivo. FAM83H formed a complex with TRIM29 and keratins. The knockdown of FAM83H altered keratin distribution and solubility. Clinically, the loss of FAM83H correlates with an altered keratin distribution. CONCLUSION Our findings reveal a critical function for FAM83H in regulating keratin distribution, as well as in the migration/invasion of cutaneous SCC, suggesting that FAM83H could be a crucial molecule in the tumorigenesis of cutaneous SCC.
Collapse
Affiliation(s)
- Keiko Tokuchi
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Japan
| | - Shinya Kitamura
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Japan
| | - Takuya Maeda
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Japan
| | - Masashi Watanabe
- Department of Biochemistry, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Japan
| | - Shigetsugu Hatakeyama
- Department of Biochemistry, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Japan
| | - Satoshi Kano
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Japan
| | - Shinya Tanaka
- Department of Cancer Pathology, Faculty of Medicine and WPI-ICReDD, Hokkaido University, Japan
| | - Hideyuki Ujiie
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Japan
| | - Teruki Yanagi
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Japan.
| |
Collapse
|
3
|
Bagood MD, Isseroff RR. TRPV1: Role in Skin and Skin Diseases and Potential Target for Improving Wound Healing. Int J Mol Sci 2021; 22:ijms22116135. [PMID: 34200205 PMCID: PMC8201146 DOI: 10.3390/ijms22116135] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 12/14/2022] Open
Abstract
Skin is innervated by a multitude of sensory nerves that are important to the function of this barrier tissue in homeostasis and injury. The role of innervation and neuromediators has been previously reviewed so here we focus on the role of the transient receptor potential cation channel, subfamily V member 1 (TRPV1) in wound healing, with the intent of targeting it in treatment of non-healing wounds. TRPV1 structure and function as well as the outcomes of TRPV1-targeted therapies utilized in several diseases and tissues are summarized. In skin, keratinocytes, sebocytes, nociceptors, and several immune cells express TRPV1, making it an attractive focus area for treating wounds. Many intrinsic and extrinsic factors confound the function and targeting of TRPV1 and may lead to adverse or off-target effects. Therefore, a better understanding of what is known about the role of TRPV1 in skin and wound healing will inform future therapies to treat impaired and chronic wounds to improve healing.
Collapse
Affiliation(s)
- Michelle D. Bagood
- Department of Dermatology, School of Medicine, UC Davis, Sacramento, CA 95816, USA;
| | - R. Rivkah Isseroff
- Department of Dermatology, School of Medicine, UC Davis, Sacramento, CA 95816, USA;
- Dermatology Section, VA Northern California Health Care System, Mather, CA 95655, USA
- Correspondence: ; Tel.: +1-(916)-551-2606
| |
Collapse
|
4
|
Kaiser M, Pohl L, Ketelhut S, Kastl L, Gorzelanny C, Götte M, Schnekenburger J, Goycoolea FM, Kemper B. Nanoencapsulated capsaicin changes migration behavior and morphology of madin darby canine kidney cell monolayers. PLoS One 2017; 12:e0187497. [PMID: 29107993 PMCID: PMC5673207 DOI: 10.1371/journal.pone.0187497] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 10/20/2017] [Indexed: 12/13/2022] Open
Abstract
We have developed a drug delivery nanosystem based on chitosan and capsaicin. Both substances have a wide range of biological activities. We investigated the nanosystem’s influence on migration and morphology of Madin Darby canine kidney (MDCK-C7) epithelial cells in comparison to the capsaicin-free nanoformulation, free capsaicin, and control cells. For minimally-invasive quantification of cell migration, we applied label-free digital holographic microscopy (DHM) and single-cell tracking. Moreover, quantitative DHM phase images were used as novel stain-free assay to quantify the temporal course of global cellular morphology changes in confluent cell layers. Cytoskeleton alterations and tight junction protein redistributions were complementary analyzed by fluorescence microscopy. Calcium influx measurements were conducted to characterize the influence of the nanoformulations and capsaicin on ion channel activities. We found that both, capsaicin-loaded and unloaded chitosan nanocapsules, and also free capsaicin, have a significant impact on directed cell migration and cellular motility. Increase of velocity and directionality of cell migration correlates with changes in the cell layer surface roughness, tight junction integrity and cytoskeleton alterations. Calcium influx into cells occurred only after nanoformulation treatment but not upon addition of free capsaicin. Our results pave the way for further studies on the biological significance of these findings and potential biomedical applications, e.g. as drug and gene carriers.
Collapse
Affiliation(s)
- Mathias Kaiser
- Institute of Plant Biology and Biotechnology (IBBP), Westfälische Wilhelms-Universität Münster, Schlossgarten 3, Münster, Germany
| | - Luisa Pohl
- Biomedical Technology Center of the Medical Faculty, Westfälische Wilhelms-Universität Münster, Mendelstraße 17, Münster, Germany
| | - Steffi Ketelhut
- Biomedical Technology Center of the Medical Faculty, Westfälische Wilhelms-Universität Münster, Mendelstraße 17, Münster, Germany
| | - Lena Kastl
- Biomedical Technology Center of the Medical Faculty, Westfälische Wilhelms-Universität Münster, Mendelstraße 17, Münster, Germany
| | - Christian Gorzelanny
- Experimental Dermatology, Department of Dermatology, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1–3, Mannheim, Germany
| | - Martin Götte
- Department of Gynecology and Obstetrics, Westfälische Wilhelms-Universität Münster, Albert-Schweitzer-Campus 1, Münster, Germany
| | - Jürgen Schnekenburger
- Biomedical Technology Center of the Medical Faculty, Westfälische Wilhelms-Universität Münster, Mendelstraße 17, Münster, Germany
| | - Francisco M. Goycoolea
- Institute of Plant Biology and Biotechnology (IBBP), Westfälische Wilhelms-Universität Münster, Schlossgarten 3, Münster, Germany
- School of Food Science & Nutrition, University of Leeds, Leeds, United Kingdom
- * E-mail: (FMG); (BK)
| | - Björn Kemper
- Biomedical Technology Center of the Medical Faculty, Westfälische Wilhelms-Universität Münster, Mendelstraße 17, Münster, Germany
- * E-mail: (FMG); (BK)
| |
Collapse
|
5
|
Effect of acetaminophen on osteoblastic differentiation and migration of MC3T3-E1 cells. Pharmacol Rep 2017; 70:29-36. [PMID: 29306760 DOI: 10.1016/j.pharep.2017.07.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/30/2017] [Accepted: 07/04/2017] [Indexed: 01/14/2023]
Abstract
BACKGROUND N-acetyl-p-aminophenol (APAP, acetaminophen, paracetamol) is a widely used analgesic/antipyretic with weak inhibitory effects on cyclooxygenase (COX) compared to non-steroidal anti-inflammatory drugs (NSAIDs). The mechanism of action of APAP is mediated by its metabolite that activates transient receptor potential channels, including transient receptor potential vanilloid 1 (TRPV1) and TRP ankyrin 1 (TRPA1) or the cannabinoid receptor type 1 (CB1). However, the exact molecular mechanism and target underlying the cellular actions of APAP remain unclear. Therefore, we investigated the effect of APAP on osteoblastic differentiation and cell migration, with a particular focus on TRP channels and CB1. METHODS Effects of APAP on osteoblastic differentiation and cell migration of MC3T3-E1, a mouse pre-osteoblast cell line, were assessed by the increase in alkaline phosphatase (ALP) activity, and both wound-healing and transwell-migration assays, respectively. RESULTS APAP dose-dependently inhibited osteoblastic differentiation, which was well correlated with the effects on COX activity compared with other NSAIDs. In contrast, cell migration was promoted by APAP, and this effect was not correlated with COX inhibition. None of the agonists or antagonists of TRP channels and the CB receptor affected the APAP-induced cell migration, while the effect of APAP on cell migration was abolished by down-regulating TRPV4 gene expression. CONCLUSION APAP inhibited osteoblastic differentiation via COX inactivation while it promoted cell migration independently of previously known targets such as COX, TRPV1, TRPA1 channels, and CB receptors, but through the mechanism involving TRPV4. APAP may have still unidentified molecular targets that modify cellular functions.
Collapse
|
6
|
Parimon T, Chen P. α 6β 4 Integrin Directs Alveolar Epithelial Migration. Am J Respir Cell Mol Biol 2017; 56:413-414. [PMID: 28362151 DOI: 10.1165/rcmb.2016-0419ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Tanyalak Parimon
- 1 Women's Guild Lung Institute Cedars-Sinai Medical Center Los Angeles, California
| | - Peter Chen
- 1 Women's Guild Lung Institute Cedars-Sinai Medical Center Los Angeles, California
| |
Collapse
|
7
|
Moilanen JM, Löffek S, Kokkonen N, Salo S, Väyrynen JP, Hurskainen T, Manninen A, Riihilä P, Heljasvaara R, Franzke CW, Kähäri VM, Salo T, Mäkinen MJ, Tasanen K. Significant Role of Collagen XVII And Integrin β4 in Migration and Invasion of The Less Aggressive Squamous Cell Carcinoma Cells. Sci Rep 2017; 7:45057. [PMID: 28327550 PMCID: PMC5361192 DOI: 10.1038/srep45057] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 02/20/2017] [Indexed: 02/07/2023] Open
Abstract
Collagen XVII and integrin α6β4 have well-established roles as epithelial adhesion molecules. Their binding partner laminin 332 as well as integrin α6β4 are largely recognized to promote invasion and metastasis in various cancers, and collagen XVII is essential for the survival of colon and lung cancer stem cells. We have studied the expression of laminin γ2, collagen XVII and integrin β4 in tissue microarray samples of squamous cell carcinoma (SCC) and its precursors, actinic keratosis and Bowen's disease. The expression of laminin γ2 was highest in SCC samples, whereas the expression of collagen XVII and integrin β4 varied greatly in SCC and its precursors. Collagen XVII and integrin β4 were also expressed in SCC cell lines. Virus-mediated RNAi knockdown of collagen XVII and integrin β4 reduced the migration of less aggressive SCC-25 cells in horizontal scratch wound healing assay. Additionally, in a 3D organotypic myoma invasion assay the loss of collagen XVII or integrin β4 suppressed equally the migration and invasion of SCC-25 cells whereas there was no effect on the most aggressive HSC-3 cells. Variable expression patterns and results in migration and invasion assays suggest that collagen XVII and integrin β4 contribute to SCC tumorigenesis.
Collapse
Affiliation(s)
- Jyri M. Moilanen
- Department of Dermatology, PEDEGO Research Unit, Oulu Center for Cell-Matrix Research, MRC Oulu, University of Oulu and Oulu University Hospital, Finland
| | - Stefanie Löffek
- Skin Cancer Unit of the Dermatology Department, Medical Faculty, West German Cancer Center, University of Duisburg-Essen, Germany
| | - Nina Kokkonen
- Department of Dermatology, PEDEGO Research Unit, Oulu Center for Cell-Matrix Research, MRC Oulu, University of Oulu and Oulu University Hospital, Finland
| | - Sirpa Salo
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Juha P. Väyrynen
- Department of Pathology, Research Unit of Cancer and Translational Medicine, MRC Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Tiina Hurskainen
- Department of Dermatology, PEDEGO Research Unit, Oulu Center for Cell-Matrix Research, MRC Oulu, University of Oulu and Oulu University Hospital, Finland
| | - Aki Manninen
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Pilvi Riihilä
- Department of Dermatology, Turku University Hospital, MediCity Research Laboratory, University of Turki, Turku, Finland
| | - Ritva Heljasvaara
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Claus-Werner Franzke
- Department of Dermatology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Veli-Matti Kähäri
- Department of Dermatology, Turku University Hospital, MediCity Research Laboratory, University of Turki, Turku, Finland
| | - Tuula Salo
- Research Unit of Cancer and Translational Medicine, MRC Oulu, University of Oulu and Oulu University Hospital, Finland
- Department of Oral and Maxillo-facial Diseases, University of Helsinki, Finland
- HUSLAB, Department of Pathology, Helsinki University Central Hospital, Finland
- Department of Oral Diagnosis, Oral Pathology Division, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, SP-13414-903, Brazil
| | - Markus J. Mäkinen
- Department of Pathology, Research Unit of Cancer and Translational Medicine, MRC Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Kaisa Tasanen
- Department of Dermatology, PEDEGO Research Unit, Oulu Center for Cell-Matrix Research, MRC Oulu, University of Oulu and Oulu University Hospital, Finland
| |
Collapse
|
8
|
The opposing roles of laminin-binding integrins in cancer. Matrix Biol 2017; 57-58:213-243. [DOI: 10.1016/j.matbio.2016.08.007] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 08/02/2016] [Accepted: 08/17/2016] [Indexed: 02/06/2023]
|
9
|
Sasso O, Pontis S, Armirotti A, Cardinali G, Kovacs D, Migliore M, Summa M, Moreno-Sanz G, Picardo M, Piomelli D. Endogenous N-acyl taurines regulate skin wound healing. Proc Natl Acad Sci U S A 2016; 113:E4397-406. [PMID: 27412859 PMCID: PMC4968764 DOI: 10.1073/pnas.1605578113] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The intracellular serine amidase, fatty acid amide hydrolase (FAAH), degrades a heterogeneous family of lipid-derived bioactive molecules that include amides of long-chain fatty acids with taurine [N-acyl-taurines (NATs)]. The physiological functions of the NATs are unknown. Here we show that genetic or pharmacological disruption of FAAH activity accelerates skin wound healing in mice and stimulates motogenesis of human keratinocytes and differentiation of human fibroblasts in primary cultures. Using untargeted and targeted lipidomics strategies, we identify two long-chain saturated NATs-N-tetracosanoyl-taurine [NAT(24:0)] and N-eicosanoyl-taurine [NAT(20:0)]-as primary substrates for FAAH in mouse skin, and show that the levels of these substances sharply decrease at the margins of a freshly inflicted wound to increase again as healing begins. Additionally, we demonstrate that local administration of synthetic NATs accelerates wound closure in mice and stimulates repair-associated responses in primary cultures of human keratinocytes and fibroblasts, through a mechanism that involves tyrosine phosphorylation of the epidermal growth factor receptor and an increase in intracellular calcium levels, under the permissive control of transient receptor potential vanilloid-1 receptors. The results point to FAAH-regulated NAT signaling as an unprecedented lipid-based mechanism of wound-healing control in mammalian skin, which might be targeted for chronic wound therapy.
Collapse
Affiliation(s)
- Oscar Sasso
- Drug Discovery and Development, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Silvia Pontis
- Drug Discovery and Development, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Andrea Armirotti
- Drug Discovery and Development, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Giorgia Cardinali
- Cutaneous Physiopathology, San Gallicano Dermatological Institute, Istituto di Ricovero e Cura a Carattere Scientifico, 00163 Rome, Italy
| | - Daniela Kovacs
- Cutaneous Physiopathology, San Gallicano Dermatological Institute, Istituto di Ricovero e Cura a Carattere Scientifico, 00163 Rome, Italy
| | - Marco Migliore
- Drug Discovery and Development, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Maria Summa
- Drug Discovery and Development, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | | | - Mauro Picardo
- Cutaneous Physiopathology, San Gallicano Dermatological Institute, Istituto di Ricovero e Cura a Carattere Scientifico, 00163 Rome, Italy
| | - Daniele Piomelli
- Drug Discovery and Development, Istituto Italiano di Tecnologia, 16163 Genoa, Italy; Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697; Department of Pharmacology, University of California, Irvine, CA 92697; Department of Biological Chemistry, University of California, Irvine, CA 92697
| |
Collapse
|
10
|
Calcium Entry Through Thermosensory Channels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 898:265-304. [PMID: 27161233 DOI: 10.1007/978-3-319-26974-0_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
ThermoTRPs are unique channels that mediate Na(+) and Ca(2+) currents in response to changes in ambient temperature. In combination with their activation by other physical and chemical stimuli, they are considered key integrators of environmental cues into neuronal excitability. Furthermore, roles of thermoTRPs in non-neuronal tissues are currently emerging such as insulin secretion in pancreatic β-cells, and links to cancer. Calcium permeability through thermoTRPs appears a central hallmark for their physiological and pathological activities. Moreover, it is currently being proposed that beyond working as a second messenger, Ca(2+) can function locally by acting on protein complexes near the membrane. Interestingly, thermoTRPs can enhance and expand the inherent plasticity of signalplexes by conferring them temperature, pH and lipid regulation through Ca(2+) signalling. Thus, unveiling the local role of Ca(2+) fluxes induced by thermoTRPs on the dynamics of membrane-attached signalling complexes as well as their significance in cellular processes, are central issues that will expand the opportunities for therapeutic intervention in disorders involving dysfunction of thermoTRP channels.
Collapse
|