1
|
Ogura T, Okada T. Observation of biological and emulsion samples by newly developed three-dimensional impedance scanning electron microscopy. Comput Struct Biotechnol J 2024; 23:4064-4076. [PMID: 39628906 PMCID: PMC11613192 DOI: 10.1016/j.csbj.2024.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/08/2024] [Accepted: 11/09/2024] [Indexed: 12/06/2024] Open
Abstract
Imaging at nanometre-scale resolution is indispensable for many scientific fields such as biology, chemistry, material science and nanotechnology. Scanning electron microscopes (SEM) are widely used as important tools for the nanometre-scale analysis of various samples. However, because of the vacuum inside the SEM, a typical analysis requires fixation of samples, a drying process, and staining with heavy metals. Therefore, there is a need for convenient and minimally invasive methods of observing samples in solution. Recently, we have developed a new type of impedance microscopy, multi-frequency impedance SEM (IP-SEM), which allows nanoscale imaging of various specimens in water with minimal radiation damage. Here, we report a new IP-SEM system equipped with a linear-array terminal, which allows eight tilted images to be observed in a single capture by applying eight frequencies of input signals to each electrode. Furthermore, we developed a three-dimensional (3D) reconstruction method based on the Simulated Annealing (SA) algorithm, which enables us to construct a high-precision 3D model from the 8 tilted images. The method reported here can be easily used for 3D structural analysis of various biological samples, organic materials, and nanoparticles.
Collapse
Affiliation(s)
- Toshihiko Ogura
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Tomoko Okada
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi, Tsukuba, Ibaraki 305-8566, Japan
| |
Collapse
|
2
|
Nakada M, Ishida H, Uchiyama H, Ota R, Ogura T, Namiki Y. Disaggregation and fibrillation during sol-gel transition of alginate hydrogels. Int J Biol Macromol 2024; 269:131890. [PMID: 38692534 DOI: 10.1016/j.ijbiomac.2024.131890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/27/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
The rheological and morphological characteristics of Ca-crosslinked alginate hydrogels with two different M/G ratios, α-L-guluronate (G)-rich and β-D-mannuronate (M)-rich, each with one alginic acid concentration, were investigated. It was found that the stiffness and elasticity of alginate hydrogels are derived from the thickness and density of the fibril network structures. In aqueous alginate solution, ball-like aggregates of alginates are present. Time-resolved small-angle X-ray scattering and time-domain nuclear magnetic resonance measurements suggest that the disaggregation of alginate aggregates and loose fibrillation occur in the early stage of the sol-gel transition. After these induction stage, direct gelation is finally caused by the formation of the egg-box junction. G-rich alginate hydrogel has a higher stiffness and a thicker and denser fibril network structure than M-rich alginate hydrogel. The former also exhibits faster and more significant changes in physical properties during the sol-gel transition.
Collapse
Affiliation(s)
- Masaru Nakada
- Toray Research Center, Inc., 2-11 Sonoyama 3-chome, Otsu 520-8567, Shiga, Japan.
| | - Hiroyuki Ishida
- Toray Research Center, Inc., 2-11 Sonoyama 3-chome, Otsu 520-8567, Shiga, Japan
| | - Hironobu Uchiyama
- Toray Research Center, Inc., 2-11 Sonoyama 3-chome, Otsu 520-8567, Shiga, Japan
| | - Rena Ota
- Toray Research Center, Inc., 2-11 Sonoyama 3-chome, Otsu 520-8567, Shiga, Japan
| | - Toshihiko Ogura
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi, Tsukuba 305-8566, Ibaraki, Japan
| | - Yusuke Namiki
- KIMICA Corporation, 2-1-1 Yaesu, Chuo-ku, 104-0028 Tokyo, Japan
| |
Collapse
|
3
|
Mastrangelo R, Okada T, Ogura T, Ogura T, Baglioni P. Direct observation of the effects of chemical fixation in MNT-1 cells: A SE-ADM and Raman study. Proc Natl Acad Sci U S A 2023; 120:e2308088120. [PMID: 38091295 PMCID: PMC10743460 DOI: 10.1073/pnas.2308088120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/16/2023] [Indexed: 12/18/2023] Open
Abstract
Aldehydes fixation was accidentally discovered in the early 20th century and soon became a widely adopted practice in the histological field, due to an excellent staining enhancement in tissues imaging. However, the fixation process itself entails cell proteins denaturation and crosslinking. The possible presence of artifacts, that depends on the specific system under observation, must therefore be considered to avoid data misinterpretation. This contribution takes advantage of scanning electron assisted-dielectric microscopy (SE-ADM) and Raman 2D imaging to reveal the possible presence and the nature of artifacts in unstained, and paraformldehyde, PFA, fixed MNT-1 cells. The high resolution of the innovative SE-ADM technique allowed the identification of globular protein clusters in the cell cytoplasm, formed after protein denaturation and crosslinking. Concurrently, SE-ADM images showed a preferential melanosome adsorption on the cluster's outer surface. The micron-sized aggregates were discernible in Raman 2D images, as the melanosomes signal, extracted through 2D principal component analysis, unequivocally mapped their location and distribution within the cells, appearing randomly distributed in the cytoplasm. Protein clusters were not observed in living MNT-1 cells. In this case, mature melanosomes accumulate preferentially at the cell periphery and are more closely packed than in fixed cells. Our results show that, although PFA does not affect the melanin structure, it disrupts melanosome distribution within the cells. Proteins secondary structure, conversely, is partially lost, as shown by the Raman signals related to α-helix, β-sheets, and specific amino acids that significantly decrease after the PFA treatment.
Collapse
Affiliation(s)
- Rosangela Mastrangelo
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba305-8566, Japan
- NIKKOL GROUP Nikko Chemicals Co., Ltd., Tokyo174-0046, Japan
- Department of Chemistry and Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (Center for Colloid and Surface Science), University of Florence, FlorenceI-50019, Italy
| | - Tomoko Okada
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba305-8566, Japan
| | - Taku Ogura
- NIKKOL GROUP Nikko Chemicals Co., Ltd., Tokyo174-0046, Japan
| | - Toshihiko Ogura
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba305-8566, Japan
| | - Piero Baglioni
- Department of Chemistry and Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (Center for Colloid and Surface Science), University of Florence, FlorenceI-50019, Italy
| |
Collapse
|
4
|
Ogura T, Okada T, Hatano M, Nakamura M, Agemura T. Development of General-purpose Dielectric Constant Imaging Unit for SEM and Direct Observation of Samples in Aqueous Solution. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:1037-1046. [PMID: 37749668 DOI: 10.1093/micmic/ozad030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/06/2023] [Accepted: 02/22/2023] [Indexed: 09/27/2023]
Abstract
Electron microscopes can observe samples with a spatial resolution of 10 nm or higher; however, they cannot observe samples in solutions due to the vacuum conditions inside the sample chamber. Recently, we developed a scanning electron-assisted dielectric microscope (SE-ADM), based on scanning electron microscope, which enables the observation of various specimens in solution. Until now, the SE-ADM system used a custom-made SE-ADM stage with a built-in amplifier and could not be linked to the scanning electron microscopy (SEM) operation system. Therefore, it was necessary to manually acquire images from the SE-ADM system after setting the EB focus, astigmatism, and observation field-of-view from the SEM operating console. In this study, we developed a general-purpose dielectric constant imaging unit attached to commercially available SEMs. The new SE-ADM unit can be directly attached to the standard stage of an SEM, and the dielectric signal detected from this unit can be input to the external input terminal of the SEM, enabling simultaneous observation yielding SEM and SE-ADM images. Furthermore, 4.5 nm spatial resolution was achieved using a 10 nm thick silicon nitride film in the sample holder in the observation of aggregated PM2.5. We carried out the observation of cultured cells, PM2.5, and clay samples in solution.
Collapse
Affiliation(s)
- Toshihiko Ogura
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1, Tsukuba, Ibaraki 305-8566, Japan
| | - Tomoko Okada
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1, Tsukuba, Ibaraki 305-8566, Japan
| | - Michio Hatano
- Hitachi High-Tech Corporation, Ichige 882, Hitachinaka, Ibaraki 312-8504, Japan
| | - Mitsuhiro Nakamura
- Hitachi High-Tech Corporation, Ichige 882, Hitachinaka, Ibaraki 312-8504, Japan
| | - Toshihide Agemura
- Hitachi High-Tech Corporation, Ichige 882, Hitachinaka, Ibaraki 312-8504, Japan
| |
Collapse
|
5
|
Minoda A, Ueda S, Miyashita SI, Ogura T, Natori S, Sun J, Takahashi Y. Reversible adsorption of iridium in lyophilized cells of the unicellular red alga Galdieria sulphuraria. RSC Adv 2023; 13:14217-14223. [PMID: 37179988 PMCID: PMC10168022 DOI: 10.1039/d3ra01249b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Iridium (Ir) is one of the rarest elements in the Earth's crust and is valuable in industry due to its high corrosion resistance. In this study, we used lyophilized cells of a unicellular red alga, Galdieria sulphuraria for the selective recovery of small amounts of Ir from hydrochloric acid (HCl) solutions. The Ir recovery efficiency of the lyophilized cells was higher than that of activated carbon and comparable to that of an ion-exchange resin in up to 0.2 M acid. Lyophilized G. sulphuraria cells showed different selectivity from the ion-exchange resin, adsorbing Ir and Fe in 0.2 M HCl solution while the ion-exchange resin adsorbed Ir and Cd. The adsorbed Ir could be eluted with more than 90% efficiency using HCl, ethylenediaminetetraacetic acid, and potassium hydroxide solutions, but could not be eluted using a thiourea-HCl solution. After the elution of Ir with a 6 M HCl solution, lyophilized cells could be reused up to five times for Ir recovery with over 60% efficiency. Scanning electron-assisted dielectric microscopy and scanning electron microscopy revealed that Ir accumulated in the cytosol of the lyophilized cells. X-ray absorption fine structure analysis demonstrated the formation of an outer-sphere complex between Ir and the cellular residues, suggesting the adsorption via ion exchange, and explaining the ability to elute the Ir and reuse the cells. Our results provide a scientific basis for inexpensive and environmentally friendly biosorbents as an alternative to ion-exchange resins for the recovery of Ir.
Collapse
Affiliation(s)
- Ayumi Minoda
- Faculty of Life and Environmental Sciences, University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaragi 305-8572 Japan +81-29-853-6662 +81-29-853-6662
| | - Shuya Ueda
- School of Life and Environmental Sciences, University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaragi 305-8572 Japan
| | - Shin-Ichi Miyashita
- National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST) 1-1-1 Umezono Tsukuba Ibaraki 305-8563 Japan
| | - Toshihiko Ogura
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) Central 6, Higashi Tsukuba Ibaraki 305-8566 Japan
| | - Sachika Natori
- Department of Earth and Planetary Science, the University of Tokyo Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Jing Sun
- Department of Earth and Planetary Science, the University of Tokyo Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Yoshio Takahashi
- Department of Earth and Planetary Science, the University of Tokyo Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| |
Collapse
|
6
|
Okada T, Iwayama T, Ogura T, Murakami S, Ogura T. Structural analysis of melanosomes in living mammalian cells using scanning electron-assisted dielectric microscopy with deep neural network. Comput Struct Biotechnol J 2022; 21:506-518. [PMID: 36618988 PMCID: PMC9807747 DOI: 10.1016/j.csbj.2022.12.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Melanins are the main pigments found in mammals. Their synthesis and transfer to keratinocytes have been widely investigated for many years. However, analysis has been mainly carried out using fixed rather than live cells. In this study, we have analysed the melanosomes in living mammalian cells using newly developed scanning electron-assisted dielectric microscopy (SE-ADM). The melanosomes in human melanoma MNT-1 cells were observed as clear black particles in SE-ADM. The main structure of melanosomes was toroidal while that of normal melanocytes was ellipsoidal. In tyrosinase knockout MNT-1 cells, not only the black particles in the SE-ADM images but also the Raman shift of melanin peaks completely disappeared suggesting that the black particles were really melanosomes. We developed a deep neural network (DNN) system to automatically detect melanosomes in cells and analysed their diameter and roundness. In terms of melanosome morphology, the diameter of melanosomes in melanoma cells did not change while that in normal melanocytes increased during culture. The established DNN analysis system with SE-ADM can be used for other particles, e.g. exosomes, lysosomes, and other biological particles.
Collapse
Affiliation(s)
- Tomoko Okada
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Tomoaki Iwayama
- Department of Periodontology, Osaka University Graduate School of Dentistry, 1-8 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Taku Ogura
- Chemical Business Unit, Nikko Chemicals Co., Ltd., Itabashi-ku, Tokyo 174-0046, Japan
| | - Shinya Murakami
- Department of Periodontology, Osaka University Graduate School of Dentistry, 1-8 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Toshihiko Ogura
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi, Tsukuba, Ibaraki 305-8566, Japan,Correspondence to: Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Higashi 1-1-1, Tsukuba, Ibaraki 305-8566, Japan.
| |
Collapse
|
7
|
Chuong TT, Ogura T, Hiyoshi N, Takahashi K, Lee S, Hiraga K, Iwase H, Yamaguchi A, Kamagata K, Mano E, Hamakawa S, Nishihara H, Kyotani T, Stucky GD, Itoh T. Giant Carbon Nano-Test Tubes as Versatile Imaging Vessels for High-Resolution and In Situ Observation of Proteins. ACS APPLIED MATERIALS & INTERFACES 2022; 14:26507-26516. [PMID: 35548999 DOI: 10.1021/acsami.2c06318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cryogenic electron microscopy is one of the fastest and most robust methods for capturing high-resolution images of proteins, but stringent sample preparation, imaging conditions, and in situ radiation damage inflicted during data acquisition directly affect the resolution and ability to capture dynamic details, thereby limiting its broader utilization and adoption for protein studies. We addressed these drawbacks by introducing synthesized giant carbon nano-test tubes (GCNTTs) as radiation-insulating materials that lessen the irradiation impact on the protein during data acquisition, physical molecular concentrators that localize the proteins within a nanoscale field of view, and vessels that create a microenvironment for solution-phase imaging. High-resolution electron microscopy images of single and aggregated hemoglobin molecules within GCNTTs in both solid and solution states were acquired. Subsequent scanning transmission electron microscopy, small-angle neutron scattering, and fluorescence studies demonstrated that the GCNTT vessel protected the hemoglobin molecules from electron irradiation-, light-, or heat-induced denaturation. To demonstrate the robustness of GCNTT as an imaging platform that could potentially augment the study of proteins, we demonstrated the robustness of the GCNTT technique to image an alternative protein, d-fructose dehydrogenase, after cyclic voltammetry experiments to review encapsulation and binding insights. Given the simplicity of the material synthesis, sample preparation, and imaging technique, GCNTT is a promising imaging companion for high-resolution, single, and dynamic protein studies under electron microscopy.
Collapse
Affiliation(s)
- Tracy T Chuong
- National Institute of Advanced Industrial Science Technology (AIST), Sendai 983-8551, Japan
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106-9510, United States
| | - Toshihiko Ogura
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8566, Japan
| | - Norihito Hiyoshi
- National Institute of Advanced Industrial Science Technology (AIST), Sendai 983-8551, Japan
| | - Kazuma Takahashi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - Sangho Lee
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - Keita Hiraga
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - Hiroki Iwase
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society (CROSS), Tokai, Ibaraki 319-1106, Japan
| | - Akira Yamaguchi
- Institute of Quantum Beam Science, Ibaraki University, Mito, Ibaraki 310-8512, Japan
| | - Kiyoto Kamagata
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - Eriko Mano
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - Satoshi Hamakawa
- National Institute of Advanced Industrial Science Technology (AIST), Sendai 983-8551, Japan
| | - Hirotomo Nishihara
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan
| | - Takashi Kyotani
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - Galen D Stucky
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106-9510, United States
| | - Tetsuji Itoh
- National Institute of Advanced Industrial Science Technology (AIST), Sendai 983-8551, Japan
| |
Collapse
|
8
|
Ogura T. Raman scattering enhancement of dielectric microspheres on silicon nitride film. Sci Rep 2022; 12:5346. [PMID: 35351962 PMCID: PMC8964696 DOI: 10.1038/s41598-022-09315-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/15/2022] [Indexed: 11/08/2022] Open
Abstract
Circulating light in the total internal reflection within dielectric spheres or disks is called the whispering gallery mode (WGM), which by itself is highly sensitive to its surface and capable of detecting viruses and single atomic ions. The detection site of the sensors using WGM is created by the evanescent light from the circulating light inside spheres. Here we report anomalous Raman scattering enhancement in dielectric microspheres on a silicon nitride (SiN) film. This Raman enhancement occurs at the periphery of the spheres, and a similar ring of light was also observed under a fluorescence microscope. This is caused by the light circulating around the dielectric spheres as in the WGM. We observed anomalously enhanced Raman spectrum at the periphery of 3 μm diameter polystyrene (PS) microspheres on a SiN film using confocal laser Raman microscopy. The wavelength intensity of this enhanced Raman spectrum was accompanied by periodic changes due to interference. These features may lead to the development of high-sensitive sensors and optical devices.
Collapse
Affiliation(s)
- Toshihiko Ogura
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8566, Japan.
| |
Collapse
|
9
|
Nakauchi Y, Nishinami S, Murakami Y, Ogura T, Kano H, Shiraki K. Opalescence Arising from Network Assembly in Antibody Solution. Mol Pharm 2022; 19:1160-1167. [PMID: 35274955 DOI: 10.1021/acs.molpharmaceut.1c00929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Opalescence of therapeutic antibody solutions is one of the concerns in drug formulation. However, the mechanistic insights into the opalescence of antibody solutions remain unclear. Here, we investigated the assembly states of antibody molecules as a function of antibody concentration. The solutions of bovine gamma globulin and human immunoglobulin G at around 100 mg/mL showed the formation of submicron-scale network assemblies. The network assembly resulted in the appearance of opalescence with a transparent blue color without the precipitates of antibodies. Furthermore, the addition of trehalose and arginine, previously known to act as protein stabilizers and protein aggregation suppressors, was able to suppress the opalescence arising from the network assembly. These results will provide an important information for evaluating and improving protein formulations.
Collapse
Affiliation(s)
- Yoshitaka Nakauchi
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8573, Ibaraki, Japan
| | - Suguru Nishinami
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8573, Ibaraki, Japan
| | - Yusuke Murakami
- Ph.D. Program in Humanics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Ibaraki, Japan.,International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan
| | - Toshihiko Ogura
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Higashi, Tsukuba 305-8566, Ibaraki, Japan
| | - Hideaki Kano
- Department of Chemistry, Kyusyu University, 744, Motooka, Nishi-ku, Fukuoka-shi 819-0395, Fukuoka, Japan
| | - Kentaro Shiraki
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8573, Ibaraki, Japan
| |
Collapse
|
10
|
Miyashita SI, Ogura T, Kondo T, Fujii SI, Inagaki K, Takahashi Y, Minoda A. Recovery of Au from dilute aqua regia solutions via adsorption on the lyophilized cells of a unicellular red alga Galdieria sulphuraria: A mechanism study. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127982. [PMID: 34894509 DOI: 10.1016/j.jhazmat.2021.127982] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/28/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
The high electrical conductivity, chemical stability, and low toxicity of elemental Au make it a highly valuable resource. However, wastewater produced during the mining, utilization, and disposal of Au inevitably contains small amounts (10-40 mg L-1) of Au, thus posing environmental risks. It is too acidic to be treated with inexpensive and eco-friendly bioadsorbents previously studied for the remediation of less acidic effluents. Herein, lyophilized Galdieria sulphuraria cells are shown to directly adsorb Au from simulated Au-containing wastewater with a total acid concentration of 4 M, achieving an adsorption capacity of 35 ± 2.5 mg g-1 Au after 30-min exposure and a selectivity that exceeds that of an ion-exchange resin and is comparable to that of activated carbon. Additionally, Au adsorbed on these cells is more easily eluted than that adsorbed on the ion-exchange resin or activated carbon. Detailed characterizations reveal that Au accumulates on the surface of lyophilized cells, where it is mainly present as AuCl4- and not as Au0, in contrast to a previously proposed adsorption mechanism. Thus, our work provides valuable insights into the mechanism of Au adsorption on biomaterials and paves the way to the cheap and eco-friendly recovery of Au from acidic wastewater.
Collapse
Affiliation(s)
- Shin-Ichi Miyashita
- National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 3, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8563, Japan.
| | - Toshihiko Ogura
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 6, Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| | - Takahiro Kondo
- Department of Materials Science and Tsukuba Research Center for Energy Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| | - Shin-Ichiro Fujii
- National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 3, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8563, Japan.
| | - Kazumi Inagaki
- National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 3, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8563, Japan.
| | - Yoshio Takahashi
- Department of Earth and Planetary Science, the University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Ayumi Minoda
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| |
Collapse
|
11
|
Ogura T. Development of multi-frequency impedance scanning electron microscopy. PLoS One 2022; 17:e0263098. [PMID: 35077509 PMCID: PMC8789111 DOI: 10.1371/journal.pone.0263098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/11/2022] [Indexed: 11/23/2022] Open
Abstract
Nanometre-scale observation of specimens in water is indispensable in many scientific fields like biology, chemistry, material science and nanotechnology. Scanning electron microscopy (SEM) allows high-resolution images of biological samples to be obtained under high vacuum conditions but requires specific sample-preparation protocols. Therefore, there is a need for convenient and minimally invasive methods of observing samples in solution. We have developed a new type of impedance microscopy, namely multi-frequency impedance SEM (IP-SEM), which allows nanoscale imaging of various specimens in water while minimising radiation damage. By varying the frequency of the input voltage signal of the sine wave, the present system can detect dielectric properties of the sample’s composition at nanometre resolution. It also enables examination of unstained biological specimens and material samples in water. Furthermore, it can be used for diverse samples in liquids across a broad range of scientific subjects such as nanoparticles, nanotubes and organic and catalytic materials.
Collapse
Affiliation(s)
- Toshihiko Ogura
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
- * E-mail:
| |
Collapse
|
12
|
Nano-Microscopy of Therapeutic Antibody Aggregates in Solution. Methods Mol Biol 2021. [PMID: 34478141 DOI: 10.1007/978-1-0716-1450-1_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Scanning electron-assisted dielectric microscopy (SE-ADM) is a new microscope technology developed to observe the fine structure of biological samples in aqueous solution. One main advantage of SE-ADM is that it does not require sample pretreatment, including dehydration, drying, and staining, which is indispensable in conventional scanning electron microscopy (SEM) and can cause sample deformation. In addition, the sample is not directly irradiated with an electron beam in SE-ADM, further avoiding damage. The resolution of SE-ADM is higher than that of an optical microscope, which is typically used for observing biological samples in a solution, allowing for the observation of the detailed structure of samples. Considering these advantages, we applied SE-ADM to observe aggregates of therapeutic immunoglobulin G (IgG) of various sizes and shapes in an aqueous solution. In this chapter, we outline the step-by-step procedure for observing aggregates of monoclonal antibodies using SE-ADM and the subsequent analysis of the particle distribution and calculation of the fractal dimension using SE-ADM image data. The proposed method for particle analysis is highly reliable with respect to size measurement and can determine the diameter of a sample with an accuracy of ±20%, a precision of ±10%, and a lower limit of quantification of ≤50 nm. Further, by calculating the fractal dimension of the image, it is possible to classify the shape of the aggregates and determine the mechanism of aggregation.
Collapse
|
13
|
Iwase H, Kubota M, Itoh T, Ogura T, Ebina T, Ohtani H, Kurosaka K, Fukushima Y. Direct Observation of the Relationship between Thixotropic Behavior and Shear-Induced Orientation of Clay Particles in Synesthetic Hectorite Suspensions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:6435-6441. [PMID: 34010001 DOI: 10.1021/acs.langmuir.1c00404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A thixotropic characteristics of aqueous gels containing smectite clay minerals were used in various industrial applications such as paint additives, which have been affected by the clay types and clay particle sizes. A model called a house-of-card arrangement of clay particles and anisotropic arrangement in aqueous gels has been proposed. We prepared different sizes of synthetic hectorite and studied them by scanning electron-assisted dielectric microscopy (SE-ADM) and simultaneous small-angle neutron scattering and rheological measurements (Rheo-SANS). The Rheo-SANS results indicated that the clay particles with the cross-sectional radius of 30 nm were clearly oriented in the direction of shear-flow (1 × 103 s-1) direction, but the anisotropic change was not observed for an aqueous gel with clays whose average radius was 19.5 nm. The present study suggested the thixotropic characteristics of aqueous gels depend on the hectorite particle size and aggregation structure under shear conditions.
Collapse
Affiliation(s)
- Hiroki Iwase
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society (CROSS), 162-1 Shirakata, Tokai, Ibaraki 319-1106, Japan
| | - Munehiro Kubota
- Iwaki Laboratory, Kunimine Industries Co., Ltd., 23-5 Kuidesaku, Shimofunao, Iwaki, Fukushima 972-8312, Japan
| | - Tetsuji Itoh
- Research Institute for Chemical Process Technology, National Institute of Advanced Industrial Science and Technology (AIST), 4-2-1 Nigatake, Miyagino, Sendai, Miyagi 983-8551, Japan
| | - Toshihiko Ogura
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba , Ibaraki 305-8566, Japan
| | - Takeo Ebina
- Research Institute for Chemical Process Technology, National Institute of Advanced Industrial Science and Technology (AIST), 4-2-1 Nigatake, Miyagino, Sendai, Miyagi 983-8551, Japan
| | - Hiroyuki Ohtani
- Iwaki Laboratory, Kunimine Industries Co., Ltd., 23-5 Kuidesaku, Shimofunao, Iwaki, Fukushima 972-8312, Japan
| | - Keiichi Kurosaka
- Iwaki Laboratory, Kunimine Industries Co., Ltd., 23-5 Kuidesaku, Shimofunao, Iwaki, Fukushima 972-8312, Japan
| | - Yoshiaki Fukushima
- Advanced Institute of Materials Science, Yamabuki, 358-5, Tokyo, Shinjuku 162-0801, Japan
| |
Collapse
|
14
|
Okada T, Ogura T. Scanning Electron-Assisted Dielectric Microscopy Reveals Autophagosome Formation by LC3 and ATG12 in Cultured Mammalian Cells. Int J Mol Sci 2021; 22:ijms22041834. [PMID: 33673233 PMCID: PMC7917705 DOI: 10.3390/ijms22041834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 01/01/2023] Open
Abstract
Autophagy is an intracellular self-devouring system that plays a central role in cellular recycling. The formation of functional autophagosomes depends on several autophagy-related proteins, including the microtubule-associated proteins 1A/1B light chain 3 (LC3) and the conserved autophagy-related gene 12 (Atg12). We have recently developed a novel scanning electron-assisted dielectric microscope (SE-ADM) for nanoscale observations of intact cells. Here, we used the SE-ADM system to observe LC3- and Atg12-containing autophagosomes in cells labelled in the culture medium with antibodies conjugated to colloidal gold particles. We observed that, during autophagosome formation, Atg12 localized along the actin meshwork structure, whereas LC3 formed arcuate or circular alignments. Our system also showed a difference in the distribution of LC3 and Atg12; Atg12 was broadly distributed while LC3 was more localized. The difference in the spatial distribution demonstrated by our system explains the difference in the size of fluorescent spots due to the fluorescently labelled antibodies observed using optical microscopy. The direct SE-ADM observation of cells should thus be effective in analyses of autophagosome formation.
Collapse
|
15
|
Okada T, Iwayama T, Murakami S, Torimura M, Ogura T. Nanoscale observation of PM2.5 incorporated into mammalian cells using scanning electron-assisted dielectric microscope. Sci Rep 2021; 11:228. [PMID: 33420286 PMCID: PMC7794539 DOI: 10.1038/s41598-020-80546-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/21/2020] [Indexed: 11/25/2022] Open
Abstract
PM2.5 has been correlated with risk factors for various diseases and infections. It promotes tissue injury by direct effects of particle components. However, effects of PM2.5 on cells have not been fully investigated. Recently, we developed a novel imaging technology, scanning electron-assisted dielectric-impedance microscopy (SE-ADM), which enables observation of various biological specimens in aqueous solution. In this study, we successfully observed PM2.5 incorporated into living mammalian cells in culture media. Our system directly revealed the process of PM2.5 aggregation in the cells at a nanometre resolution. Further, we found that the PM2.5 aggregates in the intact cells were surrounded by intracellular membrane-like structures of low-density in the SE-ADM images. Moreover, the PM2.5 aggregates were shown by confocal Raman microscopy to be located inside the cells rather than on the cell surface. We expect our method to be applicable to the observation of various nanoparticles inside cells in culture media.
Collapse
Affiliation(s)
- Tomoko Okada
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8566, Japan
| | - Tomoaki Iwayama
- Department of Periodontology, Osaka University Graduate School of Dentistry, 1-8 Yamada-oka, Suita, Osaka, 565-0851, Japan
| | - Shinya Murakami
- Department of Periodontology, Osaka University Graduate School of Dentistry, 1-8 Yamada-oka, Suita, Osaka, 565-0851, Japan
| | - Masaki Torimura
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki, 305-8569, Japan
| | - Toshihiko Ogura
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8566, Japan.
| |
Collapse
|
16
|
Khan MSI, Oh SW, Kim YJ. Power of Scanning Electron Microscopy and Energy Dispersive X-Ray Analysis in Rapid Microbial Detection and Identification at the Single Cell Level. Sci Rep 2020; 10:2368. [PMID: 32047250 PMCID: PMC7012924 DOI: 10.1038/s41598-020-59448-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 01/29/2020] [Indexed: 01/28/2023] Open
Abstract
The demand for rapid, consistent and easy-to-use techniques for detecting and identifying pathogens in various areas, such as clinical diagnosis, the pharmaceutical industry, environmental science and food inspection, is very important. In this study, the reference strains of six food-borne pathogens, namely, Escherichia coli 0157: H7 ATCC 43890, Cronobacter sakazakii ATCC 29004, Salmonella Typhimurium ATCC 43971, Staphylococcus aureus KCCM 40050, Bacillus subtilis ATCC 14579, and Listeria monocytogenes ATCC 19115, were chosen for scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) analysis. In our study, the time-consuming sample preparation step for the microbial analysis under SEM was avoided, which makes this detection process notably rapid. Samples were loaded onto a 0.01-µm-thick silver (Ag) foil surface to avoid any charging effect. Two different excitation voltages, 10 kV and 5 kV, were used to determine the elemental information. Information obtained from SEM-EDX can distinguish individual single cells and detect viable and nonviable microorganisms. This work demonstrates that the combination of morphological and elemental information obtained from SEM-EDX analysis with the help of principal component analysis (PCA) enables the rapid identification of single microbial cells without following time-consuming microbiological cultivation methods.
Collapse
Affiliation(s)
- Muhammad Saiful Islam Khan
- Korea Food Research Institute, Consumer Safety Research Division, 55365, Wanju-Gun, Jeollabuk-Do, Republic of Korea
| | - Se-Wook Oh
- Department of Food and Nutrition, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul, 02707, Republic of Korea
| | - Yun-Ji Kim
- Korea Food Research Institute, Consumer Safety Research Division, 55365, Wanju-Gun, Jeollabuk-Do, Republic of Korea. .,Department of Food Biotechnology, University of Science and Technology, Daejeon, 305-350, Republic of Korea.
| |
Collapse
|
17
|
Fukuda E, Mori M, Shiku H, Miyahara Y, Kawamura Y, Ogawa K, Ogura T, Goshima N. Development of INSOL-tag for proteome-wide protein handling and its application in protein array analysis. Genes Cells 2019; 25:41-53. [PMID: 31733161 DOI: 10.1111/gtc.12735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/13/2019] [Accepted: 11/13/2019] [Indexed: 11/30/2022]
Abstract
Proteomic analysis requires protein tags that enable high-throughput handling; however, versatile tags that can be used in in vitro expression systems are currently lacking. In this study, we developed an insoluble protein tag, INSOL-tag, derived from human transcription factor MafG. The INSOL-tagged target protein is expressed in a eukaryotic in vitro expression system and recovered as a pellet following centrifugation at 19,000 × g for 20 min. Comparisons of the target protein recovery rates of GST-tag and INSOL-tag using 111 cytoplasmic proteins revealed a fourfold increase in the yield of INSOL-tagged proteins. Using 267 cancer antigens purified with INSOL-tag, we subsequently developed an INSOL-CTA array method, for profiling autoantibodies in sera of cancer patients. The detection limit of the array was approximately 11.1 pg IgG, and the correlation with ELISA was high (R2 = .993, .955). Moreover, when autoantibody profiling of digestive cancer patient sera was performed, antigen spreading was observed. These data suggest that INSOL-tag is a versatile tag that can insolubilize a wide range of target proteins. It is therefore expected to become a powerful tool in comprehensive protein preparation for protein arrays, antibody production, and mass spectrometry.
Collapse
Affiliation(s)
- Eriko Fukuda
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Koto-ku, Tokyo, Japan.,Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Masatoshi Mori
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Koto-ku, Tokyo, Japan
| | - Hiroshi Shiku
- Department of Immuno-Gene Therapy, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Yoshihiro Miyahara
- Department of Immuno-Gene Therapy, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | | | - Koji Ogawa
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Koto-ku, Tokyo, Japan
| | - Toshihiko Ogura
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Naoki Goshima
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Koto-ku, Tokyo, Japan
| |
Collapse
|
18
|
Direct observation of unstained biological samples in water using newly developed impedance scanning electron microscopy. PLoS One 2019; 14:e0221296. [PMID: 31430321 PMCID: PMC6701803 DOI: 10.1371/journal.pone.0221296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 08/03/2019] [Indexed: 11/26/2022] Open
Abstract
Nanometre-scale observation of specimens in water is indispensable in several scientific fields, such as biology, chemistry, materials science and nanotechnology. Scanning electron microscopy (SEM) obtains high-resolution images of biological samples under high vacuum conditions but requires specific sample-preparation protocols. Observations of unstained biological samples in water require more convenient and less invasive methods. Herein, we have developed a new type of impedance microscopy, namely impedance SEM (IP-SEM), which allows the imaging and sub-micrometer scale examination of various specimens in water. By varying the frequency of the input signal, the proposed system can detect the impedance properties of the sample’s composition at sub-micrometer scale resolution. Besides examining various unstained biological specimens and material samples in water. Furthermore, the proposed system can be used for diverse liquid samples across a broad range of scientific fields, such as nanoparticles, nanotubes and organic and catalytic materials.
Collapse
|
19
|
Kanehira K, Yano Y, Hasumi H, Fukuhara H, Inoue K, Hanazaki K, Yao M. Fluorescence Enhancement Effect of TiO 2 Nanoparticles and Application for Photodynamic Diagnosis. Int J Mol Sci 2019; 20:E3698. [PMID: 31357730 PMCID: PMC6695909 DOI: 10.3390/ijms20153698] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 07/17/2019] [Accepted: 07/26/2019] [Indexed: 12/23/2022] Open
Abstract
Photodynamic diagnosis (PDD) can improve diagnostic accuracy by using PDD agents such as 5-aminolevulinic acid (ALA). However, the weakness and photobleaching of fluorescence of PDD agents may lead to insufficient fluorescence visibility for the detection of cancer during resection operations. We focused on the "fluorescence enhancement effect" resulting from the addition of polyethylene glycol-modified titanium dioxide nanoparticles (TiO2-PEG NPs) to address these problems. The results showed that the combined administration of TiO2-PEG NPs and ALA could enhance and prolong fluorescence in bladder cancer cells, similar to in the mixture alone. It was suggested that the fluorescence enhancement was related to the accumulation of TiO2-PEG NPs in cells via endocytosis, causing the light scattering and enhancement of fluorescence. This fluorescence enhancement effect could be applicable for PDD.
Collapse
Affiliation(s)
- Koki Kanehira
- Biotechnology Group, TOTO Ltd. Research Institute, Chigasaki 253-8577, Japan.
- Department of Urology, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan.
| | - Yukiko Yano
- Biotechnology Group, TOTO Ltd. Research Institute, Chigasaki 253-8577, Japan
| | - Hisashi Hasumi
- Department of Urology, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| | - Hideo Fukuhara
- Center for Photodynamic Medicine, Kochi Medical School, Kohasu, Oko, Nankoku, Kochi 783-8505, Japan
- Department of Urology, Kochi Medical School, Kohasu, Oko, Nankoku, Kochi 783-8505, Japan
| | - Keiji Inoue
- Center for Photodynamic Medicine, Kochi Medical School, Kohasu, Oko, Nankoku, Kochi 783-8505, Japan
- Department of Urology, Kochi Medical School, Kohasu, Oko, Nankoku, Kochi 783-8505, Japan
| | - Kazuhiro Hanazaki
- Center for Photodynamic Medicine, Kochi Medical School, Kohasu, Oko, Nankoku, Kochi 783-8505, Japan
- Department of Surgery, Kochi Medical School, Kohasu, Oko, Nankoku, Kochi 783-8505, Japan
| | - Masahiro Yao
- Department of Urology, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| |
Collapse
|
20
|
Iwayama T, Okada T, Ueda T, Tomita K, Matsumoto S, Takedachi M, Wakisaka S, Noda T, Ogura T, Okano T, Fratzl P, Ogura T, Murakami S. Osteoblastic lysosome plays a central role in mineralization. SCIENCE ADVANCES 2019; 5:eaax0672. [PMID: 31281900 PMCID: PMC6609213 DOI: 10.1126/sciadv.aax0672] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 05/28/2019] [Indexed: 05/03/2023]
Abstract
Mineralization is the most fundamental process in vertebrates. It is predominantly mediated by osteoblasts, which secrete mineral precursors, most likely through matrix vesicles (MVs). These vesicular structures are calcium and phosphate rich and contain organic material such as acidic proteins. However, it remains largely unknown how intracellular MVs are transported and secreted. Here, we use scanning electron-assisted dielectric microscopy and super-resolution microscopy for assessing live osteoblasts in mineralizing conditions at a nanolevel resolution. We found that the calcium-containing vesicles were multivesicular bodies containing MVs. They were transported via lysosome and secreted by exocytosis. Thus, we present proof that the lysosome transports amorphous calcium phosphate within mineralizing osteoblasts.
Collapse
Affiliation(s)
- Tomoaki Iwayama
- Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan
| | - Tomoko Okada
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan
| | - Tsugumi Ueda
- Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan
| | - Kiwako Tomita
- Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan
| | - Shuji Matsumoto
- Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan
| | - Masahide Takedachi
- Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan
| | - Satoshi Wakisaka
- Department of Oral Anatomy and Development, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan
| | - Takeshi Noda
- Center for Frontier Oral Science, Graduate School of Dentistry, and Graduate School of Frontier BioSciences, Osaka University, Osaka 565-0871, Japan
| | | | | | - Peter Fratzl
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam-Golm 14476, Germany
| | - Toshihiko Ogura
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan
- Corresponding author. (To. Ogura); (S. Mu.)
| | - Shinya Murakami
- Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan
- Corresponding author. (To. Ogura); (S. Mu.)
| |
Collapse
|
21
|
Senga Y, Imamura H, Ogura T, Honda S. In-Solution Microscopic Imaging of Fractal Aggregates of a Stressed Therapeutic Antibody. Anal Chem 2019; 91:4640-4648. [PMID: 30888793 DOI: 10.1021/acs.analchem.8b05979] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Aggregates of therapeutic proteins that can contaminate drug products during manufacture is a growing concern for the pharmaceutical industry because the aggregates are potentially immunogenic. Electron microscopy is a typical, indispensable method for imaging nanometer- to micrometer-sized structures. Nevertheless, it is not ideal because it must be performed with ex situ monitoring under high-vacuum conditions, where the samples could be altered by staining and drying. Here, we introduce a scanning electron-assisted dielectric microscopy (SE-ADM) technique for in-solution imaging of monoclonal immunoglobulin G (IgG) aggregates without staining and drying. Remarkably, SE-ADM allowed assessment of the size and morphology of the IgG aggregates in solution by completely excluding drying-induced artifacts. SE-ADM was also beneficial to study IgG aggregation caused by temporary acid exposure followed by neutralization, pH-shift stress. A box-counting analysis of the SE-ADM images provided fractal dimensions of the larger aggregates, which complemented the fractal dimensions of the smaller aggregates measured by light scattering. The scale-free or self-similarity nature of the fractal aggregates indicated that a common mechanism for antibody aggregation existed between the smaller and larger aggregates. Consequently, SE-ADM is a useful method for characterizing protein aggregates to bridge the gaps that occur among conventional analytical methods, such as those related to in situ/ ex situ techniques or size/morphology assessments.
Collapse
Affiliation(s)
- Yukako Senga
- Biomedical Research Institute , National Institute of Advanced Industrial Science and Technology (AIST) , Higashi, Tsukuba , Ibaraki 305-8566 , Japan
| | - Hiroshi Imamura
- Biomedical Research Institute , National Institute of Advanced Industrial Science and Technology (AIST) , Higashi, Tsukuba , Ibaraki 305-8566 , Japan
| | - Toshihiko Ogura
- Biomedical Research Institute , National Institute of Advanced Industrial Science and Technology (AIST) , Higashi, Tsukuba , Ibaraki 305-8566 , Japan
| | - Shinya Honda
- Biomedical Research Institute , National Institute of Advanced Industrial Science and Technology (AIST) , Higashi, Tsukuba , Ibaraki 305-8566 , Japan
| |
Collapse
|
22
|
Okada T, Ogura T. Nanoscale imaging of the adhesion core including integrin β1 on intact living cells using scanning electron-assisted dielectric-impedance microscopy. PLoS One 2018; 13:e0204133. [PMID: 30235285 PMCID: PMC6147470 DOI: 10.1371/journal.pone.0204133] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 09/03/2018] [Indexed: 12/13/2022] Open
Abstract
The integrins are a superfamily of transmembrane proteins composed of α and β subunit dimers involved in cell-cell and cell-extracellular matrix interactions. The largest integrin subgroup is integrin β1, which contributes to several malignant phenotypes. Recently, we have developed a novel imaging technology named scanning electron-assisted dielectric-impedance microscopy (SE-ADM), which visualizes untreated living mammalian cells in aqueous conditions with high contrast. Using the SE-ADM system, we observed 60-nm gold colloids with antibodies directly binding to the focal adhesion core containing integrin β1 on mammalian cancer cells without staining and fixation. The adhesion core contains three or four high-density regions of integrin β1 and connects to the actin filament. An adhesion core with high-density integrin β1 is suggested to contain 10-20 integrin dimers. Our SE-ADM system can also visualize various other membrane proteins in living cells in medium without staining and fixation.
Collapse
Affiliation(s)
- Tomoko Okada
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Higashi, Tsukuba, Ibaraki, Japan
| | - Toshihiko Ogura
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Higashi, Tsukuba, Ibaraki, Japan
- * E-mail:
| |
Collapse
|
23
|
Ogura T, Okada T. Nanoscale observation of the natural structure of milk-fat globules and casein micelles in the liquid condition using a scanning electron assisted dielectric microscopy. Biochem Biophys Res Commun 2017; 491:1021-1025. [PMID: 28780347 DOI: 10.1016/j.bbrc.2017.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 08/01/2017] [Indexed: 12/18/2022]
Abstract
Recently, aqueous nanoparticles have been used in drug-delivery systems for new type medicines. In particular, milk-casein micelles have been used as drug nanocarriers for targeting cancer cells. Therefore, nanostructure observation of particles and micelles in their native liquid condition is indispensable for analysing their function and mechanisms. However, traditional optical and scanning electron microscopy have difficulty observing the nanostructures of aqueous micelles. Recently, we developed a novel imaging technique called scanning electron-assisted dielectric microscopy (SE-ADM) that enables observation of various biological specimens in water with very little radiation damage and high-contrast imaging without staining or fixation at an 8-nm spatial resolution. In this study, for the first time, we show that the SE-ADM system is capable of high-resolution observation of whole-milk specimens in their natural state. Moreover, we successfully observe the casein micelles and milk-fat globules in an intact liquid condition. Our SE-ADM system can be applied to various biological particles and micelles in a native liquid state.
Collapse
Affiliation(s)
- Toshihiko Ogura
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 2, Umezono, Tsukuba, Ibaraki 305-8568, Japan.
| | - Tomoko Okada
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 2, Umezono, Tsukuba, Ibaraki 305-8568, Japan
| |
Collapse
|
24
|
High-resolution imaging of living mammalian cells bound by nanobeads-connected antibodies in a medium using scanning electron-assisted dielectric microscopy. Sci Rep 2017; 7:43025. [PMID: 28230204 PMCID: PMC5322383 DOI: 10.1038/srep43025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 01/18/2017] [Indexed: 02/07/2023] Open
Abstract
Nanometre-scale-resolution imaging technologies for liquid-phase specimens are indispensable tools in various scientific fields. In biology, observing untreated living cells in a medium is essential for analysing cellular functions. However, nanoparticles that bind living cells in a medium are hard to detect directly using traditional optical or electron microscopy. Therefore, we previously developed a novel scanning electron-assisted dielectric microscope (SE-ADM) capable of nanoscale observations. This method enables observation of intact cells in aqueous conditions. Here, we use this SE-ADM system to clearly observe antibody-binding nanobeads in liquid-phase. We also report the successful direct detection of streptavidin-conjugated nanobeads binding to untreated cells in a medium via a biotin-conjugated anti-CD44 antibody. Our system is capable of obtaining clear images of cellular organelles and beads on the cells at the same time. The direct observation of living cells with nanoparticles in a medium allowed by our system may contribute the development of carriers for drug delivery systems (DDS).
Collapse
|
25
|
Furuta T, Miyaki S, Ishitobi H, Ogura T, Kato Y, Kamei N, Miyado K, Higashi Y, Ochi M. Mesenchymal Stem Cell-Derived Exosomes Promote Fracture Healing in a Mouse Model. Stem Cells Transl Med 2016; 5:1620-1630. [PMID: 27460850 DOI: 10.5966/sctm.2015-0285] [Citation(s) in RCA: 325] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 06/28/2016] [Indexed: 12/13/2022] Open
Abstract
: Paracrine signaling by bone-marrow-derived mesenchymal stem cells (MSCs) plays a major role in tissue repair. Although the production of regulatory cytokines by MSC transplantation is a critical modulator of tissue regeneration, we focused on exosomes, which are extracellular vesicles that contain proteins and nucleic acids, as a novel additional modulator of cell-to-cell communication and tissue regeneration. To address this, we used radiologic imaging, histological examination, and immunohistochemical analysis to evaluate the role of exosomes isolated from MSC-conditioned medium (CM) in the healing process in a femur fracture model of CD9-/- mice, a strain that is known to produce reduced levels of exosomes. We found that the bone union rate in CD9-/- mice was significantly lower than wild-type mice because of the retardation of callus formation. The retardation of fracture healing in CD9-/- mice was rescued by the injection of exosomes, but this was not the case after the injection of exosomes-free conditioned medium (CM-Exo). The levels of the bone repair-related cytokines, monocyte chemotactic protein-1 (MCP-1), MCP-3, and stromal cell-derived factor-1 in exosomes were low compared with levels in CM and CM-Exo, suggesting that bone repair may be in part mediated by other exosome components, such as microRNAs. These results suggest that exosomes in CM facilitate the acceleration of fracture healing, and we conclude that exosomes are a novel factor of MSC paracrine signaling with an important role in the tissue repair process. SIGNIFICANCE This work focuses on exosomes, which are extracellular vesicles, as a novel additional modulator of cell-to-cell communication. This study evaluated the role of exosomes isolated from mesenchymal stem cell (MSC)-conditioned medium (MSC-CM) in the fracture-healing process of CD9-/- mice, a strain that is known to produce reduced levels of exosomes. Retardation of fracture healing in CD9-/- mice was rescued by the injection of MSC exosomes, but this was not the case after the injection of exosome-free CM. This study finds that MSC exosomes are a novel factor of MSC paracrine signaling, with an important role in the tissue repair process.
Collapse
Affiliation(s)
- Taisuke Furuta
- Department of Orthopaedics Surgery, Integrated Health Sciences, Institute of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
| | - Shigeru Miyaki
- Department of Orthopaedics Surgery, Integrated Health Sciences, Institute of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
- Department of Regenerative Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan
| | - Hiroyuki Ishitobi
- Department of Regenerative Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan
| | - Toshihiko Ogura
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Yoshio Kato
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Naosuke Kamei
- Department of Orthopaedics Surgery, Integrated Health Sciences, Institute of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
- Department of Regenerative Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan
| | - Kenji Miyado
- Department of Reproductive Biology, National Center for Child Health and Development, Tokyo, Japan
| | - Yukihito Higashi
- Department of Regenerative Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan
| | - Mitsuo Ochi
- Department of Orthopaedics Surgery, Integrated Health Sciences, Institute of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
26
|
Nanoscale imaging of untreated mammalian cells in a medium with low radiation damage using scanning electron-assisted dielectric microscopy. Sci Rep 2016; 6:29169. [PMID: 27375121 PMCID: PMC4931576 DOI: 10.1038/srep29169] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 06/15/2016] [Indexed: 01/19/2023] Open
Abstract
Imaging of untreated living cells in a medium at a nanometre-scale resolution under physiological conditions is a significant challenge. Scanning electron microscopy (SEM) is widely used to observe cells in various atmospheric holders or special equipment. However, untreated biological specimens in aqueous solution generally incur heavy radiation damage from the direct electron beam (EB); and these images exhibit very poor contrast. Therefore, a new method for generating high-contrast images of living cells under physiological conditions without radiation damage has been strongly desired. Here, we demonstrate the first nanoscale observation of living cultured mammalian cells using our newly developed scanning-electron assisted dielectric microscopy (SE-ADM) method with a culture dish holder. Using the difference in relative permittivity between water and specimens, our SE-ADM system aids in the visualisation of untreated biological samples in aqueous solution. In addition, specimens incurred only a low level of radiation damage because the tungsten (W)-coated silicon nitride (SiN) film absorbs irradiated electrons. Untreated cells and organelles are clearly visible in high-contrast and high-resolution images without staining and fixation. Furthermore, our method enables the detection of changes in organelle structures within cells via time-lapse imaging with minimal radiation damage.
Collapse
|
27
|
Golding CG, Lamboo LL, Beniac DR, Booth TF. The scanning electron microscope in microbiology and diagnosis of infectious disease. Sci Rep 2016; 6:26516. [PMID: 27212232 PMCID: PMC4876401 DOI: 10.1038/srep26516] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 05/03/2016] [Indexed: 11/29/2022] Open
Abstract
Despite being an excellent tool for investigating ultrastructure, scanning electron microscopy (SEM) is less frequently used than transmission electron microscopy for microbes such as viruses or bacteria. Here we describe rapid methods that allow SEM imaging of fully hydrated, unfixed microbes without using conventional sample preparation methods. We demonstrate improved ultrastructural preservation, with greatly reduced dehydration and shrinkage, for specimens including bacteria and viruses such as Ebola virus using infiltration with ionic liquid on conducting filter substrates for SEM.
Collapse
|