1
|
Zhu XX, Su JB, Wang FM, Chai XY, Chen G, Xu AJ, Meng XY, Qiu HB, Sun QY, Wang Y, Lv ZL, Zhang Y, Liu Y, Han ZJ, Li N, Sun HJ, Lu QB. Sodium pump subunit NKAα1 protects against diabetic endothelial dysfunction by inhibiting ferroptosis through the autophagy-lysosome degradation of ACSL4. Clin Transl Med 2025; 15:e70221. [PMID: 39902679 DOI: 10.1002/ctm2.70221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/18/2025] [Accepted: 01/26/2025] [Indexed: 02/06/2025] Open
Abstract
The sodium pump Na+/K+-ATPase (NKA), an enzyme ubiquitously expressed in various tissues and cells, is a critical player in maintaining cellular ion homeostasis. Dysregulation of α1 subunit of NKA (NKAα1) has been associated with cardiovascular and metabolic disorders, yet the exact role of NKAα1 in diabetes-induced endothelial malfunction remains incompletely understood. The NKAα1 expression and NKA activity were examined in high-glucose (HG)-exposed endothelial cells (ECs) and mouse aortae, as well as in high-fat-diet (HFD)-fed mice. Acetylcholine (Ach) was utilised to assess endothelium-dependent relaxation (EDR) in isolated mouse aortae. We found that both NKAα1 protein and mRNA levels were significantly downregulated in the aortae of HFD-fed mice, and HG-incubated mouse aortae and ECs. Gain- and loss-of-function experiments revealed that NKAα1 preserves EDR by mitigating oxidative/nitrative stresses in ECs. Overexpression of NKAα1 facilitated EC viability, migration, and angiogenesis by inhibiting the overproduction of superoxide and peroxynitrite. Mechanistically, dysfunctional NKAα1 impaired autophagy process, and prevented the transfer of acyl-CoA synthetase long-chain family member 4 (ACSL4) to the lysosome for degradation, thereby resulting in lipid peroxidation and ferroptosis in ECs. Induction of ferroptosis and inhibition of the autophagy-lysosome pathway blocked the protective effects of NKAα1 on EDR. Eventually, we identified Hamaudol as a potent activator of NKAα1 by restraining the phosphorylation and endocytosis of NKAα1, restoring EDR in obese diabetic mice. Overall, NKAα1 facilitates the autophagic degradation of ACSL4 via the lysosomal pathway, preventing ferroptosis and oxidative/nitrative stress in ECs. NKAα1 may serve as an attractive candidate for the management of vascular disorders associated with diabetes. KEY POINTS: NKAα1 downregulation impairs endothelial function in diabetes by promoting oxidative/nitrative stress and ferroptosis. NKAα1 supports lysosomal degradation of ACSL4 via autophagy, preventing lipid peroxidation and ferroptosis. Hamaudol, an activator of NKAα1, restores endothelial relaxation in diabetic mice by inhibiting NKAα1 phosphorylation and endocytosis.
Collapse
Affiliation(s)
- Xue-Xue Zhu
- Department of Basic Medicine, Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, China
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Jia-Bao Su
- Department of Basic Medicine, Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, China
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Fang-Ming Wang
- Department of Rheumatology and Immunology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, China
| | - Xiao-Ying Chai
- Department of Basic Medicine, Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, China
| | - Guo Chen
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - An-Jing Xu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Xin-Yu Meng
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Hong-Bo Qiu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Qing-Yi Sun
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Yao Wang
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhuo-Lin Lv
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Yuan Zhang
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Yao Liu
- Department of Cardiac Ultrasound, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhi-Jun Han
- Department of Clinical Research Center, Jiangnan University Medical Center (Wuxi No.2 People's Hospital), Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Na Li
- Research Institute for Reproductive Health and Genetic Diseases, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - Hai-Jian Sun
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Qing-Bo Lu
- Department of Basic Medicine, Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, China
| |
Collapse
|
2
|
Dios-Barbeito S, González R, Cadenas M, García LF, Victor VM, Padillo FJ, Muntané J. Impact of nitric oxide in liver cancer microenvironment. Nitric Oxide 2022; 128:1-11. [DOI: 10.1016/j.niox.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 07/16/2022] [Accepted: 07/19/2022] [Indexed: 11/25/2022]
|
3
|
Salihi A, Al-Naqshabandi MA, Khudhur ZO, Housein Z, Hama HA, Abdullah RM, Hussen BM, Alkasalias T. Gasotransmitters in the tumor microenvironment: Impacts on cancer chemotherapy (Review). Mol Med Rep 2022; 26:233. [PMID: 35616143 PMCID: PMC9178674 DOI: 10.3892/mmr.2022.12749] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/07/2022] [Indexed: 11/23/2022] Open
Abstract
Nitric oxide, carbon monoxide and hydrogen sulfide are three endogenous gasotransmitters that serve a role in regulating normal and pathological cellular activities. They can stimulate or inhibit cancer cell proliferation and invasion, as well as interfere with cancer cell responses to drug treatments. Understanding the molecular pathways governing the interactions between these gases and the tumor microenvironment can be utilized for the identification of a novel technique to disrupt cancer cell interactions and may contribute to the conception of effective and safe cancer therapy strategies. The present review discusses the effects of these gases in modulating the action of chemotherapies, as well as prospective pharmacological and therapeutic interfering approaches. A deeper knowledge of the mechanisms that underpin the cellular and pharmacological effects, as well as interactions, of each of the three gases could pave the way for therapeutic treatments and translational research.
Collapse
Affiliation(s)
- Abbas Salihi
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region 44001, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan Region 44002, Iraq
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, SE-17165 Stockholm, Sweden
| | - Mohammed A. Al-Naqshabandi
- Department of Clinical Biochemistry, College of Health Sciences, Hawler Medical University, Erbil, Kurdistan Region 44001, Iraq
| | - Zhikal Omar Khudhur
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Kurdistan Region 44001, Iraq
| | - Zjwan Housein
- Department of Medical Laboratory Technology, Technical Health and Medical College, Erbil Polytechnique University, Erbil, Kurdistan Region 44002, Iraq
| | - Harmand A. Hama
- Department of Biology, Faculty of Education, Tishk International University, Erbil, Kurdistan Region 44002, Iraq
| | - Ramyar M. Abdullah
- College of Medicine, Hawler Medical University, Erbil, Kurdistan Region 44002, Iraq
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region 44002, Iraq
| | - Twana Alkasalias
- General Directorate of Scientific Research Center, Salahaddin University-Erbil, Erbil, Kurdistan Region 44002, Iraq
- Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, SE-17176 Stockholm, Sweden
| |
Collapse
|
4
|
Enhanced cancer therapeutic efficiency of NO combined with siRNA by caspase-3 responsive polymers. J Control Release 2021; 339:506-520. [PMID: 34655677 DOI: 10.1016/j.jconrel.2021.10.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/16/2021] [Accepted: 10/09/2021] [Indexed: 12/18/2022]
Abstract
The combination of nitric oxide (NO) and siRNA is highly desirable for cancer therapy. Here, the furoxans-grafted PEI polymer (FDP) with caspase-3 responsive cleavable DEVD linker was synthesized, and used to bind siRNAs via electrostatic interaction and self-assembled into FDP/siRNA nanoplexes by hydrophobic force. After cellular uptake and lysosomal escape, the FDP/siRNA nanoplexes could achieve GSH-triggered NO release, and then increase the activity of caspase-3. The activated caspase-3 could specifically cleave the DEVD peptide sequence and enhance cell apoptosis. With the cleavage of DEVD peptide sequence, the disassembly of FDP/siRNA nanoplexes was further promoted, thereby resulting in increased siRNAs of ~40% were released at 48 h compared with the caspase-3 non-responsive FDnP/siRNA nanoplexes. By this way, cell apoptosis promotion and cell proliferation inhibition was achieved by siRNA-based downregulation of EGFR protein and the upregulated activity of caspase-3, followed by the enhanced cascade release of NO from FDP/siRNA nanoplexes. Furthermore, in vivo results demonstrated the improved anti-cancer efficiency of FDP/siEGFR nanoplexes without any detectable side effects. Therefore, it is believed that the caspase-3 responsive cleavable furoxans-grafted PEI polymers could provide a potential and efficient enhancement for cancer therapeutic efficiency by the co-delivery of nitric oxide and siRNA.
Collapse
|
5
|
Effect of Feijoa Sellowiana Acetonic Extract on Proliferation Inhibition and Apoptosis Induction in Human Gastric Cancer Cells. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10217756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gastric cancer (GC) still represents a relevant health problem in the world for both incidence and mortality rates. Many studies underlined that natural products consumption could reduce GC risk, indicating flavonoids as responsible for the beneficial effects through the modulation of several biological processes, such as the inhibition of cancer antioxidant defense and induction of apoptosis. Since Feijoa sellowiana fruit is known to contain high amounts of flavonoids, among which is flavone, we evaluated the antiproliferative and proapoptotic effects of F. sellowiana acetonic extract on GC cell lines through MTS and Annexin-V FITC assays. Among three GC cell lines tested, SNU-1 results being sensitive to both the F. sellowiana acetonic extract and synthetic flavone, which was used as the reference treatment. Moreover, we evaluated their antioxidant effects, assessing the activity of the antioxidant enzymes supeoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) in polymorphonuclear cells. We found a significant increase of their activity after exposure to both F. sellowiana acetonic extract and flavone, supporting the idea that a diet that includes flavone-rich fruits could be of benefit for health. In addition to this antioxidant effect on normal cells, this study indicates, for the first time, an anticancer effect of F. sellowiana acetonic extract in GC cells.
Collapse
|
6
|
Mishra D, Patel V, Banerjee D. Nitric Oxide and S-Nitrosylation in Cancers: Emphasis on Breast Cancer. BREAST CANCER-BASIC AND CLINICAL RESEARCH 2020; 14:1178223419882688. [PMID: 32030066 PMCID: PMC6977095 DOI: 10.1177/1178223419882688] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 09/16/2019] [Indexed: 12/12/2022]
Abstract
Nitric oxide (NO) is a ubiquitous, endogenously produced, water-soluble signaling molecule playing critical roles in physiological processes. Nitric oxide plays pleiotropic roles in cancer and, depending on its local concentration, may lead to either tumor progression or tumor suppression. Addition of NO group to a cysteine residue within a protein, termed as S-nitrosylation, plays diverse regulatory roles and affects processes such as metabolism, apoptosis, protein phosphorylation, and regulation of transcription factors. The process of S-nitrosylation has been associated with development of different cancers, including breast cancer. The present review discusses different mechanisms through which NO acts, with special emphasis on breast cancers, and provides detailed insights into reactive nitrogen species, posttranslational modifications of proteins mediated by NO, dual nature of NO in cancers, and the implications of S-nitrosylation in cancers. Our review will generate interest in exploring molecular regulation by NO in different cancers and will have significant therapeutic implications in the management and treatment of breast cancer.
Collapse
Affiliation(s)
- Deepshikha Mishra
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Vaibhav Patel
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA.,School of Graduate Studies, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Debabrata Banerjee
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA.,School of Graduate Studies, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
7
|
Flavone inhibited proliferation of T-ALL by promoting c-Cbl-induced ubiquitinylation and degradation of Notch1. Biochem Biophys Res Commun 2019; 522:684-689. [PMID: 31785807 DOI: 10.1016/j.bbrc.2019.11.148] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 11/22/2019] [Indexed: 01/05/2023]
Abstract
Aberrant activation of Notch1 signaling frequently occurs in T-cell acute lymphoblastic leukemia (T-ALL). Notch1 activation causes release of intracellular Notch1 (ICN1, the activated form of Notch1) from cell membrane to cytoplasm. As a transcription factor, ICN1 must be transferred into nucleus and bind to the promoters of its downstream target genes. E3 ubiquitin ligase induces ICN1 degradation in cytoplasm, which blocks ICN1 transfer into the nucleus. Flavone is a natural plant polyphenol, demonstrated to have anti-cancer effects in vitro and in vivo in breast and colon cancers. However, the effects of flavone on leukemia have not been reported. In this study, we demonstrated that flavone inhibited cell proliferation by down-regulating Notch1 signal pathway in CCRF-CEM and Molt-4 T-ALL cells. Flavone-mediated upregulation of c-Cbl level results in the increase in its interaction with ICN1, further caused ICN1 ubiquitinylation and degradation. Knockdown of c-Cbl reversed flavone-induced down-regulation of ICN1 and inhibition of cell proliferation in T-ALL cells. In short, this study indicated that flavone exerted resistance to T-ALL by promoting c-Cbl-induced ubiquitinylation and degradation of ICN1.
Collapse
|
8
|
Zhang X, Jin L, Tian Z, Wang J, Yang Y, Liu J, Chen Y, Hu C, Chen T, Zhao Y, He Y. Nitric oxide inhibits autophagy and promotes apoptosis in hepatocellular carcinoma. Cancer Sci 2019; 110:1054-1063. [PMID: 30657629 PMCID: PMC6398894 DOI: 10.1111/cas.13945] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 01/08/2019] [Accepted: 01/11/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the second most common cause of cancer-related mortality worldwide. The expression of nitric oxide synthase (NOS) and the inhibition of autophagy have been linked to cancer cell death. However, the involvement of serum nitric oxide (NO), the expression of NOS and autophagy have not been investigated in HCC. In the present study, we first established that the NO level was significantly higher in hepatitis B virus-related HCC than in the liver cirrhosis control (53.60 ± 19.74 vs 8.09 ± 4.17 μmol/L, t = 15.13, P < 0.0001). Using immunohistochemistry, we found that the source of NO was at least partially attributed to the expression of inducible NOS and endothelial NOS but not neuronal NOS in the liver tissue. Furthermore, in human liver cancer cells, NO-induced apoptosis and inhibited autophagy. Pharmacological inhibition of autophagy also induced apoptosis, whereas the induction of autophagy could ameliorate NO-induced apoptosis. We also found that NO regulates the switch between apoptosis and autophagy by disrupting the Beclin 1/Vps34 association and by increasing the Bcl-2/Beclin 1 interaction. Overall, the present findings suggest that increased NOS/NO promotes apoptosis through the inhibition of autophagy in liver cancer cells, which may provide a novel strategy for the treatment of HCC.
Collapse
Affiliation(s)
- XiaoGang Zhang
- Department of Hepatobiliary SurgeryFirst Affiliated HospitalSchool of MedicineXi'an Jiaotong UniversityXi'an CityChina
| | - Li Jin
- Institution of HepatologyFirst Affiliated HospitalSchool of MedicineXi'an Jiaotong UniversityXi'an CityChina
| | - Zhen Tian
- Institution of HepatologyFirst Affiliated HospitalSchool of MedicineXi'an Jiaotong UniversityXi'an CityChina
| | - Jing Wang
- Institution of HepatologyFirst Affiliated HospitalSchool of MedicineXi'an Jiaotong UniversityXi'an CityChina
| | - Yuan Yang
- Institution of HepatologyFirst Affiliated HospitalSchool of MedicineXi'an Jiaotong UniversityXi'an CityChina
- Department of Infectious DiseasesFirst Affiliated HospitalSchool of MedicineXi'an Jiaotong UniversityXi'an CityChina
| | - JinFeng Liu
- Institution of HepatologyFirst Affiliated HospitalSchool of MedicineXi'an Jiaotong UniversityXi'an CityChina
- Department of Infectious DiseasesFirst Affiliated HospitalSchool of MedicineXi'an Jiaotong UniversityXi'an CityChina
| | - Yi Chen
- Institution of HepatologyFirst Affiliated HospitalSchool of MedicineXi'an Jiaotong UniversityXi'an CityChina
| | - ChunHua Hu
- Institution of HepatologyFirst Affiliated HospitalSchool of MedicineXi'an Jiaotong UniversityXi'an CityChina
| | - TianYan Chen
- Institution of HepatologyFirst Affiliated HospitalSchool of MedicineXi'an Jiaotong UniversityXi'an CityChina
- Department of Infectious DiseasesFirst Affiliated HospitalSchool of MedicineXi'an Jiaotong UniversityXi'an CityChina
| | - YingRen Zhao
- Institution of HepatologyFirst Affiliated HospitalSchool of MedicineXi'an Jiaotong UniversityXi'an CityChina
- Department of Infectious DiseasesFirst Affiliated HospitalSchool of MedicineXi'an Jiaotong UniversityXi'an CityChina
| | - YingLi He
- Institution of HepatologyFirst Affiliated HospitalSchool of MedicineXi'an Jiaotong UniversityXi'an CityChina
- Department of Infectious DiseasesFirst Affiliated HospitalSchool of MedicineXi'an Jiaotong UniversityXi'an CityChina
| |
Collapse
|
9
|
Sagandykova GN, Pomastowski PP, Kaliszan R, Buszewski B. Modern analytical methods for consideration of natural biological activity. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.10.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
10
|
Zheng Z, Zhu W, Yang B, Chai R, Liu T, Li F, Ren G, Ji S, Liu S, Li G. The co-treatment of metformin with flavone synergistically induces apoptosis through inhibition of PI3K/AKT pathway in breast cancer cells. Oncol Lett 2018; 15:5952-5958. [PMID: 29552226 DOI: 10.3892/ol.2018.7999] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 01/24/2018] [Indexed: 12/13/2022] Open
Abstract
Metformin, a widely used antidiabetic drug, exhibits anticancer effects which are mediated by the phosphatidylinositol 3-kinase (PI3K)/serine/threonine kinase (AKT) signaling pathway. However, its use in anticancer therapy combined with other natural products remains unclear. Flavone as the core structure of flavonoids has been demonstrated to induce cell apoptosis without causing serious side effect. Murine double minute X (MDMX) inhibits tumor suppressor gene p53 whose function is associated with the PI3K/AKT pathway. The results presented herein revealed that the combination of metformin and flavone significantly inhibited cell viability, and increased apoptosis of human breast cancer cells compared with metformin or flavone alone. The combination decreased the protein expression of MDMX, activated p53 through the PI3K/AKT signaling pathway, regulated p53 downstream target genes Bcl-2 apoptosis regulator, BCL2 associated X apoptosis regulator and cleaved caspase3, subsequently inducing apoptosis in MDA-MB-231 and MCF-7 breast cancer cells. These results indicated that dietary flavone may potentiate breast cancer cell apoptosis induced by metformin, and PI3K/AKT is involved in regulating MDMX/p53 signaling. This data suggests that dietary supplementary of flavone is a promising strategy for metformin mediated anticancer effects.
Collapse
Affiliation(s)
- Zhaodi Zheng
- Shandong Provincial Key Laboratory of Animal Resistant Biology, School of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, P.R. China
| | - Wenzhen Zhu
- Shandong Provincial Key Laboratory of Animal Resistant Biology, School of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, P.R. China
| | - Bingwu Yang
- Shandong Provincial Key Laboratory of Animal Resistant Biology, School of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, P.R. China
| | - Rongfei Chai
- Shandong Provincial Key Laboratory of Animal Resistant Biology, School of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, P.R. China
| | - Tingting Liu
- Shandong Provincial Key Laboratory of Animal Resistant Biology, School of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, P.R. China
| | - Fenglin Li
- Shandong Provincial Key Laboratory of Animal Resistant Biology, School of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, P.R. China
| | - Guanghui Ren
- Shandong Provincial Key Laboratory of Animal Resistant Biology, School of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, P.R. China
| | - Shuhua Ji
- Shandong Provincial Key Laboratory of Animal Resistant Biology, School of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, P.R. China
| | - Shan Liu
- Shandong Provincial Key Laboratory of Animal Resistant Biology, School of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, P.R. China
| | - Guorong Li
- Shandong Provincial Key Laboratory of Animal Resistant Biology, School of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, P.R. China
| |
Collapse
|
11
|
Salusin- β Is Involved in Diabetes Mellitus-Induced Endothelial Dysfunction via Degradation of Peroxisome Proliferator-Activated Receptor Gamma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:6905217. [PMID: 29359008 PMCID: PMC5735326 DOI: 10.1155/2017/6905217] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 10/08/2017] [Indexed: 12/18/2022]
Abstract
The pathophysiological mechanisms for vascular lesions in diabetes mellitus (DM) are complex, among which endothelial dysfunction plays a vital role. Therapeutic target against endothelial injury may provide critical venues for treatment of diabetic vascular diseases. We recently identified that salusin-β contributed to high glucose-induced endothelial cell apoptosis. However, the roles of salusin-β in DM-induced endothelial dysfunction remain largely elusive. Male C57BL/6J mice were used to induce type 2 diabetes mellitus (T2DM) model. Human umbilical vein endothelial cells (HUVECs) were cultured in high glucose/high fat (HG/HF) medium. We demonstrated increased expression of salusin-β in diabetic aortic tissues and high-glucose/high-fat- (HG/HF-) incubated HUVECs. Disruption of salusin-β by shRNA abrogated the reactive oxygen species (ROS) production, inflammation, and nitrotyrosine content of HUVECs cultured in HG/HF medium. The HG/HF-mediated decrease in peroxisome proliferator-activated receptor γ (PPARγ) expression was restored by salusin-β shRNA, and PPARγ inhibitor T0070907 abolished the protective actions of salusin-β shRNA on endothelial injury in HG/HF-treated HUVECs. Salusin-β silencing obviously improved endothelium-dependent vasorelaxation, oxidative stress, inflammatory response, and nitrative stress in diabetic aorta. Taken together, our results highlighted the essential role of salusin-β in pathological endothelial dysfunction, and salusin-β may be a promising target in treatment of vascular complications of DM.
Collapse
|
12
|
Chen ZW, Miu HF, Wang HP, Wu ZN, Wang WJ, Ling YJ, Xu XH, Sun HJ, Jiang X. Pterostilbene protects against uraemia serum-induced endothelial cell damage via activation of Keap1/Nrf2/HO-1 signaling. Int Urol Nephrol 2017; 50:559-570. [DOI: 10.1007/s11255-017-1734-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 10/25/2017] [Indexed: 12/11/2022]
|
13
|
Song M, Chen Y, Du H, Zhang S, Wang Y, Zeng L, Yang J, Shi J, Wu Y, Wang D, Hu Y, Liu J. RAW REHMANNIA RADIX POLYSACCHARIDE CAN EFFECTIVELY RELEASE PEROXIDATIVE INJURY INDUCED BY DUCK HEPATITIS A VIRUS. AFRICAN JOURNAL OF TRADITIONAL, COMPLEMENTARY, AND ALTERNATIVE MEDICINES 2017. [PMID: 28638862 PMCID: PMC5471485 DOI: 10.21010/ajtcam.v14i4.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background: Duck viral hepatitis (DVH), caused by duck hepatitis A virus (DHAV), is a fatal contagious infectious disease which spreads rapidly with high morbidity and high mortality, and there is no effective clinical drug against DVH. Materials and Methods: Raw Rehmannia Radix Polysaccharide (RRRP), Lycii Fructus polysaccharides and Astragalus Radix polysaccharides were experimented in vitro and in vivo. Mortality rate, livers change, liver lesion scoring, peroxidative injury evaluation indexes in vitro and in vivo, and hepatic injury evaluation indexes of optimal one were detected and observed in this experiment. Results: RRRP could reduce mortality with the protection rate about 20.0% compared with that of the viral control (VC) group, finding that RRRP was the most effective against DHAV. The average liver scoring of the VC, blank control (BC), RRRP groups were 3.5, 0, 2.1. Significant difference (P<0.05) appeared between any two groups, demonstrating that it can alleviate liver pathological change. RRRP could make the hepatic injury evaluation indexes similar to BC group while the levels of the VC group were higher than other two groups in general. The levels of SOD, GSH-Px, CAT of RRRP group showed significant higher than that of VC group while the levels of NOS and MDA showed the opposite tendency, thus, RRRP could release peroxidative injury. Conclusion: RRRP was the most effective against duck hepatitis A virus (DHAV). RRRP could reduce mortality, alleviate liver pathological change, down-regulate liver lesion score, release peroxidative injury and hepatic injury. The antiviral and peroxidative injury releasing activity of RRRP for DHAV provided a platform to test novel drug strategies for hepatitis A virus in human beings.
Collapse
Affiliation(s)
- Meiyun Song
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P R China
| | - Yun Chen
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P R China
| | - Hongxu Du
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P R China
| | - Shuaibing Zhang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P R China
| | - Yixuan Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P R China
| | - Ling Zeng
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P R China
| | - Jingjing Yang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P R China
| | - Jintong Shi
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P R China
| | - Yi Wu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P R China
| | - Deyun Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P R China
| | - Yuanliang Hu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P R China
| | - Jiaguo Liu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P R China
| |
Collapse
|
14
|
Flavone inhibits migration through DLC1/RhoA pathway by decreasing ROS generation in breast cancer cells. In Vitro Cell Dev Biol Anim 2016; 52:589-97. [DOI: 10.1007/s11626-016-0010-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 02/11/2016] [Indexed: 12/14/2022]
|